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Corona Theorem for H∞ on Coverings
of Riemann Surfaces of Finite Type

Alexander Brudnyi

1. Introduction

1.1

Let X be a complex manifold and let H∞(X) be the Banach algebra of bounded
holomorphic functions on X equipped with the supremum norm. We assume that
X is Carathéodory hyperbolic; that is, the functions inH∞(X) separate the points
of X. The maximal ideal space M = M(H∞(X)) is the set of all nonzero lin-
ear multiplicative functionals on H∞(X). Since the norm of each φ ∈M is ≤ 1,
M is a subset of the closed unit ball of the dual space (H∞(X))∗. It is a compact
Hausdorff space in the Gelfand topology (i.e., in the weak-∗ topology induced by
(H∞(X))∗). Further, there is a continuous embedding i : X ↪→ M taking x ∈X
to the evaluation homomorphism f �→ f(x), f ∈ H∞(X). The complement to
the closure of i(X) in M is called the corona. The corona problem is: Given X,
determine whether the corona is empty. For example, according to Carleson’s cel-
ebrated corona theorem [C], this is true for X the open unit disk in C. (This was
conjectured by Kakutani in 1941.) Also, there are nonplanar Riemann surfaces for
which the corona is nontrivial (see e.g. [JM; Ga; BD; L] and references therein).
The general problem for planar domains is still open, as is the problem in several
variables for the ball and polydisk. (In fact, there are no known examples of do-
mains in C

n, n ≥ 2, without corona.) At present, the strongest corona theorem for
planar domains is due to Garnett and Jones [GJ]. It states that the corona is empty
for any Denjoy domain—that is, a domain of the form C̄ \ E where E ⊂ R.

The corona problem has the following analytic reformulation (see e.g. [G]): A
collection f1, . . . , fn of functions from H∞(X) satisfies the corona condition if

1≥ max
1≤j≤n|fj(x)| ≥ δ > 0 for all x ∈X. (1.1)

The corona problem being solvable (i.e., the corona is empty) means that the
Bezout equation

f1g1 + · · · + fngn ≡ 1 (1.2)

has a solution g1, . . . , gn ∈ H∞(X) for any f1, . . . , fn satisfying the corona con-
dition. We refer to max1≤j≤n‖gj‖∞ as a “bound on the corona solutions”. (Here
‖·‖∞ is the norm on H∞(X).)
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This paper is concerned with the corona problem for coverings of Riemann sur-
faces of finite type. Let us recall that a Riemann surface Y is of finite type if the
fundamental group π1(Y ) is finitely generated. Our main result extends the class
of Riemann surfaces for which the corona theorem is true.

Theorem 1.1.1. Let r : X → Y be an unbranched covering of a Carathéodory
hyperbolic Riemann surface of finite type Y. Then X is Carathéodory hyperbolic
and for any f1, . . . , fn ∈ H∞(X) satisfying (1.1) there are solutions g1, . . . , gn ∈
H∞(X) of (1.2) with the bound max1≤j≤n‖gj‖∞ ≤ C(Y, n, δ).

This result, in a sense, completes our work started in [Br1; Br2; Br3] on the corona
problems on coverings of certain Riemann surfaces. Similarly to [Br1; Br2; Br3],
the methods used in this paper are based on an L2 cohomology technique on
complete Kähler manifolds and Cartan’s A and B theorems for coherent Banach
sheaves on Stein manifolds.

Remarks 1.1.2. (1) Note that the assumption of the Carathéodory hyperbolicity
of Y cannot be removed: It follows from the results of Lárusson [L] and the au-
thor [Br1] that for any integer n ≥ 2 there are a compact Riemann surface Sn and
its regular covering rn : S̃n → Sn such that:

(a) S̃n is a complex submanifold of an open Euclidean ball Bn ⊂ C
n;

(b) the embedding i : S̃n ↪→ Bn induces an isometry i∗ : H∞(Bn)→ H∞(S̃n).
In particular, (b) implies that the maximal ideal spaces of H∞(S̃n) and H∞(Bn)

coincide. Thus the corona problem is not solvable for H∞(S̃n).
(2) Under the assumptions of the theorem, let U ↪→ X be a domain such that

the embedding induces an injective homomorphism of the corresponding funda-
mental groups and r(U) ⊂⊂ Y. Then, as was shown in [Br2; Br3], in this case the
following extension of Theorem 1.1.1 is valid.

Theorem 1.1.3. LetA = (aij ) be an n×k matrix, k < n, with entries inH∞(U).
Assume that the family of minors of order k of A satisfies the corona condition.
Then there is an n × n matrix Ã = (ãij ), ãij ∈ H∞(U), such that ãij = aij for
1 ≤ j ≤ k, 1 ≤ i ≤ n, and det Ã = 1.

The proof of the theorem is based on a Forelli-type theorem on projections inH∞
discovered in [Br3] and a Grauert-type theorem for “holomorphic” vector bun-
dles on maximal ideal spaces (which are not usual manifolds) of certain Banach
algebras proved in [Br2]. In the forthcoming paper [Br5] we prove a result sim-
ilar to Theorem 1.1.3 for matrices with entries in H∞(X) with X satisfying the
assumptions of Theorem 1.1.1. The techniques are necessarily more complicated
than those used in this paper.

(3) The remarkable class of Riemann surfaces X for which a Forelli-type theo-
rem is valid was introduced by Jones and Marshall [JM]. The definition is in terms
of an interpolating property for the critical points of the Green function on X. For
suchX the corona problem is solvable, as well. Moreover, everyX from this class
is of Widom type; see [W] for the corresponding definition. (Roughly speaking,
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this means that the topology of X grows slowly as measured by the Green func-
tion.) It is an interesting open question whether the surfaces X in Theorem 1.1.1
are also of Widom type.

(4) Similarly to [JM] and [Br3], our proof of Theorem 1.1.1 uses the Carleson
corona theorem for the open unit disk.

