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A Characterization of Besov-type Spaces
and Applications to Hankel-type Operators

DANIEL BLASI & JORDI Pau

Introduction

Let D be the unit disc of the complex plane. Given a real number g, let
dAg(z) = (1+ )1 — |21 dA(2),

where dA is the normalized area measure on D. For § > —1land 0 < p < oo, the
Bergman space A’/; consists of all analytic functions in L?(dAg) := LP(D,dAp)
with norm

IIfIIﬁg Z/If(z)l"dA,s(Z)-
D

Forl < p < coand o < 1/2, let B,(a) be the Besov-type space of those analytic
functions on the unit disc D for which

If1g,, = 1F(O0)° +/];)|f/(z)|pdAp,a(Z) < 00,

where
dApo(2) = (1 — 2|7 212" dA(2).

The space L1 is the space of smooth functions u: D — C for which
lllZ, = lu(0)]” +/|W<z)|f’dAp,a<z>
D

is finite. It is clear that B, () is the subspace of all analytic functions in L{. Note
that the dual space of B, («) is isomorphic to B,(«), where g is the conjugate ex-
ponent of p, under the pairing

(f.8)a = F(0)g(0) + /D (28" ()1 — 1z dA(2),

defined for f € B,(«) and g € B,(a). Note that, by Holder’s inequality, if f €
B,(a) then f' € ALM. So, using the reproducing formula for the Bergman space

Received June 12, 2007. Revision received November 19, 2007.

Both authors are supported by the grant 2005SGR00774. The first author is partially supported by
DGICYT grant MTM2005-00544, and the second author is partially supported by DGICYT grant
MTM2005-08984-C02-02.

401



402 DANIEL BLASI & JorDI Pau

and then integrating along the line segment joining 0 and z, we get the following
reproducing formula for a function f in B,(«) (see [8] for the case p = 2).

f(z) = f(0)+ /D F WK (z, w)(1 — [w»)'2* dA(w), (1)

where .
1—(1—wz) ¢

K(z, =5 5
(zw) w(l — wz)?—2

Then the operator P, given by
_ B_u p2y1-2a
Pou(2) = u(0) + | = w)K(z, w)( = [w]") ™ dA(w)
D

defines a projection from L} to B,(«). Let P denote the set of all polynomials on
D. Clearly P is dense in B, (a). For a function f € L% we can define the (small)
Hankel-type operator A with symbol f on P by

hi(g) = Pu(f3).

When we say that 47 is bounded, we mean that there is a positive constant C
such that

177 (@) lla,p = Cligla,p

whenever g € P.

The purpose of this paper is to generalize the results given in [8] for the space
D, := By(a)toall pwithl < p < oco. We begin with a characterization of B, (c)
spaces that does not use derivatives by proving that an analytic function f is in
By () if and only if the double integral

/ f [f(z2) — fw)]” (1— |Z|2)"(1 — |u)|2)I dA(z) dA(w)
DJD

|1 _ u‘}Z|3+a+t+2a

is finite. Here o, T > —1 with min(o, 7) + 2« > —1. As in [8], we give some ap-
plications of the previous result. The first one is that (o, p)-Carleson measures
are stable under transformation by some integral operators. Another application
is the fact that the Hankel-type operator A} is bounded if and only if the symbol
f belongs to W, ,, the space of all analytic functions g such that |g'(z)|” dA,  is
an («, p)-Carleson measure.

The paper is organized as follows. In Section 1 we give the preliminaries needed
for the rest of the paper. In Section 2 we prove the characterization of B, (cr) spaces,
a result that is applied in Section 3 to study (&, p)-Carleson measures. In Sec-
tion 4 we study the Hankel-type operators £, and a decomposition-type theorem
is given in Section 5.

Throughout the paper, we use the symbol C to denote a positive constant that
can change at different occurrences but will not depend on the function or the
measure that we deal with. We use the notation a < b to indicate that there is a
constant C > 0 with a < Cb, and we use the symbol & to mean “comparable to”.

