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1. Introduction

Let k be an algebraically closed field of characteristic p > 0. If g ≥ 3, there exist
a k-curve C of genus g with Aut(C) = {1} and a hyperelliptic k-curveD of genus
g with Aut(D) � Z/2 (see e.g. [16] and [8], respectively). In this paper, we ex-
tend these results to curves with given genus and p-rank.

If C is a smooth projective k-curve of genus g with Jacobian Jac(C), then the
p-rank of C is the integer fC such that the cardinality of Jac(C)[p](k) is pfC . It
is known that 0 ≤ fC ≤ g. We prove the following result.

Theorem 1.1. Suppose g ≥ 3 and 0 ≤ f ≤ g.

(i) There exists a smooth projective k-curve C of genus g and p-rank f with
Aut(C) = {1}.

(ii) There exists a smooth projective hyperelliptic k-curve D of genus g and p-
rank f with Aut(D) � Z/2.

More generally, we consider the moduli space Mg of curves of genus g over k.
The p-rank induces a stratification Mg,f of Mg such that the geometric points
of Mg,f parameterize k-curves of genus g and p-rank at most f. Similarly, we
consider the p-rank stratification Hg,f of the moduli space Hg of hyperelliptic
k-curves of genus g. Our main results (Theorems 2.3 and 3.7) state that, for every
geometric generic point η of Mg,f (resp. Hg,f ), the corresponding curve Cη sat-
isfies Aut(Cη) = {1} (resp. Aut(Dη) � Z/2).

For the proof of the first result, we consider the locus M
g of Mg parameteriz-

ing k-curves of genus g that have an automorphism of order . Results from [7]
and [16] allow us to compare the dimensions of Mg,f and M

g. The most diffi-
cult case, when  = p, involves wildly ramified covers and deformation results
from [2]. For the proof of the second result, we compare the dimensions of Hg,f

and H
g using [9] and [10]. When p = 2, this relies on [17]. The hardest case for

hyperelliptic curves is when p ≥ 3, f = 0, and  = 4; we use a degeneration
argument to finish this case.
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The statements and proofs of our main results would be simpler if more were
known about the geometry of Mg,f and Hg,f . For example, one could reduce to
the case f = 0 if one knew that each irreducible component of Mg,f contained
a component of Mg,0. But even the number of irreducible components of Mg,f

(or Hg,f ) is known only in special cases.
We also sketch a second proof of the main results that uses degeneration to the

boundaries of Mg,f and Hg,f (see Remark 3.9).

Remark 1.2. There is no information in Theorem 1.1 about the field of definition
of the curves. In the literature, there are several results about curves with trivial
automorphism group that are defined over finite fields. In [14] and [15], the author
constructs an Fp-curve C0 of genus g with Aut

F̄p
(C0) = {1} and a hyperelliptic

Fp-curveD0 of genus g with Aut
F̄p
(D0) � Z/2. However, the p-ranks of C0 and

D0 are not considered.
For p = 2 and 0 ≤ f ≤ g, the author of [19] constructs a hyperelliptic F2-curve

D0 of genus g and p-rank f with Aut
F̄p
(D0) � Z/2. The analogous question for

odd characteristic appears to be open. Furthermore, for all p it seems to be an
open question whether there exists an Fp-curve C0 of genus g and p-rank f with
Aut

F̄p
(C0) = {1} [19, Ques. 1].

Notation and Background. All objects are defined over an algebraically
closed field k of characteristic p > 0. Let Mg be the moduli space of smooth
projective connected curves of genus g, with tautological curve Cg → Mg. Let
Hg be the moduli space of smooth projective connected hyperelliptic curves of
genus g, with tautological curve Dg → Hg.

If C is a k-curve of genus g, then the p-rank of C is the number f ∈ {0, . . . , g}
such that Jac(C)[p](k) ∼= (Z/p)f . The p-rank is a discrete invariant that is lower
semicontinuous in families. It induces a stratification ofMg by closed reduced sub-
spaces Mg,f that parameterize curves of genus g with p-rank at most f. Similarly,
let Hg,f ⊂ Hg be the locus of hyperelliptic curves of genusgwithp-rank at mostf.