1.2

In this part we formulate some results used in the proof of Theorem 1.1.1. First,
we recall the following definition.

Definition 1.2.1. Let X be a complex manifold. A sequence {xj}j∈N ⊂ X is
called interpolating for H∞(X) if for every bounded sequence of complex num-
bers a = {aj}j∈N there is an f ∈ H∞(X) such that f(xj ) = aj for all j. The
constant of interpolation for {xj}j∈N is defined as

sup
‖a‖l∞≤1

inf{‖f ‖∞ | f ∈H∞(X), f(xj ) = aj , j ∈N}, (1.3)

where ‖a‖l∞ := supj∈N|aj |.
Let r : X→ Y be an unbranched covering of a Carathéodory hyperbolic Riemann
surface of finite type Y. Let K ⊂⊂ Y be a compact subset.

Theorem 1.2.2. For every x ∈K, the sequence r−1(x) ⊂ X is interpolating for
H∞(X) with the constant of interpolation bounded by a number depending on K
and Y only.

To formulate our next result used in the proof, we will assume that Y is equipped
with a hermitian metric hY with the associated (1,1)-form ωY . Then we equip X
with the hermitian metric hX induced by the pullback r∗ωY of ωY to X. Now, if η
is a smooth differential (0,1)-form on X, by |η|z, z ∈X, we denote the norm of η
at z defined by the hermitian metric h∗X on the fibres of the cotangent bundle T ∗X
on X. We say that η is bounded if

‖η‖ := sup
z∈X

|η|z <∞. (1.4)

Theorem1.2.3. Let η be a smooth bounded (0,1)-form onX with support supp η
satisfying r(supp η) ⊂ K for some compact subset K ⊂⊂ Y. Then the equation
∂̄f = η has a smooth bounded solution f on X such that

‖f ‖L∞ := sup
z∈X

|f(z)| ≤ C‖η‖ (1.5)

with C depending on K, Y, and hY only.

Remark 1.2.4. The methods used in the proofs of Theorems 1.2.2 and 1.2.3 can be
applied also to prove similar results for holomorphic Lp-functions on unbranched
coverings of certain Stein manifolds. We present these results in a forthcoming
paper.
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2. Auxiliary Results

In this section we collect some auxiliary results used in the proofs.

2.1

Let Y be a Carathéodory hyperbolic Riemann surface of finite type. According
to the theorem of Stout [S, Thm. 8.1], there exist a compact Riemann surface R
and a holomorphic embedding φ : Y → R such that R \ φ(Y ) consists of finitely
many closed disks with analytic boundaries together with finitely many isolated
points. Since Y is Carathéodory hyperbolic, the set of the disks in R \φ(Y ) is not
empty. Also, without loss of generality we may and will assume that the set of iso-
lated points in R \ φ(Y ) is not empty as well. (For otherwise, φ(Y ) is a bordered
Riemann surface and the required results follow from [Br3].) We will naturally
identify Y with φ(Y ). Also, we set

R \ Y :=
( ⊔

1≤i≤k
D̄i

)
∪

( ⋃
1≤j≤ l

{xj}
)

and Ỹ := Y ∪
( ⋃

1≤j≤ l
{xj}

)
, (2.1)

where eachDi is biholomorphic to the open unit disk D∈C and these biholomor-
phisms are extended to diffeomorphisms of the closures D̄i → D̄.

According to these definitions, Ỹ is a bordered Riemann surface, and there is a
bordered Riemann surface Ỹ1 ⊂⊂ R with Ỹ ⊂⊂ Ỹ1 and π1(Ỹ1) ∼= π1(Ỹ ).

2.2

Next, we introduce a complete Kähler metric on Y1 := Ỹ1\
(⋃

1≤j≤l{xj}
)
.

To this end we consider an open cover U = (Uj )0≤j≤l of R such that for 1 ≤
j ≤ l, Uj ⊂⊂ Ỹ is an open coordinate disk centered at xj and U0 is a bordered
Riemann surface that intersects each Uj , 1 ≤ j ≤ l, by a set biholomorphic to an
open annulus. Let {ρj}0≤j≤l be a smooth partition of unity onR subordinate to the
cover U . By z we denote a complex coordinate in Uj , 1≤ j ≤ l, such that z(xj ) =
0 and |z| < 1. We set fj := ρj |z|2, 1 ≤ j ≤ l. Then fj is a smooth nonnegative
function on R with supp fj ⊂ Uj .

Now, we consider the positive smooth function

f := ρ0

2
+

l∑
j=1

fj (2.2)

on R and determine the (1,1)-form ω̃ on R by

ω̃ := −
√−1

2π
∂∂̄ log(log f )2. (2.3)

By the definition 0 < f < 1, the form ω is well-defined. Also, in an open neigh-
borhood of xj , 1≤ j ≤ l, the form ω is equal to

ωP :=
√−1

π

dz ∧ dz̄
|z|2(log|z|2)2 = −

√−1

2π
∂∂̄ log(log|z|2)2. (2.4)
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In the natural identification Uj \ {xj} = D \ {0}, ωP coincides with the (1,1)-form
of the Poincaré metric on the punctured disk.

Let ωR be a Kähler (1,1)-form on the compact Riemann surface R from Sec-
tion 2.1. Since Ỹ1 is a bordered Riemann surface in R, there is a smooth plurisub-
harmonic function fR defined in a neighborhood of the closure of Ỹ1 such that

ωR =
√−1 · ∂∂̄fR on Ỹ1. (2.5)

Further, since Ỹ1 is a Stein manifold, by the Narasimhan theorem [N] there is
a holomorphic embedding i : Ỹ1 ↪→ C

3 of Ỹ1 as a closed complex submanifold
of C

3. By ωe we denote the (1,1)-form on Ỹ1 obtained as the pullback by i of the
Euclidean Kähler form

√−1(dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3) on C
3 (here

z1, z2, z3 are complex coordinates on C
3). Clearly, ωe is a Kähler form on Ỹ1 (i.e.,

it is positive on Ỹ1 and d-closed).