Also, when 2a < p, we use the notation A} , for the Bergman space A27172a'
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1. Background and Preliminaries
The following standard lemma can be found in [10, Sec. 4.2].

LEMMAA. LetzeD,t > —1,and c > 0. Then

1— 2\t
[ e daw) ~ a1y
D

|1 — lI)Z|2+t+C

The following useful inequality is from [5, Lemma 2.5]. A proof of this result can
be found in [9].

LEMMA B. Lets > —1,r,t > 0,andr +t —s > 2. Ift <s+2 <, then
[ (1= w?* (1—|z[Hsr
. _—

- —— dA(w) < C -
11— wz|" |l —wg|’ 11— ¢z

The following result is from [4, Thm. 1.9].
LEmMMA C. Let s and B be real numbers, and let T be the integral operator de-
fined by

(1= [w?)’
p |1 — wz[>*
Let1 < p < 00. Then T is bounded on LP(dAp) if and only if

Tg(z) =Ty(2) = g(w)dA(w).

O<I1+B8<p(s+1.

The hyperbolic distance on D is defined by

A sequence {z;} in D is called a d-lattice if every point of ID is within hyperbolic
distance 5d of some z; and no two points of this sequence are within hyperbolic
distance d/5 of each other. The following result can be found in [6, Thm. 2.2].

THEOREMD. Letl < p <o00,8 > —1,and 1+s > (14 B)/p. Then there exists

do > 0 such that for any d-lattice {z;} inID, 0 < d < dy, the following statements
hold.

(@) If f € AL, then
)2+s—(2+ﬁ)/P

2

(1—z0)2h

f(Z):Zaj( 1zl
Jj=0

with

oo

211" < ClLfI,.

Jj=0
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(b) Conversely, if {a;} satlsﬁesz —olaj|? < oothen f,defined by (2), converges
in Ag with

V4
£y < CZIa;I”-
j=0

2. A Derivative-free Characterization of B, («)
We begin this section with a result that is of independent interest.

LEMMA 2.1. Letl < p <oo,andletoc > —landb > 0withb <2+ o. Let f
be analytic on D. Then

o pto
i@ =1 wp%dﬁ\(></|f<>|"%cm<z>. 3

Proof. The case b = 0 is proved in [4]. So assume that b > 0. Choose ¢ > 0 with
oc—emax(l,p—1)>—-1 and b+e(p—1) <2+o0.
Without loss of generality we may assume that the right-hand side of (3) is finite.

Then, it follows from Holder’s inequality that f' € A} +o- Hence the reproducing
formula (1) gives

£ — f(0) = fD

1—(1—wz)*te

Wf(w)(l — w7 dAw).

Since (1 — B> —1
sup |———| = C,
z,weD
by Holder’s inequality and Lemma A we have
|f(2) = fF(O)°

/ 1— 2\14+0 P
< ( |f(u|)1)E — :ZL) dA(w))

1— 2\(4+¢e)p+o—¢ 1— 2\yo—¢ r—1
( 1t dA<w>>( Hor dA(w))

o I1-

_ |w|2)(l+8)17+(7—5 5 |

S(/If/(w)l” - dA(w))(1—|z| )b
D 11— wz>+e

since 0 — & > —1. Now, by Fubini’s theorem and Lemma B we have
—lz?)°

[0 - ror =i L da

_ (I+e)p+o—¢ 1 — |z|2)~¢(p=—D+o
S /(/If’(w)l” [l ) 5 dA(w))( 2 )_ dA(z2)
p\J/D —wz|*te

1 1=zl
= [1rwra - upyisoree A=l o) daw)
p [ —wzProfl— gz
2\o
f(l— WP f (w )|P% dAw),

and this finishes the proof. UJ
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The following derivative-free characterization of B, (c) is a generalization of a re-
sult in [8], where the case p = 2 was proved. Our proof is quite different from
[8], where Hilbert space techniques were used.