Recall that dim(Mg) = 3g−3 and dim(Hg) = 2g−1. Every irreducible com-
ponent of Mg,f has dimension 2g − 3 + f by [7, Thm. 2.3]. Every irreducible
component of Hg,f has dimension g − 1 + f by [9, Thm. 1] when p ≥ 3 and by
[17, Cor. 1.3] when p = 2. In other words, the locus of curves of genus g and
p-rank f has pure codimension g − f in Mg and in Hg.

Every irreducible component of Mg,f (resp. Hg,f ) has a geometric generic
point η. Let Cη (resp. Dη) denote the curve corresponding to the point η.

Let  be prime. Let M
g ⊂ Mg denote the locus of curves that admit an auto-

morphism of order  (after pullback by a finite cover of the base). The locus M
g

is closed in Mg. IfD is a hyperelliptic curve, let ι denote the unique hyperelliptic
involution ofD. Then ι is in the center of Aut(D). Let H

g ⊂ Hg denote the locus
of hyperelliptic curves that admit a nonhyperelliptic automorphism of order . Let
H4,ι

g denote the locus of hyperelliptic curves that admit an automorphism σ of
order 4 such that σ 2 = ι.
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An Artin–Schreier curve is a curve that admits a structure as (Z/p)-cover of
the projective line. Let ASg ⊂ Mg denote the locus of Artin–Schreier curves of
genus g and let ASg,f denote its p-rank strata.

Unless stated otherwise, we assume g ≥ 3 and 0 ≤ f ≤ g.

2. The Case of Mg

2.1. A Dimension Result

Suppose� is an irreducible component of M
g with generic point ξ. Let Y be the

quotient of Cξ by a group of order . Let gY and fY be respectively the genus and
p-rank of Y. Consider the (Z/)-cover φ : Cξ → Y. Let B ⊂ Y be the branch
locus of φ. If  = p, let jb be the jump in the lower ramification filtration of φ at
a branch point b ∈B [18, IV].

Lemma 2.1. (i) If  �= p, then dim(�) ≤ 2(g − gY )/(− 1)+ fY − 1.
(ii) If  = p, then dim(�) ≤ 2(g − gY )/(− 1)+ fY − 1 − ∑

b∈B�jb/p�.
Proof. Let φ : Cξ → Y be as before, with branch locus B ⊂ Y. Because g ≥
3, if gY = 1 then |B| > 0. Let MgY,fY,|B| be the moduli space of curves of
genus gY and p-rank at most fY with |B| marked points. Then dim(MgY,fY,|B|) =
2gY − 3 + fY + |B| if gY ≥ 1. Also dim(M0,0,|B|) = |B| − 3 if |B| ≥ 3.

(i) Since φ : Cξ → Y is tamely ramified, the curve Cξ is determined by the quo-
tient curve Y, the branch locus B, and ramification data that is discrete. Therefore,
dim(�) ≤ dim(MgY,fY,|B|) if gY ≥ 1 and dim(�) ≤ |B| − 3 if gY = 0. By the
Riemann–Hurwitz formula, 2g − 2 = (2gY − 2)+ |B|(− 1). One can deduce
that |B| = 2(g − gY )/(− 1)+ 2 and the desired result follows.

(ii) By the Riemann–Hurwitz formula for wildly ramified covers [18, IV, Prop. 4],

2g − 2 = p(2gY − 2)+
∑
b∈B

(jb + 1)(p − 1).

For b ∈ B, let φ̂b : Ĉz → Ŷb be the germ of the cover φ at the ramification
point z above b. By [2, p. 229], the dimension of the moduli space of covers
φ̂b with ramification break jb is db = jb − �jb/p�. The local /global principle
of formal patching (found, for example, in [2, Prop. 5.1.3]) implies dim(�) ≤
dim(MgY,fY,|B|)+ ∑

b∈B db. Since |B| + ∑
b∈B jb = 2(g − pgY )/(p − 1)+ 2,

this simplifies to

dim(�) ≤ 2(g − gY )

p − 1
+ fY − 1 −

∑
b∈B

⌊
jb

p

⌋
.

