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Introduction

Each one of the main classes of commutative Noetherian rings—regular, com-
plete intersection, Gorenstein, and Cohen–Macaulay—is defined by local prop-
erties that require verification at every maximal ideal. It is therefore important
to develop for these properties global recognition criteria involving only finitely
many invariants. Finitely generated algebras over fields provide the test case. Our
goal is to devise finitistic global tests applicable also in a more general, relative
situation.

To fix notation, let K be a commutative Noetherian ring and σ :K → S a flat
homomorphism of rings, which is essentially of finite type; σ is said to be Cohen–
Macaulay or Gorenstein if its fiber rings have the corresponding property (see
Section 2 for details). The following result is taken from Theorem 4.2; recall that
gradeP S is the smallest integer n with ExtnP (S,P) �= 0.

Theorem 1. Assume that Spec S is connected. Let K → P → S be a factoriza-
tion of σ with P a localization of a polynomial ring K[x1, . . . , xd ] and S a finite
P -module.

The map σ is Cohen–Macaulay if for g = gradeP S one has

ExtnP (S,P) = 0 for g < n ≤ g + d.

Conversely, if σ is Cohen–Macaulay, then ExtnP (S,P) = 0 holds for n �= g.

The homomorphism σ is Gorenstein if and only if it is Cohen–Macaulay and
the S-module ExtgP (S,P) is invertible.

Thus, it is easy to recognize Cohen–Macaulay maps, because they are character-
ized in terms of vanishing of cohomology in a finite number of specified degrees;
this can be decided from finite constructions. On the other hand, the condition
needed to identify the Gorenstein property involves the structure of ExtgP (S,P) as
a module over S, which is not determined by finitistic data (see Remark 5.4).

Partly motivated by recent characterizations of regular homomorphisms (re-
called in Section 5), we approach the problem by studying the homological prop-
erties of S as a module over the enveloping algebra S e = S ⊗K S, which acts on
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S through the multiplication map µ: S ⊗K S → S. As usual, dim S denotes the
Krull dimension of S. For a prime ideal q of S we let tr degK(S/q) denote the tran-
scendence degree of the field of fractions of S/q over that of the image of K.

The next theorem characterizes Gorenstein homomorphisms in terms of proper-
ties of Ext modules over S⊗KS, even without assuming that σ is Cohen–Macaulay.

Theorem 2. The homomorphism σ :K → S is Gorenstein if and only if the
S-module

⊕∞
n=0 ExtnS e(S, S e) is invertible.

This result is contained in Theorem 2.4, whose proof hinges on properties of quasi-
Gorenstein homomorphisms, defined and studied in [5], and on a strengthening
of Foxby’s criterion for finite G-dimension, obtained in Theorem 1.3. When the
K-module S is projective, rather then just flat, the theorem can be stated in terms
of Hochschild cohomology by using the isomorphisms of S-modules

HHn(S |K;N) ∼= ExtnS e(S,N) for all n∈ Z.

Two aspects of Theorem 2 present difficulties in applications: All the modules
ExtnS e(S, S e) are involved; conditions other than vanishing are imposed on these
modules. The next result identifies critical values of n.

Theorem 3. For every minimal prime ideal q of S one has

Ext tS e(S, S e)q �= 0 with t = tr degK(Sq/qSq).

If Spec S is connected and σ is Cohen–Macaulay, then t is independent of q. If,
moreover, σ is Gorenstein, then ExtnS e(S, S e) = 0 for n �= t.

Theorem 3 is abstracted from Theorems 3.1, 4.5, and 5.1. Their proofs hinge on an
expression for the modules ExtnS e(S, S e) in terms of cohomology computed over
the ring S. The relevant formula complements the classical technique of reduction
to the diagonal; it is proved in [8] and is reproduced in Section 3.3.

We expect that the last statement of Theorem 3 admits a strong converse, as
follows.

Conjecture. When Spec S is connected, σ is Cohen–Macaulay, and one has

ExtnS e(S, S e) = 0 for tr degK(S/q) < n ≤ tr degK(S/q)+ max{dim S, 1},
then the homomorphism σ is Gorenstein.