THEOREM 2.2. Let 1 < p < oo and let f be analytic on D. Let 0,7 > —1 and
o < 1/2 such that min(o, t) + 2« > —1. Then

_ 4
/D /D ll":(z))zpfffﬂm (= [w»)?( = |21»)" dA(z) dA(w)
is comparable to

/ L/ @171 = 2P~ dA(z).
D

Proof. We first prove the upper estimate. As in [8§] we may assume that o = 1.
Since
(1= Jw?)(1 =z 1— 9, (2)I?
1= |pu () = — and (D] = ———,
9w (2)] TR 0 =
a change of variables ¢ = ¢,,(z) and Lemma 2.1 (we can apply it since o + 20 >
—1) gives

P
/ /D |'lffzi)zl3{(2ﬂa( 1= [w)?( — |z)7 dA(z) dA(w)

- f (1= w2 / (f 0 9u) (@)
D

_ 2\o
— (o pu) O D)

[T
_ln2y—l-2e N (= g»)r*e
¢ [a=wy = i o @t

and, by the change of variables z = ¢,,(¢) and Fubini’s theorem, this quantity
equals

dA() dA(w)

dA(Z) dA(w),

_ +o
/(l—lwl )’ /If( ks (_ 125? dA(z) dA(w)

7) |3+2(r+20¢

(1= |w?°
/ @Az )P*”( f T Z'|3+'2i+2 dA(w))dA(z)

= C/|f’(z)|P(1 — 2P dA(z)
D

after an application of Lemma A, and this proves the upper estimate.
Now, we are going to prove the lower estimate. First note that, using Cauchy’s
integral formula, it is easy to see that

RIS /Il 1/zlf(w)—f(O)IdA(w)-

Therefore, for 1 < p < oo and 8 > 0, we have
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O < /D 1) — O] dAg(w).
Replacing f by f o ¢, we get
A= 12D I < fD 1 0 aw) — F()IP dAs(w). 4

Choose B = 1 + o. Then, by (4) and the change of variables w = ¢, () we get
f(l — 1z f' @17 A = |2) 2 dA2)
D
dA
/ = © /le o p.(w) — f(2)|” dA(w)

|Z|2)1+20{

dA
/ a= (@) / 1£(O) = FIP @l = o)1) P dA©)

| |2)1+20t

p
// ||f(4“) [ ()] (A —1z5°1 — |¢]»)°

1— Z§-|3+2¢7+2a

i AU (9]
|1 _ Z§|3 2a

P
/ /D Q= JOV (| 2y — 1ePye dac) dA®),

|1 _ Z§-|2+2a+2a

dA(z) dA(S)

and this finishes the proof. UJ

3. Carleson Measures for B, (x)

A positive measure p on D is an («, p)-Carleson measure if

[israu = cisie,
D

whenever f isin B, (o). The best constant C, denoted by ||| 5, is said to be the
(o, p)-Carleson measure norm of 1.

The («, p)-Carleson measures are described in [1], but for our purposes we need
only the following simple result.

LEMMA 3.1. Letl < p < ocoand o < 1/2. Let u be an («, p)-Carleson mea-
sure. Then for each ¢ > 0,
(1 —w[*)*

su _—d Z) < OQ.
SUP J = wapie2e WD

Proof. Let
(1 —Jw[>*?
(1 _ wz)(1+s—2tx)/p .

guw(z) =
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We have that g,, € B, («) with || gy, ||Z,,, < C, where C is a positive constant inde-
pendent of w. Therefore

f (1_|LU|2)8 d (z)—/| (Z)|Pd (Z)<C|| ”p <C 0
D |1 _ 1I}Z|1+€_2a H - Dg“) 12 = 8w a,p = L

THEOREM 3.2. Lets > —land o < 1/2, and let

Ty(2) = /D W) wPy dAw).

|1 — wz|>*+s

(i) Letl < p <2,andlet ps > 2a(p—1Difa >0ands > —2a if a < 0.
Suppose that

sup(l — |2")Ig (2)] < oo. 5)

If 18(2)|1PA—|z|) P~ 72* dA(2) is an («, p)-Carleson measure, then the measure
|Te(2)P(1 — [z]2)P~172% dA(z) is also an («, p)-Carleson measure.
(ii)Letp>2,8>—1,8+2a > —1,and

ps > 148 — p+ max(0, —2).