2.2. No Automorphism of Order p

Lemma 2.2. Suppose � is a component of Mg,f with geometric generic point
η. Then Cη does not have an automorphism of order p.
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Proof. The strategy of the proof is to show that dim(� ∩ Mp
g ) < dim(�). Recall

that dim(�) = 2g − 3 + f by [7, Thm. 2.3].
Let� be an irreducible component of �∩Mp

g , with geometric generic point ξ.
Consider the resulting cover φ : Cξ → Y, which is either étale or wildly ramified.
Let gY and fY be respectively the genus and p-rank of Y.

Suppose first that gY = 0. In other words, ξ ∈ ASg,f and Cξ is an Artin–
Schreier curve. By [17, Lemma 2.6], g = d(p − 1)/2 for some d ∈ N. If p = 2,
then dim(ASg,f ) = g−1+ f [17, Cor. 1.3]. If p ≥ 3, then dim(ASg,f ) ≤ d −1
by [17, Thm. 1.1]. In either case, dim(�) ≤ dim(ASg,f ) < dim(�) since g ≥ 3.

Now suppose that gY ≥ 1. If p ≥ 3, Lemma 2.1(ii) implies that dim(�) ≤
g − gY + fY − 1< 2g − 3 + f.

If p = 2 and gY ≥ 1, let |B| be the number of branch points of φ. By the
Deuring–Shafarevich formula [5, Cor.1.8], f−1 = 2(fY−1)+|B|. Lemma 2.1(ii)
implies that dim(�) ≤ 2g−2gY + (f −1−|B|)/2−∑

b∈B�jb/2�. In particular,
dim(�) < 2g − 2gY + f/2. So dim(�) < 2g − 3 + f if gY ≥ 2.

Suppose p = 2 and gY = 1. The hypothesis g ≥ 3 implies that φ is ramified.
So |B| ≥ 1 and jb ≥ 1 for b ∈B. Then dim(�) < 2g − 3 + f/2.

Thus dim(�) < dim(�) in all cases. This inequality implies that η /∈ Mp
g and

that Aut(Cη) does not contain an automorphism of order p.

2.3. The Main Result for Mg,f

Theorem 2.3. Suppose g ≥ 3 and 0 ≤ f ≤ g. Suppose η is the geometric
generic point of an irreducible component � of Mg,f . Then Aut(Cη) = {1}.
Proof. By Lemma 2.2, Aut(Cη) contains no automorphism of orderp. Let  �= p

be prime. Consider an irreducible component � ⊂ � ∩ M
g. The result follows

in any case where dim(�) < dim(�) = 2g − 3 + f.

Let ξ be the geometric generic point of �. Let Y be the quotient of Cξ by a
group of order . Let gY and fY be the genus and p-rank of Y.

If  ≥ 3, then Lemma 2.1(i) implies dim(�) ≤ g−gY +fY −1. Thus dim(�) <
2g − 3 + f and Cη has no automorphism of order  ≥ 3.

Suppose  = 2. If gY = 0, then Cη is hyperelliptic and in particular dim(�) ≤
dim(Hg,f ) = g − 1 + f < 2g − 3 + f. If gY ≥ 1, then dim(�) ≤ 2g − 2gY +
fY − 1, which is less than 2g − 3 + f except when gY = 1 and f = fY ≤ 1.