When K is a field and rankK S is finite one has dim S = tr degK(S/q) = 0; hence
the preceding statement specializes to a conjecture of Asashiba (see [1, Sec. 3]),
which strengthens the still open commutative case of a conjecture of Tachikawa:
If ExtnS e(S, S e) = 0 holds for every n ≥ 1, then S is self-injective (see [16, p. 115]).
The next result is new even when K is a field and S is reduced; it is proved as
Theorem 5.3.

Theorem 4. The previous conjecture holds when the ring K is Gorenstein and
the ring Sq is Gorenstein for every minimal prime ideal q of S.
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The additional hypotheses allow one to apply a recent characterization of Goren-
stein rings from [3] or [14] in order to prove that the ring S is Gorenstein. Classical
properties of flat maps then imply that the homomorphism σ is Gorenstein.

1. Gorenstein Dimension

In this paper rings are commutative. For modules finite means finitely gener-
ated. The results in this section concern an invariant of complexes called G-
dimension (for Gorenstein dimension), defined for finite modules by Auslander
and Bridger [2].

Let R be a commutative ring. We write D(R) for the derived category of R-
modules. Its objects are the complexes of R-modules of the form

M = · · · −→ Mn+1
∂n+1−−→ Mn

∂n−→ Mn−1 −→ · · · .
We write M

�−→ N to flag a quasi-isomorphism—that is, a morphism of com-
plexes inducing an isomorphism in homology. The notation M � N means that
M andN are linked by a chain of quasi-isomorphisms; that is, they are isomorphic
in D(R).

A complex M is homologically bounded if H i(M) = 0 for |i| � 0; it is said to
be homologically finite if, in addition, each R-module H i(M) is finite.

1.1. Let R be a Noetherian ring.
An R-module G is said to be totally reflexive if it satisfies

G ∼= HomR(HomR(G,R),R) and

ExtnR(G,R) = 0 = ExtnR(HomR(G,R),R) for all n ≥ 1.

TheG-dimension of a homologically finite complexM ofR-modules is the number

G-dimR M = inf
n

{n ≥ sup H(M) | Coker(∂Pn+1) is totally reflexive in
some semiprojective resolution P

�−→ M}.
Finite projective modules are totally reflexive, so one has G-dimR M ≤ pdR M
(see [17, (3.4), (2.4.1)]). Every finite R-module (equivalently, homologically fi-
nite complex) has finite G-dimension if and only if the ring R is Gorenstein (see
[2, (4.20)]).

1.2. Foxby [10, (2.2.3)] obtained an alternative characterization of complexes of
finite G-dimension: A homologically finite complex of R-modules M has finite
G-dimension if and only if the following two conditions hold.

(a) The canonical biduality map in D(R) is an isomorphism:

δM :M
�−→ RHomR(RHomR(M,R),R).

(b) The complex RHomR(M,R) is homologically bounded.

Moreover, when these conditions hold one has

G-dimR M = sup{n | ExtnR(M,R) �= 0}. (1.2.1)
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Thus, a lower bound for G-dimR M is provided by the grade of M, defined by

gradeR M = inf{n | ExtnR(M,R) �= 0}. (1.2.2)

When M is a module its grade is equal to the maximal length of an R-regular se-
quence contained in AnnR M, its annihilator ideal.

We prove a more flexible version of Foxby’s characterization of finite Gorenstein
dimension. We write MaxR for the set of maximal ideals of R.

Theorem 1.3. Let R be a Noetherian ring and M a complex with H(M) finite.
The complex M has finite G-dimension when the following conditions hold:

(a) for each maximal ideal m in R, in D(Rm) there exists an isomorphism

Mm � RHomRm
(RHomRm

(Mm,Rm),Rm);
(b) the complex RHomR(M,R) is homologically bounded or dimR is finite.

As a corollary we show that for certain modules the finiteness of G-dimension can
be read off their cohomological invariants. For any ideal I of R, we set

big height I = max{height p | p ∈ SpecR is minimal over I }.
Corollary 1.4. Let M be a finite R-module.

If for each m ∈ MaxR there exists an integer d(m), such that one has

ExtnRm
(Mm,Rm) ∼=

{
Mm for n = d(m);
0 for n �= d(m),

then the following inequalities hold :

G-dimR M ≤ big height(AnnR M) < ∞.