If |g(]P(1 — 1z1)? dA(2) is an (a0, p)-Carleson measure, then it follows that
|To(2)P(1 — 1z1%)# dA(z) is also an («, p)-Carleson measure.

REMARKS. For p = 2, this result is proved by Rochberg and Wu in [8]. The case
a =1/2and B = p —2is proved in [2] but only for the range ps > 1. Also, when
o > 0, the condition on s can be rewritten as

max(p,q)s > B — (p — .

For p > 2, we don’t need condition (5). Also, for 1 < p < 2, the result is ob-
tained only for 8 = p — 2 + (1 — 2«). It would be interesting to extend the result
for B in the same range as in the case p > 2.

Proof of Theorem 3.2. We must show that for all f € B,(«) we have

/D|f<z>|P|Tg<z)|P<1 —zHPdAG) < CIfIE,

for some positive constant C. Put fT, = (fT, — Tf,) + Tf,. By Lemma C and
the fact that |g(z)|”(1 — |z|?)# is an (a, p)-Carleson measure, we have

/D | Tre(2)17(1— 12117 dA(z) < /D £ (21718217 — |21*)P dA(z)

< CIfIZ,.
On the other hand, we have

(f(z) = f(w)g(w)

|l — wz|?+s

Now we consider separately the cases | < p <2 and p > 2.

F()Te(2) — Tpy(2) = (1= w)’ dA(w).  (6)
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Casel: 1 < p < 2. Inthiscase 8 = p — 1 — 2a, and since (1 — |z]?)|g(2)| <

C and p < 2 we have
1)l = 181" g (@7 < Clg@I”~' =272

This gives

|f(2) = f(w)]
D |1 — II}Z|2+S
If « = 1/2, then by Hélder’s inequality

< |f(2) = f(w)]

D

|1 — IZJZ|2+S

p
| F(2)Te(2) — Tre(2)1? < ( lg(w) [P~ (A = [w]?H)P~ s dA(w)) :

4
)P~ (1 — w22+ dA(w))
v [ Lf@ = F@lr

2y ps+(p—2)
= —|w dA(w).
= “gHLl’(dA,g) o |1—wz|(2“)P ( [w|”) (w)

Hence, by (6) and Theorem 2.2 witho = ps 4+ (p —2)and v = p — 2,
/'f(Z)Tg(Z) — Tr(2)|P(1 = 2P~ dA(2)
D

— P
< Cllgltin, /D DMO — 12P)7(1 — wP)* dAGz) dAw)

|1 — wz|@+or
-1
< Cliglstan I F1IZ,
If o < 1/2, we apply Holder’s inequality again, and then Lemma 3.1, to obtain

_ P
( D = O,y =11 — oy =2+ dA<w)>
D |1 _ wZ|2+s

[ f(z) = f(w)]?
= Jp |1 — wz|p(+o+

y ( |g<w)|PdA,,,a(w)>’“

D |1 _ u—)z|l+2a—2a

(1 _ |w|2)ps—1+2a(p—l) dA(w)

< (1= g2y [ L@ = S
- o |1 — wz|pd+s)+1
Therefore we have

/le(z)mz) = Tro(2)I"(1 = 2177172 dA(z)
/ /D IJ@ = FWI" 2o - 1wy dAc) dAw).

|1 — wz'P(H‘A)"’l

(1 _ |w|2)p371+20t(p71) dA(U))

whereo = (1 —2a)(p — 1) —2«0and t = ps — 1 +2a(p — 1).
Since @ < 1/2 we have 0 > —1 and 0 4+ 2a > —1. Also, the conditions on s
ensure that T > —l and 7 + 2o > —1. Since

3+0+4+t4+20=p(+s)+1,

we can apply Theorem 2.2 to obtain

/D | F(DT(2) = Tre()1P(1 = |27 772 dA2) S IFIE -
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Case 2: p > 2. Choose ¢ > O suchthat 8 > —1 4 e(p — 1) + max(0, —2«)
and
ps>14+B8—p+e(p—2)+max(0, —2a).