Lemma 2.2.1. There is a positive number c1 depending on Y1, ωR , and ω̃ such
that the (1,1)-form

ω := ω̃ + c1(ωR + ωe) (2.6)

is a complete Kähler form on Y1.

Proof. Since ωR is a Kähler form on R, by the definition of ω̃ there is a constant
c1 > 0 depending on Y1, ωR , and ω̃ such that

ω̃ > −c1ωR on Y1.

Thus the form ω = ω̃ + c1(ωR + ωe) is positive (and d-closed) on Y1. Its com-
pleteness means that the path metric d on Y1 induced by ω is complete. Let us
check this fact.

Assume, to the contrary, that d is not complete. This means that there is a se-
quence {wn} ⊂ Y1 convergent either to the boundary of Ỹ1 or to one of the points xj ,
1 ≤ j ≤ l, such that {d(o,wn)} is bounded (for a fixed point o ∈ Y1). Then, since
ω ≥ ωe, the sequence {i(wn)} ⊂ C

3 is bounded. This implies that {wn} cannot
converge to the boundary of Ỹ1. Thus it converges to one of xj . But since ω ≥ ωP
near xj , the latter is impossible because the Poincaré metric on the punctured disk
is complete.

2.3

According to our construction, the embedding Y ↪→ Y1 induces an isomorphism
of the corresponding fundamental groups. By the covering homotopy theorem
this implies that for any unbranched covering r : X→ Y there are an unbranched
covering r1 : X1 → Y1 and an embedding j : X ↪→ X1 such that r1 � j = r and
j∗ : π1(X)→ π1(X1) is an isomorphism. Without loss of generality we identify
j(X) with X. Then r := r1|X. Now the form r∗1ω with ω determined by (2.6) is a
complete Kähler form on X1.

Let TY1 be the complex tangent bundle on Y1 equipped with the hermitian met-
ric induced by the Kähler form ωR. Since TY1 is the restriction to Y1 of the tangent
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bundle TR onR with the hermitian metric defined by ωR , the curvature/Y1 of TY1

satisfies
/Y1 ≥ −c2ωR (2.7)

for some c2 > 0 depending on Y1 and ωR. In turn, the curvature /X1 := r∗1/Y1

of the tangent bundle TX1 on X1 equipped with the hermitian metric induced by
r∗1ωR satisfies

/X1 ≥ −c2 r
∗
1ωR. (2.8)

Next, by the definition of ωe there is a smooth plurisubharmonic function g on
Ỹ1 such that ωe =

√−1 · ∂∂̄g (for such g, one takes the pullback by i of the func-
tion ‖z‖2 := |z1|2 + |z2|2 + |z3|2 on C

3).

Let E0 := X1 × C be the trivial holomorphic line bundle on X1. We equip E0

with the hermitian metric eh1−(c1+c2 )g1 where h1 = r∗1h := log(log r∗1f )2/2π with
f from (2.2) and g1 := r∗1(g + fR); see (2.5). (This means that for z× v ∈E the
square of its norm in this metric equals eh1(z)−(c1+c2 )g1(z)|v|2 where |v| is the mod-
ulus of v ∈ C.) Then by (2.8) the curvature /E of the bundle E := E0 ⊗ TX1

satisfies
/E := −√−1 · ∂∂̄ log eh1−(c1+c2 )g1 +/X1 ≥ r∗1ω. (2.9)

2.4

Let X be a complete Kähler manifold of dimension n with a Kähler form ω and
let E be a hermitian holomorphic vector bundle on X with curvature /. Let
L
p,q

2 (X,E) be the space of L2 E-valued (p, q)-forms onX with the L2 norm, and
let Wp,q

2 (X,E) be the subspace of forms such that ∂̄η is L2. (The forms η may be
taken to be either smooth or just measurable, in which case ∂̄η is understood in
the distributional sense.) The cohomology of the resulting L2 Dolbeault complex
(W •,•

2 , ∂̄) is the L2 cohomology

H
p,q

(2) (X,E) = Z
p,q

2 (X,E)/Bp,q

2 (X,E),

where Zp,q

2 (X,E) and Bp,q

2 (X,E) are the spaces of ∂̄-closed and ∂̄-exact forms
in Lp,q

2 (X,E), respectively.
If/ ≥ εω for some ε > 0 in the sense of Nakano, then theL2 Kodaira–Nakano

vanishing theorem (see [De; O]) states that

H
n,r

(2) (X,E) = 0 for r > 0. (2.10)

Moreover, for η ∈ Zn,r
2 (X,E), r > 0, there is a form ξ ∈Wn,r−1

2 (X,E) such
that ∂̄ξ = η and

‖ξ‖2 ≤ 1

ε
‖η‖2; (2.11)

see [De, Rem. 4.2]. Here ‖·‖2 denotes the corresponding L2 norms.
We can apply this result to the bundleE from Section 2.3 withX1 equipped with

the complete Kähler form r∗1ω. Then from (2.9) we obtain the following statement.



Corona Theorem for H∞ on Coverings of Riemann Surfaces of Finite Type 289

Proposition 2.4.1. For every η ∈W 1,1
2 (X1,E) there is ξ ∈W 1,0

2 (X1,E) such that
∂̄ξ = η and

‖ξ‖2 ≤ ‖η‖2. (2.12)

2.5

Let T ∗X1 be the cotangent bundle on X1 equipped with the hermitian metric in-
duced by r∗1ω. We consider the hermitian line bundle V := E ⊗ T ∗X1 equipped
with the tensor product of the corresponding hermitian metrics. Then from Propo-
sition 2.4.1 we obtain

H
0,1
(2) (X1,V ) ∼= H

1,1
(2)(X1,E) = 0. (2.13)

Moreover, for every η ∈W 0,1
2 (X1,V ) there is F ∈W 0,0

2 (X1,V ) such that ∂̄F =
η and

‖F‖2 ≤ ‖η‖2. (2.14)

Further, there is a canonical isomorphism I : X1 × C → V defined in local co-
ordinates z on X1 by the formula

I(z× v) := v · 1⊗ ∂

∂z
⊗ dz. (2.15)

(Clearly this definition does not depend on the choice of local coordinates.) In
what follows we identify V with X1 × C by I.