For the final case, when  = 2, gY = 1, and f = fY , Lemma 2.1 alone does not
suffice to prove the claim. Let M2,Y

g be the moduli space of curves of genus g that
are (Z/2)-covers of Y. It is the geometric fiber over the moduli point of Y of a map
from a proper, irreducible Hurwitz space to M1 (see e.g. [3, Cor. 6.12]). There-
fore, M2,Y

g is irreducible. Now ξ ∈ M2,Y
g ∩ �. The strategy is to show that there

exists an s ∈ M2,Y
g such that fs > fY . From this, it follows that M2,Y

g ∩ Mg,fY

is a closed subset of M2,Y
g of positive codimension. Then � is a closed subset of

� of positive codimension, and the proof is complete.
To construct s, consider a (Z/2)-cover ψ1 : Y → P

1. If g is odd (resp. even),
let ψ2 : X → P

1 be a (Z/2)-cover such that X has genus (g − 1)/2 (resp. g/2)
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and the branch locus of ψ2 contains exactly two (resp. three) of the branch points
of ψ1. Since only two (resp. three) of the branch points of ψ2 are specified, one
can suppose X is ordinary. Consider the fiber product ψ : W → P

1 of ψ1 and ψ2.

Following the construction of [9, Prop. 3],W has genus g and p-rank at least g/2.
SinceW is a (Z/2)-cover of Y, it corresponds to a point s ∈ M2,Y

g with p-rank at
least fY + 1.

Here is the proof of part (i) of Theorem 1.1.

Corollary 2.4. Suppose g ≥ 3 and 0 ≤ f ≤ g. There exists a smooth projec-
tive k-curve C of genus g and p-rank f with Aut(C) = {1}.
Proof. Let � be an irreducible component of Mg,f , with geometric generic point
η. Let� ′ ⊂ � be the open, dense subset parameterizing curves withp-rank exactly
f [7, Thm. 2.3]. By Theorem 2.3, Aut(Cη) = 1. The sheaf Aut(C ) is constructible
on � ′, but there are only finitely many possibilities for the automorphism group of
a curve of genus g. Hence there is a nonempty open subspace U ⊂ � ′ such that,
for each s ∈U(k), Cs has p-rank f and Aut(Cs) = 1.

Corollary 2.5. Let g ≥ 3 and 0 ≤ f ≤ g. There exists a principally polarized
abelian variety (A, λ) over k of dimension g andp-rank f with Aut(A, λ) = {±1}.
Proof. Let A be the Jacobian of the curve given in Corollary 2.4. The desired
properties then follow from Torelli’s theorem [13, Thm. 12.1].

3. The Case of Hg

Recall that g ≥ 3 and 0 ≤ f ≤ g.

3.1. When p = 2

Lemma 3.1. Let p = 2 and suppose η is the geometric generic point of a com-
ponent � of Hg,f . Then Aut(Dη) � Z/2.

Proof. The automorphism group of a hyperelliptic curve always contains a (cen-
tral) copy of Z/2. Let U ⊂ � be the subset parameterizing curves with automor-
phism group Z/2. As in the proof of Corollary 2.4, U is open; it suffices to show
that U is nonempty.

By [17, Cor. 1.3], Hg,0 is irreducible of dimension g − 1 when p = 2. For g ≥
3, there exists a hyperelliptic curve D0 with p-rank 0 and Aut(D0) � Z/2 [19,
Thm. 3]. The component � contains Hg,0 by [17, Cor. 4.6]. Then U is nonempty
because U ∩ Hg,0 is nonempty.

3.2. No Automorphism of Order p

Suppose p ≥ 3.

Lemma 3.2. If p|(2g + 2) or p|(2g + 1), then dim Hp
g = �(2g + 2)/p� − 2.

Otherwise, Hp
g is empty.
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Proof. Suppose s ∈ Hp
g(k). There exists σ ∈ Aut(Ds) of order p. Since ι and σ

commute, σ descends to an automorphism of Ds/〈ι〉 � P
1. Let Z be the projec-

tive line Ds/〈σ, ι〉. Then Ds → Z is the fiber product of the hyperelliptic cover
φ : Ds/〈σ 〉 → Z and the (Z/p)-cover ψ : Ds/〈ι〉 → Z.

Since Ds/〈ι〉 has genus 0, it follows that the coverψ is ramified only at one point
b and that the jump jb in the lower ramification filtration equals 1. After changing
coordinates on Ds/〈ι〉 and Z, the cover ψ is isomorphic to cp − c = x.