Let g be the conjugate exponent of p. By Holder’s inequality we have
I8l f(2) = f(w)]

P
| f(2)Ty(z) — T(2)|P < ( (- |w|2)SdA<w>>

|] _ U)Z|2+°
_ Y rlq
(/|g( e _'|B'/(i . dA(w))
|f(2) = f(w)]?

TR (1= [w*)" dA(w),
T

where

—(1- -2
)/=ﬂ (pi)fp ), t=ps—B+(1-e)p-2),

A=1+2¢, B=1+s—-2a+ A(p—2),
C=Q+s)p—1—e+4+2a—A(p—2).

Since p > 2, we can apply Holder’s inequality once again with exponent p/q > 1
and then apply Lemma 3.1 and Lemma A to obtain

— 2yy plq
( [z 0 daw)

B 8 |2 —1+e p=2
S( 18 w) 1701~ [w]) dA(w)>< (U U dA(w)>
D

|1_J)Z|l+s—2a D |1_wz|]+28

S A= 1zP)7(1 = |z~ r2,

Therefore, if o = B — ¢(p — 1), by Theorem 2.2 we have
/ | (D) Te(2) — Tpe()IP(1 — |21H)P dA(2)
D
/ / /() = (w)' —121H°0 = [w[*)" dA(z) dA(w)

- wzl€
SIFIL,.
since 3+ o + v + 2a = C, and the choice of ¢ > 0 ensures that 0,7 > —1 and
min(o, 7) + 2o > —1. This finishes the proof. O

4. Hankel-type Operators

Lets > —land 1 < p < c0. Let

rr@ = [ e anw.

From [4, Thm. 1.10], we have that P;: LP(dAg) — Aﬂ is a bounded projection
(and onto) if and only if 8 + 1 < (s + 1)p. For a function f € A} , it is possible
to define a (small) Hankel-type operator &, ; on P by
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hs,f(g)ZPs(fg)s gGP

For o < 1, define the space W, , to be the space of all analytic functions f on D
for which

1/p
I fllw,, = sup ]</|g(z)|”|f(z)|”(1 F{o L 2"‘dA(z)) < 00.

llglle, p<

LEMMA 4.1. Let 1 < p < 00, < p/2, and ps > —2a. Suppose that u € A} ,
and that hy , is bounded from B,(a) to LP(dA ). Then

sup(l — |al*)|u(a)| < oo.
aelD

Proof. Choosen € NU{0} withnp > —2«. Foreach a € D, consider the functions

n+1
fal2) = (U= [af P H2ectmly =
(1 _ C_lZ)"’H’
a(z) _ (l _ |a|2)(p+l—2a)/p(l _ |Z|2)s—(p—1)+2a
- a- 51)2+s :

Since p > 2« and ps > —2«, by Lemma A we have

_ (1 _ |Z|2)p—1—20z
/ PdA, — D(1—|q|?)P—1+2a+np = dA ~1
/D|fa<z>| pa(2) = (n+D(1—lal) T aaey 4AQ
and, if ¢ is the conjugate exponent of p,
/lea(z)|qup,a(Z)
D
B B 1— |Z|2)q371+20¢(q71)
— 1 _ a2y -2/ [ ~
=(1—apP) /D ey MA@

Therefore, for any a € I, the function f, is in B, («) with || f;]l4,, = 1 and the
function e, isin LY(d A o) with ||leqlLaa, ) & 1. Since ps > —2a, we have u =
P,u, and then

(1 _ |a|2)n+2 (Vl+1)(a)

n+1u(z)

== 1oy [ S ey A

n+lu(z)