3. Proof of Theorem 1.2.2

In what follows, by A,B,C, c, . . . we denote constants depending on characteris-
tics related to the sets Y, x ∈ Y, andK ⊂⊂ Y but not on coveringsX of Y. (We will
briefly say that they depend on Y, x, and K only.) These constants may change
from line to line and even in a single line.

3.1

Let x ∈ K ⊂⊂ Y. We must check that the sequence r−1(x) ⊂ X is interpolating
forH∞(X)with the constant of interpolation bounded by a number depending on
K and Y only. Fix a neighborhood Ŷ of the closure of Y in Y1 such that Ŷ is rel-
atively compact in Ỹ1; see Section 2.1 for the corresponding definitions. First we
will prove that r−1(x) is interpolating for the space L2

O(X̂1; r∗1ωR) of holomorphic
L2-functions on the covering X̂1 := r−1

1 (Ŷ ) of Ŷ with norm defined by integration
with respect to r∗1ωR (recall that X ⊂ X1 and r1|X = r).

Proposition 3.1.1. Let a be an l2-function on r−1(x) with norm ‖a‖l2 . Then
there is a function f ∈L2

O(X̂1; r∗1ωR) such that f |r−1(x) = a and

‖f ‖2 ≤ c‖a‖l2
with c depending on K and Y only.
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Proof. Using the fact that the closure of Ỹ1 in R possesses a Stein neighborhood
and applying some basic results of the theory of Stein manifolds (see e.g. [GrR])
one obtains easily that there are a holomorphic function φx with a simple zero at
x defined in a fixed neighborhood of the closure of Ỹ1, a simply connected coor-
dinate neighborhood Ux ⊂⊂ Y of x with a complex coordinate z, z(x) = 0, and
|z| < 1 on Ux , and positive numbers A and r, 0 < r < 1, depending on x and Y
only such that

(1) supy∈Ỹ1
|φx(y)| ≤ A;

(2) |φx(y)| ≥ 1/A for all y ∈Ux;r := {z∈Ux : |z| ≥ r};
(3) φx(y) �= 0 for all y ∈Ux \ {x}.
(For a construction of such φx , see e.g. [Br2, Cor. 1.8].)

Further, there is a C∞-function ρx , 0 ≤ ρx ≤ 1, on Ux such that ρx is equal to
1 on Ux \Ux;r and 0 outside Ux , and

|dρx |z;ω ≤ B for all z∈ Y1, (3.1)

where {|·|z;ω : z ∈ Y1} is the hermitian metric on the fibres of the cotangent bun-
dle T ∗Y1 on Y1 determined by the form ω (see (2.6)), and the constant B depends
on x and Y only.

Since Ux is simply connected, r−1
1 (Ux) is biholomorphic to Ux × S where S is

the fibre of r1. In what follows, without loss of generality we will identify these
sets. Then a is an l2-function of {x} × S. We extend a to a locally constant func-
tion â on Ux × S by the formula

â(z, s) := a(x, s) for all (z, s)∈Ux × S. (3.2)

Let us consider a (0,1)-form η̂ on X1 determined by

η̂(w) =
{
â(z, s)dρx(z)/φx(z) if w = (z, s)∈Ux × S,

0 if w /∈Ux × S.
(3.3)

Next, we fix a noncompact neighborhood O of the closure Ỹ1 in R. Because
O is a one-dimensional Stein manifold, it is homotopically equivalent to a one-
dimensional CW-complex (see e.g. [GrR]). In particular, any continuous vector
bundle onO is topologically trivial. Then, by the Grauert theorem [Gr], any holo-
morphic vector bundle on O is also trivial. Applying this to the bundle T ∗R|O we
find a nowhere vanishing holomorphic section λ of T ∗R|O. (By the definition, λ
is a holomorphic 1-form onO. ) Then λ−1 = 1/λ is a nowhere vanishing holomor-
phic section of the tangent bundle TO onO. Moreover, there is a positive constant
C depending on Ỹ1 such that

1

C
≤ |λ|z;ωR ≤ C,

1

C
≤ |λ−1|z;ωR ≤ C for all z∈ Ỹ1, (3.4)

where |·|z;ωR denotes the corresponding norms on T ∗Ỹ1 and T Ỹ1 at z ∈ Ỹ1 deter-
mined by the form ωR.

Continuing the proof of the proposition, consider the V -valued (0,1)-form η :=
η̂ ∧ r∗1λ⊗ r∗1λ−1 on X1. By Nw and N ′

w we denote the hermitian norms on V and
E (see Section 2.3) at w ∈X1. Then we have
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Nw(η) := N ′
w(η̂ ⊗ r∗1λ

−1) · |r∗1λ|w;r∗1ω
= |η̂|w;r∗1ω · |r∗1λ−1|w;r∗1ωR · |r∗1λ|w;r∗1ω · eh1(w)−(c1+c2 )g1(w). (3.5)

Here |η̂|w;r∗1ω and |r∗1λ|w;r∗1ω are determined by the form r∗1ω and |r∗1λ−1|w;r∗1ωR is
determined by the form r∗1ωR. Since ωR is equivalent to ω onUx ⊂⊂ Y, from (3.4)
we obtain for all w ∈ r−1