Proof. The hypothesis implies RHomRm
(Mm,Rm) � Σd(m)Mm and hence one has

RHomRm
(RHomRm

(Mm,Rm),Rm) � RHomRm
(Σd(m)Mm,Rm)

� Σ−d(m) RHomRm
(Mm,Rm)

� Mm

in the derived category D(Rm). From (1.2.2) and Krull’s Principal Ideal Theorem
one obtains inequalities

d(m) = gradeRm
Mm ≤ height(AnnRm

Mm) ≤ big height(AnnR M).

They imply ExtnR(M,R) = 0 for n > big height(AnnR M), so H(RHomR(M,R))
is bounded. Now one gets G-dimR M < ∞ from Theorem 1.3, and then
G-dimR M ≤ sup{d(m) | m ∈ MaxR} by (1.2.1).

The proof of the theorem uses the following result, which is of independent interest.
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Proposition 1.5. Let R be a local ring and X a complex with each R-module
H i(X) finite. If H i(RHomR(X,R)) = 0 for |i| � 0, then H i(X) = 0 for i � 0.

Proof. Let k be the residue field of R. As H i(RHomR(X,R)) = 0 for i � 0,
one has

Hn(RHomR(k, RHomR(X,R))) = 0 for n � 0.

On the other hand, adjunctions yield the first two isomorphisms below:

Hn(RHomR(k, RHomR(X,R))) ∼= Hn(RHomR(k ⊗L
R X,R))

∼= Hn(RHomk(k ⊗L
R X, RHomR(k,R)))

∼= Homk(H(k ⊗L
R X), ExtR(k,R))n

=
∏

j+i=−n
Homk(H i(k ⊗L

R X), ExtjR(k,R)).

As ExtR(k,R) �= 0, it follows that one has H i(k⊗L
RX) = 0 for i � 0.At this point,

we can conclude that H i(X) = 0 holds for i � 0 by invoking [12, (4.5)]. What
follows is a direct and elementary proof, which exploits an idea from [11, (5.12)].

The first step is to verify that every complex C with H(C) of finite length has
H i(C ⊗R X) = 0 for i � 0. In the case where C is a module, this is achieved by
an obvious induction on its length. The general case is settled by induction on the
number of nonzero homology modules of C.

Let nowC be the Koszul complex on a subset x = {x1, . . . , xe} ofR. Recall that
C is equal to C ′ ⊗R C

′′, where C ′ and C ′′ are Koszul complexes on {x1, . . . , xe−1}
and xe, respectively. Thus, one has an exact sequence of complexes

0 −→ C ′ ⊗R X −→ C ⊗R X −→ Σ(C ′ ⊗R X) −→ 0.

Its homology exact sequence yields exact sequences of R-modules

0 −→ H i(C
′ ⊗R X)/xeH i(C

′ ⊗R X) −→ H i(C ⊗R X) −→ H i−1(C
′ ⊗R X).

By induction on e, one deduces that each R-module H i(C ⊗R X) is finite.
For the final step, choose x to generate the maximal ideal of R. The length

H(C) then is finite, so the first step yields H i(C ⊗R X) = 0 for i � 0. The pre-
ceding exact sequence then gives Hn(C

′ ⊗R X)/xeHn(C
′ ⊗R X) = 0 for i � 0,

which implies H i(C
′ ⊗R X) = 0 for i � 0, by Nakayama’s lemma. Splitting off

one element xj at a time, we arrive at H i(X) = 0 for i � 0, as desired.

Proof of Theorem 1.3. Set (–)∗ = RHomR(–,R). We start with the local case.

Claim. Assume that R is a local ring. If H(M) is finite and there exits an iso-
morphism µ:M → M ∗∗ in D(R), then G-dimR M is finite.