1
ol )m/ (- za)"“((l—zmz“)(l_'Z'Z)SdA(Z)

n+1 2\s
" ) ([ _O-lotraw )
=att— 1Py [ za)"“< o (= Fwpe( — gayes ) A0

— e, f ) ) g ) by, o ().
D
Hence, by the boundedness of A ,,

2042, ntl
(1 —[al)"™u"(@)| < Cllhgu(fo)lLrwa, o l1€allLawa,,

< Cll falla,pllealiLaa, ) < C.
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Now, using the well-known fact that

sup(l — |a*)|u(@)| ~ |u(0)] + Z|u“‘><0>| +sup(l — |a)" 2 u"*V(a)),

aeD k=1 aeD

the proof is complete. O

THEOREM 4.2. Letl < p <ocoand o <1/2,andlet s with ps > —1if « =1/2
and s > max(0, —2«) if @ < 1/2. Let u be analytic on D. Then the operator hy ,
is bounded from B,(a) to LP(dA,, ) if and only if the measure |u(z)|” dA, (z)
is an («, p)-Carleson measure.

Proof. Suppose first that u is such that |u(z)|” dA, 4 is an (c, p)-Carleson mea-
sure, and let g € B, («). Thenug € LP(dA, o). ByLemmaCwith8 = p—1—2a
we have hg ,(g) € L(dA,,«), and

s, u(@Lra, o < CllugllLraa, » < ClIglla,p-

This implies that & , is bounded from B, () to L”(dA, o).
To prove the converse, let u be analytic on D. We need to show

lugliraa, ) < Cllglle,py V8 € Bp(a). )

By the density of the polynomials in B, («), it is enough to prove (7) when g is
in P. Note that & = hy (1) € LP(dA), a) Hence u € A} ,, and the conditions on
s imply that u = Pyu. Using the idea of the proof of Theorem 3.2, we study the
difference

u(w)(g(z) — g(w))

Q—ape 4~ w]*)® dAw).

1)@ — @)@ = /
D

Since A, is bounded, we only need to show that the L?(dA, ,) norm of this dif-
ference is dominated by the B, («) norm of g. From now, we use the notation B(u)
to mean the quantity sup,cp(1 — |z|?)|u(z)|.

If o = 1/2, then dA, o(2) = (1 — 21?772 dA(z). If 1 < p < 2, then by
Holder’s inequality

V4
’/ u(w()l(g_(jj )2i(w))(1_ lw|?)® dA(w)
3 CB(M)Q,,)/,,< / u@)I"1g(2) = g1 | o p2es dA(w)>"
D |1 _ leZ-&-s

p—1
< CB(u)<2—”>/”( / |u(w)|P(1 — |w|2)P—2dA(z>>
D

lg(z) — g(w)|?

1 — wz|@top

| (1 — (w27 dA(w).
D

Hence, by Theorem 2.2 witho = p —2 and t = ps + p — 2, we have



412 DANIEL BLASI & JorDI PauU

||u§ - hs,u(g) ”zp(dAp’a)

2 (p—1)
< CB(u)' P)/p||u||£pl()dA,,,a)

1g(z) — g(w)|” 2 ps+p—2
X /D 5 m(l — |U)| ) dAp,a(Z) dA(w)

2— (
< CB@) PP lullfytgn) gz,

When ¢ = 1/2 and p > 2 we apply Holder’s inequality two times and then
Lemma A to see that

/u(w)(g(Z) g(w))
(1 — wz)?+s

< ( / Ju(w)|(1 — [w]?) =2/ dA(w))f’/q
~ b

1T — wz|(q/P)(l+28)(P—2)

p

(1 — [w|*)* dA(w)

(L— w2
— p
x /Dlg(z) g(w)l |l — wz|P+2tps—2e(p=2) dA(w)
(1w~ e
< " ———dA
< ||u||A,;,a< o dAw)
(L= w2
x fDIg(z)—g(w)I T e[ 2D dA(w)

(= [w)» e

S lullfy (1= 12~ / 18(2) — g(w)|” dA(w).
’ D

[1— wz|p+2+ps72s(p72)
Hence, by Theorem 2.2 witho = (1—¢)(p—2)and t = ps —e(p —2), we have
”ug - hs,u(g)llzp(dAp’a)