1 (Ux):

|r∗1λ|w;r∗1ω := |λ|r1(w);ω ≤ C1, |r∗1λ−1|w;r∗1ωR := |λ−1|r1(w);ωR ≤ C, (3.6)

where C1 depends on C and on the constant of the equivalence of ωR and ω on Ux.
Also, by the definition of h1 and g1 (see Section 2.3), there is a constant C2 > 0
depending on h1, g1, Ux , and Y1 such that

eh1(w)−(c1+c2 )g1(w) ≤ C2 for all w ∈ r−1
1 (Ux). (3.7)

From here, (3.6), (3.5), (3.1)–(3.3), and the definition of φx (see conditions (1)–
(3)) we obtain

Nw(η) ≤ C̃|ã(w)|, (3.8)

where C̃ := ABCC1C2, ã := â ·χr−1
1 (Ux)

, and χr−1
1 (Ux)

is the characteristic function

of r−1
1 (Ux). Using (3.8) we estimate the L2 norm of η as follows:

‖η‖2 :=
(∫

w∈X1

N 2
w(η)(r

∗
1ω)(w)

)1/2

≤ C̃‖a‖l2
(∫

y∈Ux
ω(y)

)1/2

≤ Ĉ‖a‖l2 .
(3.9)

Here Ĉ depends on x and Y only.
Next, according to (2.14) there is F ∈W 0,0

2 (X1,V ) such that ∂̄F = η and

‖F‖2 ≤ ‖η‖2 ≤ Ĉ‖a‖l2 . (3.10)

We regard F as a function on X1; see Section 2.5.
Observe that since Ŷ (⊂ Y1) is relatively compact in Ỹ1, g1 is bounded on X̂1

and h1 is bounded from below on X̂1; see Section 2 for the corresponding defini-
tions. Moreover, ωR ≤ c̃ · λ ∧ λ̄ on Ỹ1 for some c̃ depending on Ỹ1. These facts,
(3.4), and (3.5) imply(∫

X̂1

|F |2 · r∗1ωR
)1/2

≤ C

(∫
w∈X̂1

[N ′
w(F ⊗ r∗1λ

−1)]2(r∗1λ ∧ r∗1 λ̄)(w)
)1/2

= C

(∫
w∈X̂1

N 2
w(F · r∗1λ⊗ r∗1λ

−1)(r∗1ω)(w)
)1/2

≤ C

(∫
w∈X1

N 2
w(F · r∗1λ⊗ r∗1λ

−1)(r∗1ω)(w)
)1/2

:= C‖F‖2 (3.11)

with C depending on Y. Let us consider the function f := ã · ρx − F · r∗1φx on
X̂1. Then, according to (3.10) and (3.11),(∫

X̂1

|f |2r∗1ωR
)1/2

≤ c‖a‖l2
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where c depends on Y and x only. Moreover, from (3.3) it follows that f is holo-
morphic and f |r−1

1 (x) = a.

This shows that r−1(x) is interpolating for L2
O(X̂1; r∗1ωR).

To complete the proof of the proposition it remains to prove that for x ∈K ⊂⊂
Y the constant of interpolation of r−1(x)with respect to L2

O(X̂1; r∗1ωR) is bounded
by a number depending on K and Y only.

Let us consider the restriction mapRx : L2
O(X̂1; r∗1ωR)→ LO(X̂1; r∗1ωR)|r−1(x).

Lemma 3.1.2. Rx maps L2
O(X̂1; r∗1ωR) continuously onto l2(r−1(x)). Moreover,

the norm ‖Rx‖ of Rx is bounded by a constant depending on Y and x.

Proof. We will consider the coordinate neighborhood Ux ⊂⊂ Y from the proof
of Proposition 3.1.1 with a complex coordinate z such that z(x) = 0, |z| < 1 on
Ux. Also, we naturally identify r−1

1 (Ux) with Ux × S where S is the fibre of r1. By
definition there is a constant C depending on Y, Ux , and ωR such that

√−1 · dz ∧ dz̄ ≤ CωR on Ux. (3.12)

Let f ∈ L2
O(X̂1; r∗1ωR). Then on r−1(x) = {x} × S we have, by the mean value

property for subharmonic functions,
∑
s∈S

|f(x, s)|2 ≤
∑
s∈S

(
1

π

∫
Ux

|f(z, s)|2√−1 · dz ∧ dz̄
)

≤ C

π

∫
Ux

(∑
s∈S

|f(z, s)|2
)
ωR(z)

= C

π

∫
r−1

1 (Ux)

|f |2r∗1ωR ≤
C

π
‖f ‖2

2. (3.13)

This shows that Rx maps L2
O(X̂1; r∗1ωR) continuously into l2(r−1(x)). Also, Rx is

surjective according to the first part of Proposition 3.1.1.

Now, sinceRx : L2
O(X̂1; r∗1ωR)→ l2(r−1(x)) is a linear continuous surjective map

of Hilbert spaces, there is a linear continuous mapTx : l2(r−1(x))→ L2
O(X̂1; r∗1ωR)

such that Rx � Tx = id. Let {es}s∈S , es(x, t) = 0 for t �= s, and es(x, s) = 1 be an
orthonormal basis of l2(r−1(x)). We set

hs := Tx(es)∈L2
O(X̂1; r∗1ωR).