If φ is not branched at ∞, then each branch point of φ lifts to p branch points
of the cover Ds → Ds/〈ι〉 and the branch locus of φ consists of (2g+ 2)/p points.
On the other hand, if φ is branched at ∞ then the branch locus of φ consists of
(2g + 1)/p points. Therefore, if Hp

g(k) is nonempty then either p|(2g + 1) or
p|(2g + 2).

Moreover, any branch locus of size �(2g + 2)/p� uniquely determines such a
cover φ. A point s ∈ Hp

g is determined by the branch locus of φ up to the action of
affine linear transformations on Z. Thus dim(Hp

g ) = �(2g + 2)/p� − 2.

Lemma 3.3. Let η be the geometric generic point of a component of Hg,f . Then
Aut(Dη) contains no automorphism of order p.

Proof. By Lemma 3.2, Hp
g is either empty or of dimension �(2g + 2)/p� − 2. If

g ≥ 3, then dim(Hp
g ) < g−1+f = dim(Hg,f ). Thus Dη does not have an auto-

morphism of order p.

3.3. Extra Automorphisms of Order 2 and 4

Suppose p ≥ 3. In this section, we show that the geometric generic point of any
component of Hg,f parameterizes a curve with no extra automorphism of order 2
or 4. The proof relies on degeneration and requires an analysis of curves of genus 2
and p-rank 0.

Lemma 3.4. Suppose p ≥ 3 and g = 2. If η is a geometric generic point of
H2,0, then Aut(Dη) � Z/2.

Proof. By [11, p. 130], Aut(Dη)/〈ι〉 � G whereG is one of the following groups:
{1}, Z/5, Z/2, S3, Z/2 ⊕ Z/2, D12, S4, or PGL2(Z/5). Let T G ⊂ H2,0 be
the sublocus parameterizing hyperelliptic curves D with Aut(D)/〈ι〉 � G. Since
every component of H2,0 has dimension 1, it suffices to show that each T G is
0-dimensional.

If G = Z/5 and s ∈ T G(k), then the Jacobian of Ds has an action by Z/5 and
thus must be one of the two abelian surfaces with complex multiplication by Z[ζ5].
Hence there exist at most two hyperelliptic curvesD of genus 2 and p-rank 0 with
Aut(D)/〈ι〉 � Z/5.

Now let G be any nontrivial group from the list other than Z/5. A curve of
genus 2 and p-rank 0 is necessarily supersingular, and any supersingular hyper-
elliptic curveD of genus 2 with Aut(D)/〈ι〉 � G is superspecial by [11, Prop. 1.3].
Since there are only finitely many superspecial abelian surfaces, T G is a proper
closed subset of H2,0 for each G �= {1} on the list. Thus Aut(Dη) � Z/2.
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Lemma 3.5. Suppose p ≥ 3 and g ≥ 3. Then:

(i) H2
g is irreducible with dimension g;

(ii) there exists an s ∈ H2
g(k) such that Ds has p-rank at least 2; and

(iii) dim(Hg,0 ∩ H2
g) < g − 1.

Proof. Suppose s ∈ H2
g(k). There is a Klein-4 cover φ : Ds → P

1
k such that φ is

the fiber product of two hyperelliptic covers ψi : Ci → P
1
k [9, Lemma 3].