P
< lully

_ 2\ ps—e(p—2(1 _ | -12y(—&)(p—2)
Xfflg(@—g(ww’(l PP 77 A= 12D T s ) dACe)
DJD

[1— wz|p+2+ps—28(p—2>

14
< Il NglZ,

If o < 1/2, then applying again Holder’s inequality and then Lemma A yields

o GDEE@D) | o
/D (1 — wz)2+s (I = wl?)’ dA(w)
M _ 2Nstg—1 )”_1
= (/D T wzpe 4wl 1 dA(w)
s —g
p |1—wz|*ts I = 1wl dA(w) <
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_ 2ys—1 r—1
< CB(u)"( w dA(w))

D |1 — wZ|2+5

lg(z) — g(w)|?

TpE (1= w)* " dAw)
T

1g(z) — g(w)|”

< CB Pl — 2\—(p—=1)
< CB@)”(1 - |z) R T

(1 —w)* ' dA(w).
Therefore

lug = hsu (@)oo

SCB(“)p/ / 80 Z S (w11 = 122 dA() dA(w)
pJp [l —wz**s
< CB@)"lIgl: -

The last inequality is obtained from Theorem 2.2 witho = s — l and T = —2a.
It follows from Lemma 4.1 that B(u) is finite. Thus the proof is complete. O

COROLLARY 4.3. Letl < p < ocoand o < 1/2. Let f be analytic on D. Then
h}‘ is bounded if and only if f € Wy, 4.

Proof. Lets =1—2a and u = f’. Then we have

8 o
8—Z(hf(g))(z) =0

and

fw)g(w)

0 4 o
32 (&)@ = 2= 200) fD O oy (L P2 dA@) = hs o ()(2)

Hence h]‘i‘ is bounded if and only if & , is bounded from B, («) to L?(dA,, ), and
by Theorem 4.2 this holds if and only if f € W, 4. UJ

5. Atomic Decomposition

THEOREM 5.1 (Decomposition theorem). Let 1 < p < ocoand o < 1/2, and let
swiths > 0if « < 1/2and max(p,q)s > —1if o« = 1/2. Then there exists dy >
0 such that for any d-lattice {z;} in D, 0 < d < d, the following statements hold.

(@) If f isanalyticinD and | f(2)|? dAp «(2) is an («, p)-Carleson measure, then

00 —(1—
(1 _ |Zj|2)l+.v (1-2a)/p

1= a—"% ®)

j=0

with

= Cllf1"dApallpa-

p,a

[e ]

.|P
> lajlvs.,
Jj=0
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(b) If {a;} satisfies
'|p8Zj

< 00,
p,a

then f, defined by (8), is in A} o and | f(z)|” dA, «(z) is an (o, p)-Carleson

measure with
o0
§ P
la;l 81,-

j=0

1117 dApallpe = C

p.a

Proof. Without loss of generality, we may assume that s > max(0, —2«) if @ <
1/2. Indeed, for o < 0, it is easy to check that | f|” dA,  is an (o, p)-Carleson
measure if and only if B(f) = sup.ep(1 — |z|*)| f(z)| < oo. To see that, suppose
first that | f|” dA, o is an («, p)-Carleson measure. Then by Theorem 4.2 we have
that i r is bounded, and therefore it follows from Lemma 4.1 that B( f) is finite.
Conversely, if B(f) < oo and g € B,(«), then by Lemma 2.1 we have

fD 18”1 f(D)IP dAp(z) < B(f)” f lg(@)IP(1 — |z1*) "2 dA(z)

< CB(f) f 18I dAy o (2) < CB()?IIE,.

and so | f|? dA, o is an (@, p)-Carleson measure. Pick @’ < 0 so that s > —2a.
Hence | f|? dA, 4 is an (o, p)-Carleson measure if and only if | f|” dA, o is an
(a’, p)-Carleson measure.