Then for a sequence a = {as}s∈S ∈ l2(S) we have

ha :=
∑
s∈S

ashs ∈L2
O(X̂1; r∗1ωR) and ‖ha‖2 ≤ c‖a‖l2 . (3.14)

Further, for each y ∈ Ux , by Ly : l2(r−1(y)) → l2(r−1(x)) we denote the nat-
ural isomorphism that sends a(y, s) ∈ l2(r−1(y)) to a(x, s) ∈ l2(r−1(x)). Let us
consider the map Sy := Ry �Tx �Ly : l2(r−1(y))→ l2(r−1(y)) determined by the
formula

[Sy(a)](y, t) :=
∑
s∈S

ashs(y, t), (y, t)∈ r−1(y). (3.15)
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Here a(y, t) = ∑
s∈S ases(y, t), t ∈ S, and es(y, ·) are determined similarly to

es(x, ·). By identifying a ∈ l2(r−1(y)) with {as}s∈S ∈ l2(S) we can regard, ac-
cording to (3.15), {Sy}y∈Ux as a family of bounded linear operators l2(S)→ l2(S)

depending holomorphically on y ∈Ux. According to (3.14) and Lemma 3.1.2 there
is a constant c ′ depending on Ux and Y such that

‖Sy‖ ≤ c ′ for all y ∈Ux.
Moreover, by our construction, Sx = I where I : l2(S) → l2(S) is the identity
operator. Identifying Ux with D by the coordinate z, we obtain by the Cauchy in-
tegral formula for bounded holomorphic on D functions:

Sz := I +
∞∑
k=1

Sk z
k for some Sk : l2(S)→ l2(S), ‖Sk‖ ≤ c ′.

In particular, for |z| < 1
2c ′+4

we have

∥∥∥∥
∞∑
k=1

Sk z
k

∥∥∥∥ ≤ c ′
|z|

1− |z| <
2

3
.

Thus for every y ∈ Ux , |z(y)| < 1
2c ′+4

, the inverse operator S−1
y exists, and its

norm is bounded by 1
1−2/3

= 3.
Finally we set

T̂y := Tx � Ly � S−1
y , y ∈ Ûx :=

{
y ∈Ux : |z(y)| < 1

2c ′ + 4

}
. (3.16)

Then by the definition we have

Ry � T̂y = id for all y ∈ Ûx.
This shows that {T̂y : l2(r−1(y))→ L2

O(X̂1; r∗1ωR) : y ∈ Ûx} is a family of inter-
polation operators depending holomorphically on y such that ‖T̂y‖ ≤ 3c. Taking
a finite open cover ofK ⊂⊂ Y by the sets Ûx , x ∈K, and considering on these sets
the interpolation operators T̂y , y ∈ Ûx , we obtain that for every x ∈K the constant
of interpolation of r−1(x) with respect to L2

O(X̂1; r∗1ωR) is bounded by a number
depending on K and Y only.

This completes the proof of Proposition 3.1.1.

3.2

Let us prove now that r−1(x) is interpolating for H∞(X) with the constant of in-
terpolation bounded by a number depending on K and Y only.

We will use the interpolation operators T̂y , y ∈ Ûx ⊂⊂ Ux , of the previous sec-
tion. As before we set

hs,y := T̂y(es(y, ·))∈L2
O(X̂1; r∗1ωR).

Then the family of functions {hs,y : s ∈ S, y ∈ Ûx} depends holomorphically on y.
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Now for a sequence a = {as}s∈S ∈ l2(S) we have

ha,y :=
∑
s∈S

ashs,y ∈L2
O(X̂1; r∗1ωR) and ‖ha,y‖2 ≤ 3c‖a‖l2 . (3.17)

From here and Lemma 3.1.2 it follows that∑
z∈r−1(w)

|ha,y(z)|2 ≤ c‖a‖2
l2

, w ∈ Y, y ∈ Ûx , (3.18)

with c depending on w, x, and Y.
To continue the proof we require an extension of Lemma 3.1.2. For its formu-

lation we fix a holomorphic function φ defined in a neighborhood of the closure
of Ỹ1 ⊂⊂ R having simple zeros at all points xj , 1 ≤ j ≤ l (see (2.1)), and
nonzero outside these points. (Such φ exists, e.g., by [Br2, Cor. 1.8].) As before,
by Rw : L2

O(X̂1; r∗1ωR)→ l2(r−1(w)), w ∈ Y, we denote the restriction map (here
r := r1|X).

Lemma 3.2.1. There is a constant A > 0 depending on Y such that

‖Rw‖ ≤ A

|φ(w)| .

Proof. Let Uj ⊂⊂ Ỹ be a coordinate neighborhood of xj with a complex coordi-
nate z such that z(xj ) = 0, |z| < 1, on Uj . We have

√−1 · dz ∧ dz̄ ≤ CωR on Uj

for some C depending on ωR , z, and Y. Thus for any f ∈L2
O(X̂1; r∗1ωR) its restric-

tion f |r−1
1 (Uj )

belongs to the L2 space on r−1
1 (Uj ) defined by integration with re-

spect to the form r∗1
(√−1 · dz ∧ dz̄), and theL2 norm of the restriction is bounded

by C‖f ‖2.

Next, for a point w ∈ Ũj \ {xj}, Ũj := {z ∈Uj : |z| < 1/2}, we set d := |z(w)|
and Dw = {y ∈Uj : |z(y)− z(w)| < d}. Then Dw ⊂ Uj \ {xj} and so r−1

1 (Dw) is
naturally identified withDw×S. In this identification we have, by the mean value
property for subharmonic functions,

∑
s∈S

|f(w, s)|2 ≤ 1

πd 2

∫
Dw

(∑
s∈S

|f(z, s)|2
)√−1 · dz ∧ dz̄

≤ C

πd 2

∫
r−1

1 (Dw)

|f |2r∗1ωR ≤
C

πd 2
‖f ‖2

2.

From here and the fact that the function φ/z is bounded on Uj we obtain that there
is a constant cj > 0 depending on Y such that

‖f |r−1
1 (w)‖l2 ≤

cj

|φ(w)| ‖f ‖2 for all w ∈ Ũj . (3.19)

This proves the required inequality for w ∈⋃
1≤j≤l Ũj .
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The remaining part K := Y \ (⋃
1≤j≤l Ũj

)
is a relatively compact subset

of Ŷ \ (⋃
1≤j≤l{xj}

); see Section 3.1 for the definition of Ŷ. Then the required
estimate onK follows from (3.13) and the fact that |φ| is bounded onK. We leave
the details to the reader.

