A Property of the Absolute Integral Closure of an Excellent Local Domain in Mixed Characteristic

Gennady Lyubeznik

Dedicated to Professor Melvin Hochster
on the occasion of his sixty-fifth birthday

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local excellent domain and let R^{+}be the absolute integral closure of R-that is, the integral closure of R in the algebraic closure of the fraction field of R. The ring R^{+}when R is 3-dimensional and of mixed characteristic played an important role in Heitmann's proof of the direct summand conjecture in dimension 3 [3]. In dimension >3 the direct summand conjecture is still open. This motivates the study of R^{+}in mixed characteristic and in dimension >3.

Hochster and Huneke [4] proved that if R contains a field of characteristic 0 then R^{+}is a big Cohen-Macaulay R-algebra; in other words, $H_{\mathfrak{m}}^{i}\left(R^{+}\right)=0$ for all $i<\operatorname{dim} R$, and every system of parameters of R is a regular sequence on R^{+}. Recently, in joint work with Huneke [5], we gave a simpler proof of this result.

This paper is motivated by Huneke's suggestion that perhaps the techniques of our paper [5] could be applied to R^{+}in mixed characteristic. Our main result is the following theorem.

Theorem 1.1. Let (R, \mathfrak{m}) be a Noetherian local excellent domain of mixed characteristic, residual characteristic $p>0$, and dimension ≥ 3. Let $\sqrt{p R}$ (resp. $\left.\sqrt{p R^{+}}\right)$be the radical of the principal ideal of $R\left(\right.$ resp. $\left.R^{+}\right)$generated by p. Set $\bar{R}=R / \sqrt{p R}\left(\right.$ resp. $\left.\overline{R^{+}}=R^{+} / \sqrt{p R^{+}}\right)$. Then
(i) $H_{\mathfrak{m}}^{1}\left(\overline{R^{+}}\right)=0$, and
(ii) every part of a system of parameters $\{a, b\}$ of \bar{R} of length 2 is a regular sequence on $\overline{R^{+}}$.

This theorem suggests the following.
Question. Let (R, \mathfrak{m}) be a Noetherian local excellent domain of mixed characteristic. Is $\overline{R^{+}}$then a big Cohen-Macaulay \bar{R}-algebra? That is:
(i) is $H_{\mathfrak{m}}^{i}\left(\overline{R^{+}}\right)=0$ for all $i<\operatorname{dim} \bar{R}$; and
(ii) is every system of parameters of \bar{R} a regular sequence on $\overline{R^{+}}$?

2. Proof of Theorem 1.1

Since \bar{R} is a ring of characteristic p, it follows that, for every \bar{R}-algebra \mathcal{R}, the standard map $\mathcal{R} \xrightarrow{r \mapsto r^{p}} \mathcal{R}$ induces a map $f: H_{\mathfrak{m}}^{i}(\mathcal{R}) \rightarrow H_{\mathfrak{m}}^{i}(\mathcal{R})$. This map is called the action of the Frobenius on the local cohomology of \mathcal{R}.

Lemma 2.1. Let R^{\prime} be a finite normal extension of R contained in R^{+}, and let $\overline{R^{\prime}}=R^{\prime} / \sqrt{p R^{\prime}}$. The aforementioned action of the Frobenius $f: H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right) \rightarrow$ $H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$ on $H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$ is nilpotent; that is, for some $s \geq 1$, f^{s} sends $H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$ to zero (here $f^{1}=f$ and $f^{s}=f \circ f^{s-1}$ for $s>1$).

Proof. Because R and R^{\prime} are excellent and normal, their completions with respect to the \mathfrak{m}-adic topology also are excellent and normal. Since R^{\prime} is semilocal, it follows that $\widehat{R^{\prime}}$ is a product of several complete normal domains $R_{1}^{\prime}, R_{2}^{\prime}, \ldots$, which are the completions of R^{\prime} with respect to its maximal ideals. We set $\overline{R_{i}^{\prime}}=$ $R_{i}^{\prime} / \sqrt{p R_{i}^{\prime}}$. Since

$$
\widehat{R^{\prime}} / \sqrt{p \widehat{R^{\prime}}} \cong \widehat{{R^{\prime}}^{\prime}} \cong \Pi_{i} \overline{R_{i}^{\prime}} \quad \text { and } \quad H_{\mathfrak{m}}^{1}\left(\widehat{\overline{R^{\prime}}}\right) \cong H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right) \cong \Pi_{i} H_{\mathfrak{m}}^{1}\left(\overline{R_{i}^{\prime}}\right)
$$

and since the action of the Frobenius is the same on $H_{\mathfrak{m}}^{1}\left(\widehat{\overline{R^{\prime}}}\right)$ as on $H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$ and since the Frobenius acts individually on each $H_{\mathfrak{m}}^{1}\left(\overline{R_{i}^{\prime}}\right)$, we conclude that it is enough to prove that the action of the Frobenius on each $H_{\mathfrak{m}}^{1}\left(\overline{R_{i}^{\prime}}\right)$ is nilpotent. Thus, giving \hat{R} and R_{i}^{\prime} the names R and R^{\prime} again, we may assume that R is complete and hence that R^{\prime} is local. We keep this assumption for the rest of the proof.