Indeed, as H(M) is finite, one has H i(M
∗) = 0 for i � 0, and the R-

module H i(M
∗) is finite for each i. The isomorphism µ and Proposition 1.5 yield

H i(M
∗) = 0 for i � 0. It thus remains to prove that the biduality morphism

δM :M → M ∗∗ is an isomorphism (see Section 1.2).
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The composition (δM)∗δM ∗ is the identity map of M ∗, so for each n∈ Z the map
Hn(δM ∗): Hn(M

∗) → Hn(M
∗∗∗) is a split monomorphism. On the other hand, µ

induces an isomorphism Hn(M
∗∗∗) ∼= Hn(M

∗) for each n∈ Z. As the R-module
Hn(M

∗) = Ext−nR (M,R) is finite, we conclude that Hn(δM ∗) is bijective. Thus,
δM ∗ is an isomorphism in D(R) and hence so is δM ∗∗ . Since the square

M
µ

�
��

δM

��

M ∗∗

� δM ∗∗
��

M ∗∗ µ∗∗

�
�� M ∗∗∗∗

in D(R) commutes, we see that δM is an isomorphism, as desired. This completes
the proof of the claim.

At this point, we can conclude that when condition (a) holds, the number
G-dimRm

Mm is finite for each m ∈ MaxR. When RHomR(M,R) is homologi-
cally bounded, it is homologically finite, so one has (δM)m = δMm

for each m ∈
MaxR. As δMm

is an isomorphism, so is δM , that is to say, G-dimR M is finite
(see Section 1.2).

It remains to prove the theorem when dimR is finite. Since G-dimRm
Mm is

finite for each m ∈ MaxR, from (1.2.1) we get the second equality below:

−inf H(RHomR(M,R))m = −inf H(RHomRm
(Mm,Rm))

= G-dimRm
Mm

= depthRm − depthRm
Mm

≤ dimRm + sup H(Mm)

≤ dimR + sup H(M).

The third one is the Auslander–Bridger equality [10, (2.3.13)] with depth for com-
plexes defined as in [10, Sec. A.6]. The first inequality follows from [10, (A.6.1.1)],
and the other inequality is evident. Thus, H i(RHomR(M,R)) vanishes for i �
0, so condition (a) holds and G-dimR M is finite. This completes the proof of the
theorem.

2. Quasi-Gorenstein Homomorphisms

In this section σ :K → S denotes a homomorphism of rings.
One says that σ is (essentially) of finite type if it can be factored as σ = π�,

where � is the canonical map to a (localization of a) polynomial ring in finitely
many indeterminates, and π is a surjective homomorphism of rings.

A homomorphism of rings is local if its source and target are local rings, and it
maps the unique maximal ideal of the source into that of the target. The localization
of σ at a prime ideal n of S is the induced local homomorphism σn:Kn∩K → Sn.

We say that σ is Gorenstein at some n ∈ Spec S if σn is flat and the local ring
Sn/(n∩K)Sn is Gorenstein; σ is Gorenstein when this holds for every n ∈ Spec S.
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Recall that ϕ is called (essentially) smooth if it is (essentially) of finite type, flat,
and with geometrically regular fibers. Such maps are evidently Gorenstein.

A Gorenstein-by-finite factorization of σ is an equality σ = π�, where � and
π are homomorphisms of rings with � Gorenstein and π finite. In a similar
vein, we speak of (essentially) smooth-by-finite factorizations, et cetera. Each
homomorphism (essentially) of finite type has (essentially) smooth-by-surjective
decompositions.

Finally, we recall some notions and results from [5].

2.1. Let σ be a homomorphism essentially of finite type. We say that it has
finite G-dimension at some n ∈ Spec S, and write G-dim σn < ∞, if for some
Gorenstein-by-surjective factorization Kn∩K → P ′ → Sn of σn one has the in-
equality G-dimP ′ Sn < ∞. This property does not depend on the choice of fac-
torization (see [5, (4.3)]). It holds, for instance, when σn is flat or when Km∩K is
Gorenstein (see [5, (4.4.1), (4.4.2)]).

When G-dimP ′ Sn is finite the complex RHomP ′(Sn,P ′) does not depend on
factorizations, up to isomorphism and shift in D(Sn) (see [5, (6.6), (6.7), (5.5)]).

