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1. Introduction

Throughout this paper, complex spaces are assumed to be reduced and with count-
able topology. A curve, surface, et cetera will be a complex space of the appropri-
ate pure dimension.

Let X be a complex space. We say that X is weakly 1-complete if there exists a
continuous plurisubharmonic (psh) functionϕ : X → R such thatϕ is exhaustive—
that is, if for every c ∈ R the sublevel set {x ∈X : ϕ(x) < c} is relatively compact
in X. If we may choose ϕ strictly plurisubharmonic (spsh) outside a compact sub-
set of X, then X is called 1-convex.

For 1-convexity of a space X, one has mainly two equivalent characteriza-
tions [9]:

• X is cohomologically 1-convex—that is, for every coherent analytic sheaf F on
X, the cohomology groups Hq(X, F ), q = 1, 2, . . . , have finite dimension (as
complex vector spaces).

• The spaceX is a proper modification of a Stein space at a finite number of points.
In other words, there is a Stein space Y, a proper holomorphic map π : X → Y

with π
(OX) � OY (in particular, π is surjective and has connected fibers), and
a finite set B ⊂ Y such that π induces a biholomorphism between X \ π−1(B)

and Y \ B.

Thus each 1-convex space is holomorphically convex so that it admits “many
holomorphic functions”. However, there are weakly 1-complete spaces whose
global holomorphic functions are only the constants. A class of examples is fur-
nished by “toroidal groups”, which are connected complex Lie groups G with
O(G) = C. (By [8], every complex n-dimensional toroidal group is isomorphic
to C

n/� for some discrete subgroup � of C
n; moreover, � is weakly 1-complete

with a real-analytic defining function [5].)
Perhaps the simplest example is X = C

2/�, where � is the lattice generated by
{(0,1), (1, 0), (i, iλ)} and λ is an irrational number in the unit interval. As a real
Lie group, X is real-analytically equivalent to the product of a 3-dimensional real
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torus and the real line. Using the absolute value exhaustion function of R, one
finds a smooth, proper exhaustion ϕ of X. Clearly X is weakly 1-complete be-
cause the exhaustion function is essentially linear and thus the Levi form vanishes
identically. Let f ∈ O(X) and let f̃ be its lift to C

2. Since f̃ must be periodic with
an irrational period, a look at its Fourier series will show that it, and therefore f , is
identically constant. On the other hand, if λ is rational then X is holomorphically
convex (in fact, it is the product of C


 with an elliptic curve).
Another source of examples of weakly1-complete manifolds is the bundle spaces

of certain topologically trivial vector bundles over compact complex manifolds.
We restrict our remark here to the case of a complex line bundle where the bundle
space is weakly 1-complete—for instance, if F is a holomorphic line bundle over
a compact complex manifold M such that, with respect to some hermitian metric
on the fibres, the Chern form c(F ) vanishes identically. If π : F → M is the bun-
dle projection, if ‖·‖x is the norm on the fiber Fx , and if ϕ(ξ) := log‖ξ‖x where
π(ξ) = x, then ϕ yields an exhaustion of the bundle space F. A simple calcula-
tion shows that ϕ is psh (in fact it is Levi flat). A particular instance of a bundle
satisfying the condition stated is a topologically trivial line bundle over a compact
Kähler manifold. Using Hodge theory, one can always find a metric so that the
associated Chern form vanishes identically. See [15] for details.

In this circle of ideas one would like to know the answer to the following ques-
tion, which might be seen as a reformulation of the classical Levi problem.

(
) Describe weakly 1-complete spaces that are holomorphically convex.

In the sequel we focus on (
) for singular complex surfaces. It is important
to note that Ohsawa [11] states that a smooth, connected, weakly 1-complete sur-
face is holomorphically convex provided that it admits a nonconstant holomorphic
function. However, his proof contains a gap, which is corrected in Remark 2 (see
Section 3).