If g is even, then one can assume that C1 and C2 both have genus g/2 and that
the branch loci of ψ1 and ψ2 differ in a single point. If g is odd, then one can as-
sume that C1 has genus (g + 1)/2, C2 has genus (g − 1)/2, and the branch locus
of ψ2 is contained in the branch locus of ψ1 [9, Prop. 3]. In both cases, the third
(Z/2)-subquotient of Ds has genus 0. In particular, if fs denotes thep-rank of Ds

then fs = fC1 + fC2 [9, Cor. 2].
(i) This is found in [9, Cor. 1].
(ii) One can choose ψ1 so that C1 is ordinary. Then fs ≥ �g/2� ≥ 2.
(iii) Suppose s ∈ Hg,0(k), so that fs = fC1 = fC2 = 0. If g is even, then the pa-

rameter space for choices of ψ1 has dimension dim(Hg/2,0) = g/2 −1. For fixed
ψ1, the parameter space for choices of ψ2 has dimension ≤ 1. Similarly, if g is
odd, then the parameter space for choices of ψ1 has dimension dim(H(g+1)/2,0) =
(g − 1)/2. For fixed ψ1, there are at most finitely many possibilities for ψ2. In
either case, dim(Hg,0 ∩ H2

g) ≤ �g/2� < g − 1.

Lemma 3.6. Suppose p ≥ 3 and g ≥ 3. Then H4,ι
g is irreducible with dimension

g−1, and its geometric generic point parameterizes a curve with positive p-rank.

Proof. Suppose s ∈ H4,ι
g (k). Let σ be an automorphism of Ds of order 4 such

that σ 2 = ι. Consider the (Z/4)-cover Ds
α−→ P

1
x

β−→ P
1
z . Then β is branched at

two points and ramified at two points. Without loss of generality, one can suppose
these are 0x and ∞x on P

1
x and 0z and ∞z on P

1
z . This implies that the action of

σ on P
1
x is given by σ(x) = −x.

The inertia groups of β � α above 0 and ∞ are subgroups of 〈σ 〉 � Z/4 that are
not contained in 〈σ 2〉. Thus they each have order 4, and α is branched over 0x and
∞x. The other 2g branch points of α form orbits under the action of σ, and one
can denote them by {±λ1, . . . , ±λg}. Without loss of generality, one can suppose
λg = 1 and β(λg) = 1 and therefore Ds has an affine equation of the form y2 =
x(x 2 − 1)

∏g−1
i=1(x

2 − λ2
i ).

Let S = P
1 − {0,1, ∞}. Let - ⊂ Sg−1 be the weak diagonal consisting of all

(g − 1)-tuples (x1, . . . , xg−1) such that xi = xj for some i �= j. Let -′ ⊂ Sg−1

consist of all (g − 1)-tuples (x1, . . . , xg−1) such that xi = −xj for some i �= j.

There is a surjective morphism ω : (P1 −{0,1, ∞})g−1 − (-∪-′) → H4,ι
g , where

ω sends (λ1, . . . , λg−1) to the isomorphism class of the curve with affine equation
y2 = x(x 2 − 1)

∏g−1
i=1(x

2 − λ2
i ). Thus H4,ι

g is irreducible.
There are only finitely many fractional linear transformations fixing the set

{±λ1, . . . , ±λg−1, ±1, 0, ∞}. Thus ω is finite-to-one and dim(H4,ι
g ) = g − 1.
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Suppose g ≥ 3, and let η be the geometric generic point of H4,ι
g . To fin-

ish the proof, it suffices to show that the p-rank of Dη is positive. Let T =
Spec(k[[t]]) and let T ′ = Spec(k((t))). Consider the image of the T ′-point
(tλ1, tλ2, λ3, . . . , λg−1) under ω. This gives a T ′-point of H4,ι

g ⊂ Hg. The moduli
space H̄g of stable hyperelliptic curves is proper, so the T ′-point of Hg gives rise
to a T -point of H̄g. The special fiber of this T -point corresponds to a stable curve
Y. The stable curve Y has two components, Y1 and Y2, intersecting in an ordinary
double point. Here Y1 has genus 2 and affine equation y2

1 = x1(x
2
1 −λ2

1)(x
2
1 −λ2

2),
while Y2 has genus g − 2 and affine equation y2

2 = ∏g−1
i=3(x

2
2 − λ2

i ).