We say that σ is quasi-Gorenstein at n if it has finite G-dimension at n, and
RHomP ′(Sn,P ′) is isomorphic in D(Sn) to some shift of Sn. When this holds at
each n ∈ Spec S we say that σ is quasi-Gorenstein (see [5, (7.8)]). When σn is
flat, it is quasi-Gorenstein at n if and only if it is Gorenstein at n (see [5, (8.1)]).

We give new characterizations of (quasi-)Gorenstein homomorphisms.

Theorem 2.2. LetK be a Noetherian ring, σ :K → S a homomorphism of rings,
and K → P → S a Gorenstein-by-finite factorization.

The homomorphism σ is quasi-Gorenstein if and only if the graded S-module
ExtP (S,P) is invertible; when it is, one has G-dimP S ≤ big height(AnnP S).

The notion of invertible graded module is explained further in what follows.

Corollary 2.3. When Spec S is connected, the map σ is quasi-Gorenstein if and
only if the S-module ExtnP (S,P) is invertible for n = gradeP S and ExtnP (S,P) =
0 for n �= gradeP S.

Set S e = S ⊗K S and let µ: S e → S denote the multiplication map, µ(a ⊗ b) =
ab.

Theorem 2.4. Let K be a Noetherian ring and let σ :K → S be a flat, essen-
tially of finite type homomorphism of rings. The following conditions are then
equivalent.

(i) The homomorphism σ is Gorenstein.
(i′) The homomorphism S ⊗K σ : S → S e is Gorenstein at each m ∈ SuppS e(S).

(ii) The homomorphism µ: S e → S is quasi-Gorenstein.
(iii) The S e-module S has finite G-dimension.
(iv) The graded S-module ExtS e(S, S e) is invertible.



24 Luchezar L. Avramov & Srikanth B. Iyengar

The preceding results are proved at the end of this section, following some tech-
nical preparation. Condition 2.4(iv) is refined in Theorem 5.1.

Let L be a finite S-module. Recall that L is projective if and only if for each
n ∈ Spec S the Sn-module Ln is free. For such a module L the function n �→
rankSn

Ln on Spec S is upper semicontinuous and hence constant on each con-
nected component. When rankSn

Ln = d for each p ∈ Spec S one says that L has
rank d. Projective modules of rank 1 are called invertible modules.

We say that a graded module (En)n∈Z is projective (resp. invertible) if the mod-
ule

⊕
n∈Z E

n is projective (resp. invertible).

Lemma 2.5. Let S be a Noetherian ring.
A graded S-module (En)n∈Z is invertible if and only if En is finite over S for

each n∈ Z and En
n

∼= Sn holds for all n ∈ Max S ∩ SuppEn.

When this is the case one has S = ⊕q

i=1 Ji with Ji = AnnS
(⊕

j �=i E
nj
)
, where

{n1, . . . , nq} = {n∈ Z | En �= 0}.
Proof. The “only if” part is clear. For the converse, only the finiteness of the
S-module E = ⊕

n∈Z E
n is at issue. Let q be a prime ideal of S and n a maxi-

mal ideal containing q. Since Sq is indecomposable as a module over itself, the
isomorphisms ⊕

n∈Z

En
q

∼= Eq
∼= (En)qSn

∼= Sq

provide a unique integer n(q) with the property Eq = E
n(n)
q . They also imply an

equality n(q) = n(n), so the function q �→ n(q) is constant on each connected
component of Spec S. One has En = 0 unless n is equal to n(q) for some q, so
E = ⊕

n∈Z E
n has only finitely many nonzero summands.

The finite decomposition of E produces a disjoint union

Spec S =
q⊔
i=1

SuppS E
ni.

It yields S = ⊕q

i=1 Ji because one has SuppS Eni = {q ∈ Spec S | q ⊇ Ji}.
Remark 2.6. If X is a complex of S-modules with H(X) graded projective, then
in D(S) there is an isomorphism X � H(X).

Indeed, using the projectivity of H(X), choose a section of the canonical homo-
morphism of graded S-modules Z(X) → H(X). Composing this section with the
inclusion Z(X) → X one gets a quasi-isomorphism of complexes H(X) → X.