We are interested here in the case of a singular space X, but we cannot reduce
this to the case of nonsingular X owing to Markoe’s example [6] of a nonholomor-
phically convex locally irreducible surface Y whose normalization Y 
 is holomor-
phically convex. (It is worth remarking that in this example Y 
 is homeomorphic
to Y through the normalization map!)

Our main result is Theorem 1.

Theorem 1. Let X be an irreducible complex surface that is weakly 1-complete.
Then X is holomorphically convex provided that there exists a nonconstant holo-
morphic function f on X.

In Section 4 we give two applications of Theorem 1:

• a variant of Simha’s theorem [13] concerning the “Restraumproblem” for holo-
morphically convex surfaces; and

• a criterion for holomorphic convexity of pseudoconvex domains in complex 2-
dimensional tori (see Corollary 1 in Section 4 for the precise statement).
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We note that the present proof of Theorem 1 works for low dimension of X be-
cause a holomorphically convex curve � can be written as an increasing union of
1-convex open subsets and � is Stein if it is irreducible and noncompact.

2. Preliminaries

Here we recall a few notions and lemmas that we need to prove our main theorem.
LetX be a complex space. A function ϕ : X → R is said to be plurisubharmonic

( psh) if it is upper semicontinuous and, for any holomorphic map h : � → X (�

is the unit disk in C), ϕ � h is subharmonic in � (possibly identically −∞). We
call ϕ strictly psh if, for any θ ∈C∞

0 (X, R), there exists an ε > 0 such that ϕ + εθ

is psh.
It is known [3, Thm. 5.3.1] that a (strictly) psh function is locally the restric-

tion of a (strictly) psh function in an open set in some C
N in which X is locally

embedded; that is, our definition coincides with the usual one as given in [9].
We shall use the following well-known criterion (due to Narasimhan) of holo-

morphic convexity.

Lemma 1. Let X be a complex space and ϕ : X → R a continuous psh func-
tion. Suppose that there exists a sequence {cν}ν of real numbers tending to infinity
such that every {ϕ < cν} is holomorphically convex. Then X is holomorphically
convex.

From [2] we quote the following statement.

Lemma 2. Let D be an open set in a Stein space X such that, for any positive
integer j, Hj(D, O) = 0. Then D is Stein.

Lemma 3. Let π : X → Y be a finite surjective holomorphic map of complex
spaces. Then X is 1-convex if and only if Y is.

Proof. By [9] we know that 1-convexity is equivalent to cohomological 1-convex-
ity. Moreover, it has been proved in [16] that cohomological q-convexity, a fortiori
cohomological 1-convexity, is invariant under finite holomorphic surjections. The
proof of the lemma follows.

A key fact in our proof of Theorem1is the following particular case of [17, Prop. 4].

Lemma 4. Let X be an irreducible surface on which there is a nonconstant holo-
morphic function f. Assume that X has isolated singularities at worst.

Let K be a compact set in X and let Z1, . . . ,Zm be the irreducible components
of {f = 0} that meet K. Let & be an open set in X that intersects every Zj , j =
1, . . . ,m.

Then there exist a compact set L in X and an ε > 0 such that, if g is a holomor-
phic function onX with supx∈L|g(x)−f(x)| < ε, then the irreducible components
of {g = 0} that meet K also meet &.
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Lemma 5. Let X be a complex space and F an analytic sheaf on X. Assume
that there exists a positive integer q such that Hq(X, F ) has finite dimension
(as a complex vector space). Then, for any holomorphic function h on X, there
is a nonconstant holomorphic polynomial P in one complex variable such that
P(h)H q(X, F ) = 0.

Proof. If Hq(X, F ) = 0, the assertion is evident. So assume that Hq(X, F ) �=
0. Let {ξ1, . . . , ξm} be a basis (of cohomology classes) of Hq(X, F ) over C.

Fix an index j, 1 ≤ j ≤ m. Because Hq(X, F ) is also naturally an O(X)-
module, it makes sense to consider the cohomology classes hlξj , l ∈ N. Of course
ξj ,hξj , . . . ,hmξj are dependent over C; thus there is a nonconstant holomorphic
polynomial Pj in one complex variable such that Pj(h)ξj is the zero cohomol-
ogy class. Setting P = P1 · · ·Pm, it follows that P is a nonconstant holomor-
phic polynomial in one complex variable such that P(h)ξj = 0 for all j. Thus
P(h)H q(X, F ) = 0.