From this lemma we obtain the following improvement of (3.18):∑
z∈r−1(w)

|ha,y(z)|2 ≤ C

|φ(w)|2 ‖a‖
2
l2

, w ∈ Y, y ∈ Ûx , (3.20)

with C depending on Y and x only. This and the definition of ha,y (see (3.17))
imply ∑

s∈S
|hs,y(z)|2 ≤ C

|φ(w)|2 , z∈ r−1(w), w ∈ Y, y ∈ Ûx. (3.21)

Let us continue the proof of Theorem 1.2.2. Consider the holomorphic function

fy := φ2

φ2(y)
, y ∈ Ûx ,

defined in a neighborhood of the closure of Ỹ1. Hereφ is the same as in Lemma 3.2.1
and Ûx ⊂⊂ Y is the coordinate neighborhood of x ∈ K defined by (3.16). Then
fy has double zeros at all xj , 1 ≤ j ≤ l, is nonzero outside these points, and
fy(y) = 1.

Finally, we introduce

Fs,y(w) := h2
s,y(w) · (r∗1fy)(w) for all w ∈X, s ∈ S, y ∈ Ûx. (3.22)

According to (3.21) we have∑
s∈S

|Fs,y(z)| ≤ C ′ for all z∈X, y ∈ Ûx , (3.23)

with C ′ := C/|φ(y)|2 depending on x and Y only. Moreover,

Fs,y(y, t) = δst (3.24)

where δst = 0 for s �= t and δss = 1.
Using the functions Fs,y , s ∈ S, let us prove that r−1(y) is interpolating for

H∞(X) for all y ∈ Ûx.
In fact, for a = {as}s∈S ∈ l∞(S) and y ∈ Ûx , consider the function

[Ly(a)](z) :=
∑
s∈S

asFs,y(z), z∈X. (3.25)

According to (3.23) we have

sup
z∈X

|[Ly(a)](z)| ≤ ‖a‖l∞ · sup
z∈X

(∑
s∈S

|Fs,y(z)|
)
≤ C ′‖a‖l∞ .

Thus Ly is a linear continuous operator from l∞(r−1(y)) to H∞(X) depending
holomorphically on y ∈ Ûx with the norm bounded by a number depending on x
and Y only. Also, from (3.24) we obtain

[Ly(a)](y, t) :=
∑
s∈S

asFs,y(y, t) =
∑
s∈S

as δst = at =: a(y, t). (3.26)
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That is, Ly(a)|r−1(y) = a. Therefore r−1(y), y ∈ Ûx , is an interpolating sequence
forH∞(X) with the constant of interpolation depending on Y and x only. Taking
a finite open cover of K by sets Ûx and considering the corresponding interpola-
tion operatorsLy on Ûx we obtain that the constant of interpolation of each r−1(x),
x ∈K, is bounded by a number depending on K and Y only.

The proof of Theorem 1.2.2 is complete.

4. Proof of Theorem 1.2.3

Let η be a smooth bounded (0,1)-form on X with r(supp η) ⊂ K for some com-
pact K ⊂⊂ Y. We must find a smooth function f on X such that

∂̄f = η and ‖f ‖L∞ := sup
z∈X

|f(z)| ≤ C‖η‖ (4.1)

with C depending on K, Y, and a hermitian metric hY used in the definition of the
norm of η; see (1.4).

Without loss of generality we may assume that η has compact support. Indeed,
let {Xi}i∈N,Xi ⊂⊂ X, be an exhaustion ofX by relatively compact open domains.
Let {χi}i∈N be a family of smooth functions on X such that χi equals 1 on a sub-
domain Zi ⊂⊂ Xi and equals 0 outside Xi with 0 ≤ χi ≤ 1, i ∈N. Assume also
that {Zi}i∈N forms an exhaustion of X. Now, we set ηi := χi · η. Then {ηi} con-
verges to η uniformly on compact subsets of X and ‖ηi‖ ≤ ‖η‖ for all i. If we
find smooth functions fi on X satisfying the corresponding conditions (4.1), then
a standard normal family argument will give us a subsequence {fik }k∈N of {fi}
converging uniformly on compact subsets of X to a smooth function f satisfying
(4.1). Thus it suffices to prove the theorem for the forms η with compact supports.

Next, consider a finite open cover (Ui)1≤i≤n of K ⊂⊂ Y by sets Ui := Ûxi ,
xi ∈ K, defined by (3.16). By definition, (Ui)1≤i≤n also covers a neighborhood
N ⊂⊂ Y ofK. Now we consider a finite open cover (Ui)n+1≤i≤m of R \N (where
R is a compact Riemann surface from (2.1) containing Y ) by coordinate disks Ui
such that Ui ∩ K = ∅ for all n + 1 ≤ i ≤ m. Let {ρi}1≤i≤m be a smooth parti-
tion of unity subordinate to the cover (Ui)1≤i≤m of R. Then, since r(supp η) ⊂ K,
Ui ∩K = ∅ for all n+ 1≤ i ≤ m, and supp ρi ⊂ Ui for 1≤ i ≤ n,

η =
m∑
i=1

(r∗1ρi)η =
n∑
i=1

(r∗1ρi)η.

By the definition, each ηi := (r∗1ρi)η is a smooth (0,1)-form with compact sup-
port such that r(supp ηi) ⊂ Ui. It suffices to prove the theorem for such forms
ηi—that is, to find smooth functions fi such that ∂̄fi = ηi and ‖fi‖L∞ ≤ Ci‖ηi‖
(≤ Ci‖η‖) with Ci depending on Ui, Y, and hY . Then f := ∑n

i=1 fi satisfies the
required statement of the theorem.