Proof of Theorem 2.2. SinceP is a finiteP -module, ExtnP (S,P) is finite over S for
each i ∈ Z and for every n ∈ Max S one has isomorphisms of a graded S-module

H(RHomPn∩P (Sn,Pn∩P)) ∼= ExtPn∩P (Sn,Pn∩P) ∼= ExtP (S,P)n.

Thus, if σ is quasi-Gorenstein, then ExtP (S,P) is invertible by Lemma 2.5.
When ExtP (S,P) is invertible one has RHomP (S,P) � ExtP (S,P) in D(S)

(see Remark 2.6). For every n ∈ Spec S this yields an integer d(n) and an iso-
morphism RHomPn∩P (Sn,Pn∩P) � Σd(n)Sn in D(Sn). Corollary 1.4 implies that
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G-dimPn∩P Sn is finite, so P → S is quasi-Gorenstein at n (see Section 2.1).
The same corollary also yields G-dimP S ≤ big height(AnnP S). As K → P is
Gorenstein, it is also quasi-Gorenstein, hence so is σ (see [5, (8.9)]).

Proof of Corollary 2.3. One has ExtgP (S,P) �= 0 for g = gradeP S, by definition.
Thus, when Spec S is connected, the graded S-module ExtP (S,P) is invertible if
and only if ExtnP (S,P) is invertible for n = g and zero otherwise (see Lemma 2.5).
The desired result now follows from Theorem 2.2.

For n ∈ Spec S, we write k(n) for the field of fractions of S/n.

Proof of Theorem 2.4. Set Q = S e and ψ = S ⊗K σ : S → Q. This map is flat
along with σ, and hence so is ψm for each m ∈ SpecQ; in particular, G-dimψm

is finite.
(i) ⇒ (i′). Setting n = m ∩ S, note the isomorphism of rings

k(n)⊗S Q ∼= k(n)⊗k(n∩K) (k(n ∩K)⊗K S).

It shows that if the ring k(n ∩K)⊗K S is Gorenstein, then so is k(n)⊗S Q, hence
also (k(n)⊗S Q)n, which is isomorphic to k(n)⊗Sn

Qm.

(i′) ⇒ (i). Every prime ideal n ∈ Spec S is the contraction of the prime ideal
m = µ−1(n) of S e, which contains Ker(µ). Thus, when (i′) holds the local ho-
momorphism ψm: Sn → Qm is flat with Gorenstein closed fiber. The proof of [4,
(6.6)] shows that then so is the local homomorphism σn:Kn∩K → Sn.

(iv) ⇔ (ii) ⇒ (iii). Apply Theorem 2.2 to K = P = S e and � = idS
e
.

(iii) ⇒ (i′) ⇒ (ii). These assertions follow from the Decomposition Theorem
[4, (8.10)] applied to the evidently quasi-Gorenstein composition µψ = idS.

3. Bigrade of a Homomorphism

Invariants provided by Hochschild cohomology reflect the structure of an algebra
σ :K → S as a bimodule over itself. We define the bigrade of σ by the formula

bigrade(σ ) = inf{n∈ Z | ExtnS e(S, S e) �= 0}.
Applications of this invariant are given in the following sections. Here we ex-

amine its formal properties and compare it to other invariants of the K-algebra S.
For each n ∈ Spec S we define the residual transcendence degree of σ at n as the
number

tr degσ k(n) = tr degk(n∩K) k(n).

When �:K → P is an essentially smooth homomorphism of commutative
rings the P -module of Kähler differentials )P |K is finite and projective; see [13,
Sec. 16.10]. We say that � has relative dimension d if this projective module
has rank d (see Section 2). An example is given by the canonical map K →
U−1K[x1, . . . , xd ], where x1, . . . , xd are indeterminates and U is any multiplica-
tively closed set. Thus, every homomorphism (essentially) of finite type has an
(essentially) smooth-by-surjective factorization of finite relative dimension.
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Theorem 3.1. Let K be a Noetherian ring, σ :K → S a flat homomorphism,
and K

�−→ P −→ S an essentially smooth-by-finite factorization of relative dimen-
sion d.

(1) For every minimal prime ideal q of S there are (in)equalities

0 ≤ d − pdP S ≤ bigrade(σ) ≤ bigrade(σq) = tr degσ k(q) ≤ d.