Finally, we introduce the singular set of a holomorphic function and give an im-
portant property that is used in the proof of Theorem 1.

Let Y be a complex space of pure dimension n. Let Sing(Y ) and Reg(Y ) denote
the sets of (respectively) singular and regular points of Y. Let g be a holomorphic
function defined on Y. We define the singular set Sing(g) of g to be the union of
Sing(Y ) with the set of critical points of g|Reg(Y ).

Observe that Sing(g) is an analytic subset ofY. As a matter of fact, since Sing(g)
is obviously closed in Y, its analyticity is a local question and so we may assume
(i) that Y is an analytic subset of a Stein open set D in some complex Euclidean
space C

N and (ii) that the ideal sheaf of Y in D is generated by holomorphic func-
tions h1, . . . ,hm on D. If g̃ is an extension of g to D, then one checks easily that
Sing(g) = Sing(Y ) ∪ (Y ∩ +), where

+ := {z∈D : rankz J(h1, . . . ,hm, g̃) ≤ N − n}.
Here J(·) is the Jacobian of the corresponding holomorphic mapping; whence the
analyticity of Sing(g).

Moreover, if � is an irreducible component of Sing(g) of positive dimension k

and if � does not lie entirely in Sing(Y ) (this holds, e.g., when Y has isolated sin-
gularities at worst), then g|� is constant. To see this, observe that if y0 ∈ W :=
Reg(�) \ Sing(Y ) then around y0 we regard � as a locally closed submanifold of
C

n. We parameterize � locally at y0, which may be chosen as the origin of C
n, so

that � = {0} × C
k (as germs at 0 in C

n). Therefore,
∂g

∂zj
(0, ·) = 0, j = n − k + 1, . . . , n.

Thus g(0, ·) is constant on a neighborhood of y0 in W and hence on W. Then the
continuity of g implies that it is constant on �.

It is worth noting that the foregoing property of g does not hold if Y has non-
isolated singularities. For instance, take Y = C × {y2 = z3} ⊂ C

3 and g induced
by the first projection of Y onto C.
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3. Proof of Theorem 1

Recall that X is a weakly 1-complete irreducible surface on which there is a non-
constant holomorphic function f. Let ϕ be the function that displays the weak
1-completeness of X.

We divide the proof into two steps. In Step 1 we deal with the particular case
when X has isolated singularities; the general case is then considered in Step 2.

Step 1: Case of X with Isolated Singularities

Let X have isolated singularities and let f be a nonconstant holomorphic func-
tion on X. Granting the discussion at the end of Section 2, it follows that Sing(f )
is an analytic subset of X and, for each connected component � of Sing(f ), f |�
is constant. Thus, if K is a compact subset of X then f(K ∩ Sing(f )) is a finite
subset of C. Therefore, by Lemma 1—and since ϕ is continuous, so that every
sublevel set {ϕ < c}, c ∈ R, is weakly 1-complete—there is no loss in generality
in assuming that

2 := f(Sing(f ))

is a finite set of points in C. It is also important to notice that every fiber of f is
holomorphically convex (being 1-dimensional and weakly 1-complete, a fiber can-
not contain an “infinite necklace”—i.e., a connected analytic curve each of whose
infinitely many irreducible components is compact) and so f −1(2) is holomor-
phically convex, too.

Following an idea due to Ohsawa [11] we now define, for each x ∈X, Nx(f ) :=
the connected component of f −1(f(x)) passing through x. Then put

B := {x ∈X : Nx(f ) is compact}.
We start an analysis by cases according to whether B is the empty set or not.