The moduli point s ∈ H̄g(k) of Y is in the closure of H4,ι
g . The automorphism

σ extends to Y and stabilizes each of the two components Y1 and Y2. Therefore,
the moduli point of Y1 lies in H4,ι

2 . There is a 1-parameter family of such curves
Y1 because one can vary the choice of λ2. By Lemma 3.4, one can suppose that
fY1 �= 0. Now fY = fY1 + fY2 by [4, Ex. 9.2.8]. Thus fY �= 0. Since the p-rank
can only decrease under specialization and since s is in the closure of η, thep-rank
of Dη is nonzero as well.

3.4. Main Result for Hg,f

Theorem 3.7. Suppose g ≥ 3 and 0 ≤ f ≤ g. If η is the geometric generic
point of an irreducible component of Hg,f , then Aut(Dη) � Z/2.

Proof. Let� be the irreducible component of Hg,f whose geometric generic point
is η. Suppose σ ∈ Aut(Dη) has order  with σ /∈ 〈ι〉. Then p ≥ 3 by Lemma 3.1.
Without loss of generality, one can suppose that either  is prime or  = 4 with
σ 2 = ι.

If  = 4 and σ 2 = ι, then H4,ι
g is irreducible with dimension g−1by Lemma 3.6.

This is strictly less than dim(�) unless f = 0. If f = 0, the two dimensions are
equal but the geometric generic point of H4,ι

g corresponds to a curve of nonzero
p-rank by Lemma 3.6. Thus Dη has no automorphism σ of order 4 with σ 2 = ι.

If  is prime, one can suppose that  �= p by Lemma 3.3. In [10, p. 10], the au-
thors use an argument similar to the proof of Lemma 3.2 to show that H

g is empty
unless |(2g+ 2 − i) for some i ∈ {0,1, 2} and if H

g is nonempty, then its dimen-
sion is dg, = −1+ (2g+ 2 − i)/. If dg, < dim(�) = g+f −1 then Dη cannot
have an automorphism of order . This inequality is always satisfied when  ≥ 3
since g ≥ 3.

Suppose  = 2. Then dg, < dim(�) unless f ≤ 1. If f = 1 then the two di-
mensions are equal. By Lemma 3.5, H2

g is irreducible and contains the moduli
point of a curve with p-rank at least 2. Therefore, the component � of Hg,1 is not
the same as the unique irreducible component of H2

g.

Finally, suppose  = 2 and f = 0. By Lemma 3.5(iii), dim(�∩Hg,0) < g − 1.
Thus η /∈ H2

g, and Aut(Dη) � Z/2.

Part (ii) of Theorem 1.1 now follows from the next corollary.

Corollary 3.8. Suppose g ≥ 3 and 0 ≤ f ≤ g. There exists a smooth projec-
tive hyperelliptic k-curve D of genus g and p-rank f with Aut(D) � Z/2.
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Proof. The result follows from Theorem 3.7 via the same argument used to de-
duce Corollary 2.4 from Theorem 2.3.

Remark 3.9. The proof of the last statement of Lemma 3.6 uses the intersection
of H̄4,ι

g with the boundary component -2 of H̄g. More generally, one can give a
different proof of the main results of this paper by using induction. Here are the
main steps of the inductive proof. If g ≥ 3 and 1 ≤ i ≤ g/2, one can show that the
closure of every component of Mg,f in M̄g intersects the boundary component
-i by [6, p. 80] and [12]. Points of -i correspond to singular curves Y that have
two components Y1 and Y2 of genera i and g − i (respectively) intersecting in an
ordinary double point. Using a dimension argument, one can show that Y1 and Y2

are generically smooth and that theirp-ranks f1 and f2 add up to f. If the generic
point of a component of Mg,f parameterizes a curve with a nontrivial automor-
phism, then another dimension argument shows that this automorphism stabilizes
each of Y1 and Y2. This would imply that the generic point of a component of
Mg−i,f2 parameterizes a curve with nontrivial automorphism group, which would
contradict the inductive hypothesis.

It can be shown using [7] that an analogous proof works for Hg,f when p ≥ 3.
One can also use monodromy techniques to prove Corollary 2.5; see [1, Appl. 4.4].
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