(2) The following conditions are equivalent:
(i) bigrade(σ) = d − pdP S;

(ii) Ass S ∩ SuppS ExtpP (S,P) �= ∅ for p = pdP S.
(3) When S and P are integral domains one has

tr degσ(0) = d − gradeP S.

The hypotheses and notation of the theorem stay in force for the rest of this sec-
tion. Its proof is presented following that of Lemma 3.9.

The first inequality in Theorem 3.1(1) is a consequence of the following general
result, which tracks homological dimensions along smooth homomorphisms.

3.2. For every finite S-module M one has (in)equalities

fdK M ≤ pdP M ≤ fdK M + d.

See [8, 5.6] for a proof. In particular, pdP M and fdK M are finite simultaneously.

The next result, proved in [8, 5.1], is a critical ingredient in later arguments.

3.3. For every n∈ Z one has an isomorphism of S-modules

ExtnS e(S, S e) ∼= Extn−d
S

(
RHomP

(
S,

∧d
P )P |K

)
, S

)
. (3.3.1)

The next remark is useful in applications of the reduction formula (3.3.1).

3.4. The following subsets of Spec S are equal:

SuppS ExtnP
(
S,

∧d
P )P |k

) = SuppS ExtnP (S,P). (3.4.1)

Indeed, set V = ∧d
P )P |k. Since the P -module V is invertible, for each n ∈ Z

and every n ∈ Spec S there are isomorphisms of Sn-modules

ExtnP
(
S,

∧d
P )P |k

)
n

∼= ExtnP
(
S,

∧d
P )P |k

) ⊗S Sn

∼= ∧d
P )P |k ⊗P ExtnP (S,P)⊗S Sn

∼= ∧d
P )P |k ⊗P (ExtnP (S,P)n)

∼= ( ∧d
P )P |k

)
n∩P ⊗Pn∩P ExtnP (S,P)n

∼= ExtnP (S,P)n. (3.4.2)

Lemma 3.5. There is an inequality bigrade(σ) ≥ d − pdP S. Equality holds if
and only if Ass S ∩ SuppS ExtpP (S,P) �= ∅.
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Proof. Set D = RHomP

(
S,

∧d
P )P |k

)
and C = H−p(D), where p = pdP S.

From (3.4.1) one gets Hn(D) = 0 for n < −p. This implies the second isomor-
phism of S-modules below, while formula (3.3.1) gives the first:

Extn+d
S e (S, S e) ∼= ExtnS(D, S) ∼=

{
0 for n < −p,

HomS(C, S) for n = −p.
These isomorphisms yield bigrade(σ) ≥ d − p and show that equality is equiva-
lent to HomS(C, S) �= 0. Referring to a standard formula and to (3.4.1) we obtain

AssS HomS(C, S) = Ass S ∩ SuppS C = Ass S ∩ SuppS ExtpP (S,P).

Thus, HomS(C, S) �= 0 is equivalent to Ass S ∩ SuppS ExtpP (S,P) �= ∅.
Before continuing, we recall another canonical isomorphism.

3.6. Fix a prime ideal n of S and set (Sn)
e = Sn ⊗Kn∩K Sn. For each n∈ Z there

is an isomorphism of Sn-modules

Extn(Sn)e
(Sn, (Sn)

e) ∼= ExtnS e(S, S e)n.

Indeed, let λ: S → Sn and κ:K → Kn∩K denote the localization maps. The
homomorphism of rings λ ⊗κ λ: S e → (Sn)

e is flat, and there is an isomorphism
Sn

∼= (Sn)
e ⊗S e S of (Sn)

e-modules, whence the first isomorphism below:

Extn(Sn)e
(Sn, (Sn)

e) ∼= ExtnS e(S, S e)⊗S e (Sn)
e

∼= ExtnS e(S, S e)⊗S Sn.

For the second one note that S e acts on ExtnS e(S, S e) through S.

Lemma 3.7. The following equality holds:

bigrade(σ) = inf{bigrade(σn) | n ∈ Spec S}.
Proof. Set g = bigrade(σ). From the isomorphisms in Section 3.6 one reads
off an inequality bigrade(σn) ≥ g, which becomes an equality when n is in
SuppS ExtgS e(S, S e).