Case I. In this case we assume that B equals the empty set.
Because f −1(2) is holomorphically convex, we know that if {Ai}i∈I denotes

the collection of its compact irreducible components (I is an at most countable
set of indices) then ϕ|Ai

is a constant, say ti ∈ R; moreover, the set {ti : i ∈ I }
is discrete in R. Then, since ϕ is continuous and exhaustive, we infer readily that
there are arbitrarily large real numbers c and correspondingly ε = ε(c) > 0 (small
enough) such that on the level sets {ϕ = c ′}, c − ε ≤ c ′ ≤ c + ε, there is no com-
pact irreducible component of f −1(2).

Fix such c and ε. We claim that, for any δ ∈ (−ε, ε), the set {ϕ < c + δ} is
1-convex. Then, by Lemma 1 and the preceding discussion, the holomorphic con-
vexity of X will follow.

It is important to observe that, for any c ′ ∈ [c − ε, c + ε] and x ∈ {ϕ = c ′},
the compact set f −1(f(x)) ∩ {ϕ = c ′} is contained in a Stein space, namely,
the union of the noncompact irreducible components of f −1(f(x)). (If A is a
positive-dimensional compact analytic subset of some fiber of f , then A must
meet f −1(2).)
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In order to settle the claim, now observe also that, as a straightforward conse-
quence of Siu’s theorem [14] on the existence of Stein neighborhoods, the follow-
ing condition is satisfied. There are Stein open sets Vj in X and Dj in C, j =
1, . . . ,m, such that setting L := {c − δ ≤ ϕ ≤ c + δ} yields:

(1) for each index j, f −1(Dj ) ∩ L ⊂ Vj ;
(2) the {f −1(Dj )}j cover L.

Select smooth functions ρj on C with compact support, 0 ≤ ρj ≤ 1, and such
that Sj := supp ρj ⊂ Dj and {f −1(Sj )}j still cover L. Let ψj be a smooth strictly
psh function on Vj , j = 1, . . . ,m. Now, for every constant M > 0 we define a
smooth function ; on & := {c − δ < ϕ < c − δ} (the interior set of L) by setting

;(x) =
∑

ψj(x)ρj(f(x)) + M|f(x)|2, x ∈&.

Straightforward computations show that, for M sufficiently large, this ; becomes
strictly psh on &. This easily implies the claim, whence the holomorphic convex-
ity of X.

Remark 1. As a matter of fact, we stress that in this case we have proved that X
is a proper modification of a Stein space in a discrete set of points. (We may also
say that X is a nondegenerate holomorphically convex space.)

Case II. Here we assume that B is not the empty set. We shall prove that, in
fact, B = X.

The set B is open. Indeed, let x0 ∈ B and let U be a relatively compact open
neighborhood of Nx0(f ) such that f −1(f(x0))∩ ∂U = ∅; this is a standard topo-
logical fact and can be found, for instance, in [10] (see [10, Chap. 5, Sec. 3,
Prop. 2]). In particular, f(x0) does not belong to f(∂U). Take W to be an open
neighborhood of x0 in U such that f(W̄ ) ∩ f(∂U) = ∅. It follows that, for each
x ∈W, f −1(f(x)) ∩ ∂U = ∅. Hence for such x, Nx(f ) lies in U so that Nx(f ) is
compact; as a result, W ⊂ B.

The set B contains Y := X \ f −1(2). Indeed, since B is open and nonempty
and since Y is connected and dense in X, it suffices to verify that B ∩ Y is closed
in Y. So consider x0 ∈ Y, a point of adherence of B ∩ Y, such that there exists a
sequence of points {xν}ν in B ∩ Y converging to x0. Assume, in order to reach a
contradiction, that x0 /∈B; hence Nx0(f ) is not compact.

Now, since f −1(f(x0)) is smooth, it follows that Nx0(f ) is the (unique) con-
nected noncompact component of f −1(f(x0)) through x0. On the other hand,⋃

ν Nxν(f ) is relatively compact in X (at this point we use that X is weakly 1-
complete). Hence there is an open set & in X that meets Nx0(f ) and is disjoint
from the closure of

⋃
ν Nxν(f ).