At this point we paraphrase a result from [6, 4.1, 4.6b, and the paragraph following the statement of 4.6b]: Let A be a local ring of characteristic p. Then f is nilpotent on $H_{\mathfrak{m}}^{i}(A)$ for $i \leq 1$ if and only if $\operatorname{dim} A \geq 2$ and the punctured spectrum of the completion of the strict Henselization of A is connected. Because $\operatorname{dim} \overline{R^{\prime}} \geq$ 2, this implies that f is nilpotent on $H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$ if the punctured spectrum of $B \stackrel{\text { def }}{=}$ $\widehat{\left(\overline{R^{\prime}}\right)^{\text {sh }}}$ is connected, where $\widehat{\left(\overline{R^{\prime}}\right)^{\text {sh }}}$ is the completion of the strict Henselization of $\overline{R^{\prime}}$. Hence it is enough to prove that the punctured spectrum of B is connected.

Since R^{\prime} is excellent, so is its strict Henselization $\left(R^{\prime}\right)^{\text {sh }}[1,5.6 \mathrm{iii}]$. Since R^{\prime} is normal, standard properties of strict Henselization imply that $\left(R^{\prime}\right)^{\text {sh }}$ is normal. Because $\left(R^{\prime}\right)^{\text {sh }}$ is both excellent and normal, so is its completion $B^{\prime} \stackrel{\text { def }}{=} \widehat{\left(R^{\prime}\right)^{\mathrm{sh}}}$. In particular, B^{\prime} is a domain.

Since B^{\prime} is excellent and since $\overline{R^{\prime}}=R^{\prime} / \sqrt{p R^{\prime}}$, standard properties of strict Henselization and completion imply that $B=B^{\prime} / \sqrt{p B^{\prime}}$.

Assume that the punctured spectrum of B is disconnected. This is equivalent to the existence of ideals \tilde{I}_{1} and \tilde{I}_{2} of B such that $\tilde{I}_{1} \cap \tilde{I}_{2}=0$ and $\sqrt{\tilde{I}_{1}+\tilde{I}_{2}}=\mathfrak{m}_{B}$, where \mathfrak{m}_{B} is the maximal ideal of B.

Let I_{1} and I_{2} be the preimages of \tilde{I}_{1} and \tilde{I}_{2} (respectively) in B^{\prime}. Then $\sqrt{p B^{\prime}}=$ $I_{1} \cap I_{2}$ and $I_{1}+I_{2}$ is \mathfrak{m}^{\prime}-primary, where \mathfrak{m}^{\prime} is the maximal ideal of B^{\prime}. Let $\operatorname{dim} B^{\prime}=$ $\operatorname{dim} R=d$. The Mayer-Vietoris sequence yields

$$
H_{(p)}^{d-1}\left(B^{\prime}\right) \rightarrow H_{\mathfrak{m}^{\prime}}^{d}\left(B^{\prime}\right) \rightarrow H_{I_{1}}^{d}\left(B^{\prime}\right) \oplus H_{I_{2}}^{d}\left(B^{\prime}\right)
$$

which is an exact sequence. Then $H_{(p)}^{d-1}\left(B^{\prime}\right)=0$ because (p) is a principal ideal and $d-1>1$, while $H_{I_{1}}^{d}\left(B^{\prime}\right)=0$ and $H_{I_{2}}^{d}\left(B^{\prime}\right)=0$ by the HartshorneLichtenbaum local vanishing theorem $[2,3.1]$ (note that B^{\prime} is a complete local d-dimensional domain). Hence $H_{\mathfrak{m}^{\prime}}^{d}\left(R^{\prime}\right)=0$, which is impossible.

Viewing $\overline{R^{\prime}}$ as a subring of $\overline{R^{+}}$in a natural way, we set

$$
\mathcal{R} \stackrel{\text { def }}{=}\left\{r \in \overline{R^{+}} \mid r^{p^{s}} \in \overline{R^{\prime}}\right\} .
$$

Since every monic polynomial with coefficients in $\overline{R^{\prime}}$ has a root in $\overline{R^{+}}$, we know that every element of $\overline{R^{\prime}}$ has a $\left(p^{s}\right)$ th root in $\overline{R^{+}}$and that this $\left(p^{s}\right)$ th root is unique because $\overline{R^{+}}$is reduced. Therefore, the \bar{R}-algebra homomorphism $\varphi: \mathcal{R} \rightarrow \overline{R^{\prime}}$ that sends $r \in \mathcal{R}$ to $r^{p^{s}} \in \overline{R^{\prime}}$ is an isomorphism.