Thus without loss of generality we may assume that r(supp η) ⊂⊂ Ûx := U for
some x ∈K and that η has compact support. As before, we identify r−1(U) with
U × S where S is the fibre of r. Then there is a finite subset Sη ⊂ S such that
supp η ⊂⊂ U × Sη. In a complex coordinate z on U the form η is written as

η(z, s) = g(z, s)dz̄, (z, s)∈U × Sη, η = 0 outside U × Sη.
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By the hypothesis of the theorem we have

|η| := sup
z∈U,s∈Sη

|g(z, s)| ≤ c‖η‖ (4.2)

for some c depending on U and hY only.
The remaining part of the proof repeats literally the proof of [Br4, Prop. 5.1].

We refer to that paper for details.
Consider the family of interpolation operators Lz : l∞(r−1(y)) → H∞(X)

holomorphic in z ∈U with norms bounded by a number C ′ depending on U and
Y only; see (3.25). Let us define the (0,1)-form λ on R with values in H∞(X) by
the formula

λ(z) := Lz(g(z, ·))dz̄, z∈U, λ = 0 outside U. (4.3)

Since supp η ⊂⊂ U × Sη and Sη is a finite subset of S, the definition of Lz in
(3.26) implies that λ is smooth. Using an integral formula we can solve the equa-
tion ∂̄F = λ on a fixed neighborhood of the closure of Y in R to get a smooth
solution F : Y → H∞(X) satisfying

sup
z∈Y,w∈X

|[F(z)](w)| ≤ c ′|λ| := c ′ · sup
z∈Y,w∈X

|[Lz(g(z, ·))](w)|, (4.4)

with c ′ depending on Y only. Finally, we set

f(w) := [F(r(w))](w), w ∈X. (4.5)

Since {Lz} are interpolation operators holomorphic in z∈U one has

∂̄f (w) := [λ(r(w))](w) = η(w), w ∈X.
Moreover, from estimates (4.2), (4.4), and ‖Lz‖ ≤ C ′ we get

sup
w∈X

|f(w)| ≤ C‖η‖
where C := c ′ · C ′ · c.

This completes the proof of Theorem 1.2.3.

5. Proof of Theorem 1.1.1

Let r : X→ Y be an unbranched covering of a Carathéodory hyperbolic Riemann
surface of finite type Y. The fact that X is Carathéodory hyperbolic follows easily
from Theorem 1.2.2 and the Carathéodory hyperbolicity of Y. Let us prove now
the corona theorem for H∞(X).

First we consider a finite open cover U = (Uj )0≤j≤l of Ỹ := Y ∪ ( ⋃
1≤j≤l{xj}

)
such that for 1≤ j ≤ l the set Uj ⊂⊂ Ỹ is an open coordinate disk centered at xj
and U0 is a bordered Riemann surface that intersects each Uj , 1 ≤ j ≤ l, by a set
biholomorphic to an open annulus; see (2.1). By {ρj}0≤j≤l we denote a smooth
partition of unity on Ỹ subordinate to the cover U . We set U ∗

j := Uj \ {xj}, 1 ≤
j ≤ l. Then U ∗

j is biholomorphic to a punctured open disk in C. Now, r−1(U ∗
j ) is

a disjoint union of sets biholomorphic to D or to the punctured disk D
∗ (because

the fundamental group of U ∗
j is Z). Moreover, according to our construction,

π1(U0) ∼= π1(Y ). Hence r−1(U0) is an open connected subset of X.
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Suppose now that a collection f1, . . . , fn of functions from H∞(X) satisfies
the corona condition (1.1). Since each connected component of r−1(U ∗

j ) is bi-
holomorphic to D or D

∗, according to the Carleson corona theorem (see e.g. [G,
Chap. VIII, Thm. 2.1]), there are a constant C1(n, δ) (with δ from (1.1)) and func-
tions gj1 , . . . , gjn from H∞(r−1(U ∗

j )), 1≤ j ≤ l, such that

f1g
j

1 + · · · + fng
j
n ≡ 1 on r−1(U ∗

j ) and

‖gjk ‖ ≤ C1(n, δ), 1≤ j ≤ l, 1≤ k ≤ n.
(5.1)

Also, since U0 ⊂⊂ Y is a bordered Riemann surface, according to [Br3, Cor. 1.6]
there are a constant C2(Y, n, δ) and functions g0

1, . . . , g0
n from H∞(r−1(U0)) such

that
f1g

0
1 + · · · + fng

0
n ≡ 1 on r−1(U0) and

‖g0
k‖ ≤ C2(Y, n, δ), 1≤ k ≤ n.

(5.2)

We set

hk :=
l∑

j=0

(r∗ρj )g
j

k , 1≤ k ≤ n, 0 ≤ j ≤ l. (5.3)

Since supp ρj ⊂⊂ Uj , 0 ≤ j ≤ l, hk are smooth functions on X such that

f1h1 + · · · + fnhn ≡ 1 on X and

‖hk‖L∞ ≤ C3(Y, n, δ), 1≤ k ≤ n.
(5.4)

Next we will use a standard construction based on the Koszul complex; see [G,
Chap. VIII]. Namely, we write

gj(z) = hj(z)+
n∑
k=1

aj,k(z)fk(z),

aj,k(z) = bj,k(z)− bk,j(z), and (5.5)

∂̄bj,k = hj · ∂̄hk =: ηj,k , j �= k.

According to (5.3) and (5.4), the smooth (0,1)-forms ηj,k on X satisfy

r(supp ηj,k) ⊂⊂ U0 and ‖ηj,k‖ ≤ C4(Y, n, δ) for all j, k,

where ‖·‖ is defined with respect to a fixed hermitian metric hY on Y ; see (1.5).
Therefore, by Theorem 1.2.3 there are smooth functions bj,k onX satisfying equa-
tions (5.5) such that

‖bj,k‖L∞ ≤ C5(Y, n, δ) for all j, k.

Then the functions gj on X belong to H∞(X) and satisfy

f1g1 + · · · + fngn ≡ 1 and

‖gj‖ ≤ C(Y, n, δ) for all j.
(5.6)

This completes the proof of Theorem 1.1.1.
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