Applying Lemma 4 with K a small compact neighborhood of x0, it follows that
for ν sufficiently large, every irreducible component of {f = f(xν)} that meets
K should meet &, too. In particular, there is such an irreducible component in
Nxν(f ), which contradicts the choice of &.
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The set B contains f −1(2). Let t0 ∈2 and suppose, in order to reach a contra-
diction, that there exists an irreducible component � of f −1(t0) that is noncom-
pact. Consider x0 a regular point of � and choose a sequence {xν}ν of points in
X converging to x0 so that f(xν) /∈ 2. Thus xν ∈ B. The desired contradiction
follows as before, applying again Lemma 4. Therefore, f −1(t0) has no noncom-
pact irreducible component and, since it is holomorphically convex, it follows that
Nx(f ) is compact for all x ∈ f −1(t0). Thus B contains f −1(2). Hence B = X as
desired, completing Step 1.

We note before proceeding to Step 2 that, because f has compact level sets, the
Stein factorization theorem gives a commutative diagram of holomorphic maps:

X
σ ��

f
��

��
��

��
� X ′

f ′
����

��
��

�

C ,

where σ is proper and f ′ has discrete fibers (in particular, X ′ is at most of di-
mension 1 and contains no compact analytic curve; hence X ′ is Stein). Thus X is
holomorphically convex.

Remark 2. The gap in Ohsawa’s proof is the following assertion (see [11, p. 155,
ll. 25–30]). Let M be a complex manifold and let L be a compact subset of M.

Let there be a sequence {Fk}k of compact connected complex hypersurfaces con-
tained in L and a sequence of points xk ∈ Fk converging to a point a contained
in a connected hypersurface F. Suppose that, for an open neighborhood U of x0,
the sequence {U ∩Fk}k converges in the Hausdorff distance to U ∩F. Then {Fk}k
converges uniformly to F. Notice that [12] corrects a different gap in [11] from the
gap addressed here.

Nevertheless the proof of [11] can be settled as follows. First, using the singu-
lar set of f and Lemma 1, one has: For every x0 ∈ X, there is an r > 0 such that
f −1(t) is smooth for all t ∈ C with 0 < |t − f(x0)| < r.

Then the desired contradiction (at the end of the proof of [11, Thm. 1.1]) is ob-
tained as follows (we retain the author’s notations). Define T := F0 ∩ ⋃

k≥1Fxk .

Clearly, T is a nonempty compact set. On the other hand, it can be seen from [11,
Sublemma 1.2] that T is also open in F0. Thus T = F0!

Step 2: The General Case

Let π : X̂ → X be the normalization map of X. There is a natural commutative
diagram of holomorphic maps:

X̂
π ��

f̂ ��
��

��
��

�
X

f
����

��
��

�

C .
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Observe that X̂ is irreducible (for normal complex spaces, irreducibility is equiva-
lent to connectedness) and weakly1-complete (ϕ�π displays the weak1-complete-
ness of X̂). Also, f̂ is not constant on X̂. From the discussion in Step 1 and the
irreducibility of X, either one of the following cases may occur:

(a) there is a sequence {cν}ν of real numbers increasing to infinity such that every
sublevel set {ϕ � π < cν} is 1-convex; or

(b) f̂ has compact level sets.

If (a) holds true, then each {ϕ < cν} is 1-convex. As a matter of fact, this is a
straightforward consequence of Lemma 3. Then Step 2 follows, whence the proof
of the theorem in this case.

If (b) is fulfilled, then we assert that f has compact level sets, too. Assume, in
order to reach a contradiction, that there exists a noncompact irreducible compo-
nent � of f −1(f(x)) for some x ∈X (note that the fibers of f are holomorphically
convex). Since π is finite, π−1(�) is Stein because � is Stein. But every irre-
ducible component C of π−1(�) is contained in a level set of f̂ ; thus C is compact
and so C is a point. Therefore π−1(�) is a discrete set of points in X̂, so that � is
discrete—which is absurd. This establishes the truth of the assertion. Then, using
Stein’s factorization theorem again, it follows that X is holomorphically convex,
completing the proof of Theorem 1.