Lemma 2.2. The map $\phi_{*}: H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right) \rightarrow H_{\mathfrak{m}}^{1}(\mathcal{R})$ induced by the natural inclusion $\phi: \overline{R^{\prime}} \hookrightarrow \mathcal{R}$ is the zero map.

Proof. The composition of \bar{R}-algebra homomorphisms $\varphi \circ \phi: \overline{R^{\prime}} \rightarrow \overline{R^{\prime}}$ is the standard homomorphism sending $r \in \overline{R^{\prime}}$ to $r^{p^{s}} \in \overline{R^{\prime}}$. Hence the induced map $\varphi_{*} \circ \phi_{*}: H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right) \rightarrow H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$ is nothing but f^{s}, which is the zero map by Lemma 2.1. Because φ is an isomorphism, so is φ_{*}. Since $\varphi_{*} \circ \phi_{*}$ is the zero map and since φ_{*} is an isomorphism, ϕ_{*} is the zero map.

The \bar{R}-algebra $\overline{R^{+}}$is the direct limit of $\overline{R^{\prime}}$ as R^{\prime} ranges over the finite normal extensions of R contained in R^{+}. Since local cohomology commutes with direct limits, it follows that $H_{\mathfrak{m}}^{1}\left(\overline{R^{+}}\right)$is the direct limit of $H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right)$. In other words, $H_{\mathfrak{m}}^{1}\left(\overline{R^{+}}\right)$is the union of the images of the maps $\phi_{*}^{\prime}: H_{\mathfrak{m}}^{1}\left(\overline{R^{\prime}}\right) \rightarrow H_{\mathfrak{m}}^{1}\left(\overline{R^{+}}\right)$induced by the natural inclusion $\phi^{\prime}: \overline{R^{\prime}} \hookrightarrow \overline{R^{+}}$. But Lemma 2.2 implies that the image of every ϕ_{*}^{\prime} is zero (ϕ_{*}^{\prime} factors through ϕ_{*}). This completes the proof of Theorem 1.1(i).

For Theorem 1.1(ii), let $\{a, b\}$ be a part of a system of parameters of \bar{R}. Since $\overline{R^{+}}$is a reduced integral extension of \bar{R}, a is regular on $\overline{R^{+}}$. That $H_{\mathfrak{m}}^{i}\left(\overline{R^{+}}\right)=0$ for $i=0,1$ and the short exact sequence

$$
0 \rightarrow \overline{R^{+}} \xrightarrow{\text { mult. by } a} \overline{R^{+}} \rightarrow \overline{R^{+}} / a \overline{R^{+}} \rightarrow 0
$$

together imply that $H_{\mathfrak{m}}^{0}\left(\overline{R^{+}} / a \overline{R^{+}}\right)=0$. Hence \mathfrak{m} is not an associated prime of $\overline{R^{+}} / a \overline{R^{+}}$. This implies that the only associated primes of $\overline{R^{+}} / a \overline{R^{+}}$are the minimal primes of $\bar{R} / a \bar{R}$. Indeed, if there is an embedded associated prime, say P, then P is the maximal ideal of the ring \bar{R}_{P} whose dimension exceeds 1 and P is an associated prime of $\left(\overline{R^{+}} / a \overline{R^{+}}\right)_{P}=\overline{\left(R_{P}\right)^{+}} / a \overline{\left(R_{P}\right)^{+}}$, which is impossible by the foregoing. Since b is not in any minimal prime of $\bar{R} / a \bar{R}$, it must be regular on $\overline{R^{+}} / a \overline{R^{+}}$.

References

[1] S. Greco, Two theorems on excellent rings, Nagoya Math. J. 60 (1976), 139-149.
[2] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403-450.
[3] R. Heitmann, The direct summand conjecture in dimension three, Ann. of Math. (2) 156 (2002), 695-712.
[4] M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), 53-89.
[5] C. Huneke and G. Lyubeznik, Absolute integral closure in positive characteristic, Adv. Math. 210 (2007), 498-504.
[6] G. Lyubeznik, On the vanishing of local cohomology in characteristic $p>0$, Compositio Math. 142 (2006), 207-221.

Department of Mathematics
University of Minnesota
Minneapolis, MN 55455
gennady@math.umn.edu