We prove part (b) first. By Theorem 4.2, it is enough to show that the operator
hs, ¢ is bounded from B, () to L”(dA o). The assumption on the sequence {a;}
implies that {a;} is p-summable. Hence, by Theorem D, the sum (8) converges in
A} o and then f, defined by (8), isin A}, 4. Let g € B,(c), and for each z € D con-
sider the function /,(¢) = g(¢)/(1— Zg‘)z“ Fix z € D; then it is easy to check that
h, € A}, with ||k, lap, < lglle,p(1— |z|)~*+9). Hence h, = Pyh, and we have

g(w)

hs,f(g)(Z) = /Df(w)m dAs(w)

o0
— Z a](l _ |Z‘|2)1+S7(172a)/pm

Jj=0
o (11— |Z | )I-H (1=2a)/p
; i TS
Then, by Theorem D(b) with 8 = p — 1 — 2, we have
oo o0
s, r(@Iy, < €D lajg@NI” < €|y lajlss,|  lsllz,
j=0 j=0 P

So (b) is proved.
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Now we prove part (a). Let g € B,(a) and let {z;} be a d-lattice in D. By [7,
Lemma 2.2] (see also [8, Lemma B]), there is a disjoint decomposition {D;} of I
(ie, D= Uj D;) such that |D;| ~ (1 — |z;|*)? z, € Dj, and

|f(2) = (Af) ()| = CdTj5(2), ©))

where | D;| is the area of D; and

(1—1zP?
(1= zjz)>*s

AN =CY f(z)ID)]

j=0

The assumption on f implies that fg € A} ., and the discrete version of this is

that the sequence

{f(2))g(z) (1 = |z PHI2/r)
is p-summable (see also [3] or [6]). Using the fact that | fg|” is subharmonic and
the area mean value property, we can see that the measure

o0
S £ = 12202 Dy s

j=0

is an («, p)-Carleson measure and

o0
> £z = 12720 Dy s,

J=0

=Cllf1"dApallpa.  (10)

p,

Then, by part (b), we have that |A(f)(z)|” dAp o (z) is an (a, p)-Carleson measure.
Since A is an operator in the space

{fe Aﬁ,a 2 f(2)|” dA, «(2) is an (a, p)-Carleson measure},

we have, by (9),
(I —A)(H ()| = CdTip(2).

Then, if we take d small enough, by Theorem 3.2 (with 8 = p — 1 —2«) we have
the operator norm estimate

11— Al <1/2. (11

Note that, in order to apply Theorem 3.2 when 1 < p < 2, we need to check that
B(f) = supzep(1 — |z|2)|f(z)| < oo. Since | f|PdA, 4 is an (a, p)-Carleson
measure, it follows from Theorem 4.2 and Lemma 4.1 that B(f) is finite.

Hence, by (11), A1 exists and

[0¢]
1A~ < D Id - A <2.
j=0
Now we have
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f(2) = (AA7'F)(2)

2\s
—CZ(A )z )ID|%
j=0
(4 gy, (L= [z Ts—(=200/p
- CZ(A EHID; (1 — [z 7p=20 (lj— Zjz7)¥ts

Jj=0

By the inequality (10) and the boundeness of A~!, we get

Y AT EHA— 1z Dy| s,

Jj=0

b«

< CNAT'FIPdApallpa < CIAT N - NFIP dAp ol p -

Thus the choice of a; = (A’lf)(zj)le [(1—]z; |2)U=P=2)/P completes the proof.

O
Now, as an immediate consequence of Theorem 5.1 we obtain the following de-
composition of W, 4.

COROLLARY 5.2. Letl < p <ooanda <1/2,andletswiths > 0if o <1/2
and max(p,q)s > —1if a = 1/2. Then there exists dy > 0 such that for any d-
lattice {z;} in D, 0 < d < dy, the following statements hold.

@) If f € Wy o, then

o0 a- |Z | )H—s (1-2a)/p

f2) = Z mEpeT (12)
with
o0
D lal?s,| < ClIflY, -
j=0 Py
(b) If {a;} satisfies
oo
HZ'C’H”% < 00,
j=0 P

then f, defined by (12), converges in B, (o) with

P P
IfIy,, <€ 8.,

p,a

Proof. The corollary follows from Theorem 5.1 via term-by-term integration. [J
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