4. Applications

An important situation that appears often in complex analysis is the following: A
complex space X is given together with a certain complex analytic subvariety A ⊂
X, and one wants to study properties of the complement U := X\A; this is known
as “the remaining space problem” or “Restraumproblem”. It can, then, be impor-
tant to know how the convexity properties of X and the nature of A influence the
convexity of U.

For instance, a well-known theorem due to Simha [13] states that, if X is a lo-
cally irreducible Stein surface and ifA is a complex curve, thenU = X\A remains
Stein. More specific questions in this area can be found in [1].

We now give the application alluded to in the Introduction.

Theorem 2. Let X be a holomorphically convex surface that is irreducible and
locally irreducible. Let A be a complex curve in X such that A has no compact
connected component. Then X \ A is holomorphically convex.

We remark that the condition on A is necessary. This is shown by the simple ex-
ample of the nonholomorphically convex complement of the exceptional divisor
of the blowing-up of C

2 at the origin.

Remark 3. Here we give an example to show that the hypothesis on local irre-
ducibility of X is necessary. Let X be the Whitney umbrella: X = {x 2 = yz2} ⊂
C

3. Then π : C
2 → X, (u, v) → (uv, v2, u), is the normalization map of X.
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Observe that for p ∈ X, #π−1(p) > 1 precisely when p = (0, t, 0) with t �= 0.
Take a curve Ã in C

2 with (0,1) ∈ Ã but (0, −1) /∈ Ã. Then A := π(Ã) is a com-
plex curve in X; therefore X \ A is not Stein and hence is not holomorphically
convex.

As a matter of fact, more generally, for every irreducible Stein surface X that
is not locally irreducible there is a complex curve A in X such that X \ A is not
Stein. Indeed, let π : X̃ → X be the normalization map and x0 ∈ X a point such
that π−1(x0) = {x̃1, . . . , x̃m} with m ≥ 2. Let f be a holomorphic function on X̃

such that f(x̃1) �= 0 but f(x̃j ) = 0 for j = 2, . . . ,m. Then A := π({f = 0}) is
as desired because if X \ A were Stein then X̃ \ π−1(A) would be Stein, too. But
this is not possible since x̃1 is isolated in π−1(A).

The following lemma will be used in the proof of Theorem 2.

Lemma 6. Let X be a locally irreducible weakly 1-complete surface and let A be
a Stein curve in X. Then X \ A is weakly 1-complete.

Proof. Let U be a Stein open neighborhood of A in X; see [14]. Then, by [13] it
follows that U \ A is Stein. Hence there exists a strictly psh exhaustion function
ψ : U \ A → R. Let ϕ : X → R be psh and exhaustive (it exists because X is
weakly 1-complete). ChooseV an open neighborhood of A in X such that V̄ ⊂ U.

Then select χ : [0, ∞) → [0, ∞) rapidly increasing and convex such that χ � ϕ >

ψ on ∂V. Define the function E : X \ A → R as follows:

E =
{

max(χ � ϕ,ψ) on V \ A;
χ � ϕ on X \V.

Clearly E is continuous, exhaustive, and psh; hence X \ A is weakly 1-complete.

Remark 4. In this circle of ideas we note that if X is a weakly 1-complete man-
ifold and if A ⊂ X is a Stein hypersurface (not necessarily smooth), then X \A is
weakly 1-complete.

Conceptually speaking, the proof of this statement goes essentially along the same
lines just described. Let us note a few details. The hypersurface A defines a canon-
ical holomorphic line bundle L over X. Since A is Stein, there exists a Stein open
neighborhood U of A and so L|U > 0. Choose a holomorphic section σ ∈�(X,L)
such that A = {σ = 0}; then let h be a smooth hermitian metric on L such that
the function ψ := −log‖σ‖2

h, which is defined on X \A, is strictly psh on U \A.

Then repeat the patching procedure used previously.

Proof of Theorem 2. First notice that, since A is holomorphically convex, the
hypothesis implies readily that for each connected component A′ of A there is a
noncompact irreducible component � of A with � ⊂ A′.

We shall write A as an increasing union of analytic subsets {+n}n, n = 0,1, . . . ,
such that +0 and all the sets +n+1 \ +n are Stein curves. In order to do this, we
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proceed as follows. Let {Ai}i∈I be the decomposition of A into its irreducible
components; I is an almost countable set of indices. We write I as an increasing
union of subsets {In}n by setting I0 := {i ∈ I : Ai is noncompact} and, if In is
defined, we put

In+1 := In ∪ {i ∈ I \ In : ∃j ∈ In such that Ai ∩ Aj �= ∅}.
It is obvious to see that the sets

+n :=
⋃
j∈In

Aj , n = 0,1, . . . ,

fulfill the desired property.
Applying Lemma 6 we deduce that, for each n, X \ +n is weakly 1-complete

and hence holomorphically convex by Theorem 1. Because X is holomorphically
convex, to conclude the theorem we must show that, for any point a ∈A and any
sequence {xν}ν ⊂ X \ A converging to a, there exists a holomorphic function f

on X \ A that is unbounded on this sequence. But this is obvious because, since
{Aλ}λ is locally finite, {+n}n is locally stationary; thus there is an n0 ∈ N with a ∈
+n0 and an open neighborhood U of a such that U ∩ +n = U ∩ +n0 . The proof
follows since X \ +n0 is holomorphically convex and contains X \ A.

In this circle of ideas, a straightforward application of [11] and [6] yields the fol-
lowing result.

Corollary 1. Let T
2 be a complex 2-dimensional torus and let D ⊂ T

2 be a
connected open set that is locally Stein. Then D is holomorphically convex if and
only if O(D) �= C.

Proof. Consider the boundary distance function δ : D → (0, ∞) from the bound-
ary ∂D of D computed with respect to the flat Kähler metric on T

2 that has van-
ishing holomorphic bisectional curvature. By [7] we deduce that −log δ is psh.
Obviously, −log δ is exhaustive. Thus D is weakly 1-complete and so the corol-
lary follows by [11].

A cohomological condition for local Steinness is provided by the following.

Proposition 1. Let X be an irreducible complex surface and let D ⊂ X be an
open set with H1(D, O) of finite dimension (as a complex vector space). Then D

is locally Stein.

Proof. Let x0 ∈ ∂D. Let U be a connected Stein open neighborhood of x0. We
show that V := U ∩ D is a Stein open subset of U.

For this we use Coen’s criterion [2] (see our Lemma 2). Now, in order to apply
this, because Hj(V, O) = 0 for all integers j ≥ 2 it remains only to check that
H1(V, O) = 0.

First we remark that H1(V, O) has finite dimension. Indeed, from the Mayer–
Vietoris sequence (see [4]) one has an exact sequence
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H1(D, O) ⊕ H1(U, O) → H1(V, O) → H 2(D ∪ U, O).

Since H1(U, O) = 0 and since H1(D, O) and H 2(D ∪ U, O) have finite dimen-
sion, it follows that H1(V, O) has finite dimension, too.

Now, let h be a holomorphic function on V that is not constant on any 2-
dimensional irreducible component of V ; thus the sets {h = c}, c ∈ C, are 1-
dimensional Stein curves. (We can produce h as a restriction to V of a suitable
holomorphic function on U.) Given Lemma 5, there is a nonconstant holomorphic
polynomial P in one complex variable such that P(h)H1(V, O) = 0.

Let I be the ideal subsheaf of O generated by P(h). Then, on the one hand,
since the morphism O → I induced by P(h) is an isomorphism it follows that
the canonically induced map α : H1(V, O) → H1(V, I ) is bijective; on the other
hand, the short exact sequence 0 → I → O → O/I → 0 induces in cohomology
a surjection map β : H1(V, I ) → H1(V, O). Thus β � α : H1(V, O) → H1(V, O)

is surjective. But the image of β � α is P(h)H1(V, O); hence H1(V, O) = 0 and
this concludes the proof of the lemma.
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