Lemma 3.8. For each prime ideal m in P, one has tr deg� k(m) ≤ d. Equality
holds when P is a domain and m = (0).

Proof. Set k = k(m ∩K) and P ′ = (k ⊗K P )m.

The composed homomorphism � ′:K → k ⊗K P → P ′ is essentially of finite
type. Its fibers are among those of �, so � ′ is essentially smooth and the canonical
isomorphism )P ′ |k ∼= (k ⊗K )P |K)m shows that it has relative dimension d.

The surjection P ′ → k(m) induces a surjection ω: k(m)⊗P ′ )P ′ |k → )k(m)|k.
This gives the second inequality below, and [15, (26.10)] provides the first one:

tr degk k(m) ≤ rankk(m) )k(m)|k ≤ d.
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When P is a domain and m = (0) one has P ′ = k(m). In particular, ω is an
isomorphism, and thus the second inequality above becomes an equality. The first
inequality also does, as the homomorphism k → k(m) is essentially smooth.

Let Min S denote the set of minimal prime ideals of Spec S.

Lemma 3.9. For all prime ideals q ∈ Min S and n ∈ Spec S with q ⊆ n one has

bigrade(σ) ≤ bigrade(σn) ≤ bigrade(σq) = tr degσ k(q) ≤ d.

Proof. Both inequalities on the left come from Lemma 3.7, because one has σq =
(σn)qSn

.

Set p = q ∩K. The rings Sq and Kp are Artinian, the first one because the ideal
q is minimal, the second because σq:Kp → Sq is a flat local homomorphism.

Set k = k(p), l = k(q), and t = tr degk l. Choose in Sq elements y1, . . . , yt that
map to a transcendence basis of l over k. Let x1, . . . , xt be indeterminates over Kp

and Q the localization of Kp[x1, . . . , xt ] at the prime ideal pKp[x1, . . . , xt ]; this is
a local ring with maximal ideal pQ and residue field k ′ = k(x1, . . . , xt ).

The homomorphism of Kp-algebras Kp[x1, . . . , xt ] → Sq sending xi to yi for
i = 1, . . . , t induces a local homomorphism ϕ:Q → Sq. A length count yields

lengthQ(Sq) = lengthSq
(Sq) lengthk ′(l ) < ∞,

so ϕ is finite. Let κ denote the composition Kp → Kp[x1, . . . , xt ] → Q. It is
local, flat, and essentially of finite type, and the fiber Q⊗Kp

k is equal to k ′.
One has σq = ϕκ, so this is a smooth-by-finite factorization of relative dimen-

sion t by the foregoing discussion. The finiteQ-module Sq has finite projective di-
mension by Lemma 3.2, so it is free becauseQ is Artinian. By the same token, one
has SuppSq

Ext0
Q(Sp,Q) = qSq = Ass Sq, so Lemma 3.5 yields bigrade(σq) = t.

Finally, set m = q ∩ Q. As the field extension k(m) ⊆ k(q) is finite, one gets
t = tr degk k(m). On the other hand, Lemma 3.8 yields t ≤ d.

Proof of Theorem 3.1. (1) The first inequality comes from Lemma 3.2, the second
from Lemma 3.5, the remaining relations from Lemma 3.9.

(2) The desired assertion is part of Lemma 3.5.
(3) Assume that S and P are integral domains and set m = Ker(P → S).

For each n ∈ Spec S, the projective dimension of Sn over Pn∩P is finite (see Sec-
tion 3.2). Thus [6, (2.5)] yields gradePn∩P Sn = dimPm, so one obtains

gradeP S = inf{gradePn∩P Sn | n ∈ Spec S} = dimPm.

Set S ′ = S(0) and K ′ = K(0S)∩K. As S ′ is the residue field of Pm, and K ′ → S ′
is a flat local homomorphism, one sees that K ′ is a field. The local domain Pm is
the localization of some finitely generated K ′-algebra P ′ at a prime ideal m′, so
one has

dimPm = height(m′) = dimP ′ − dim(P ′/m′) = tr degK ′ P ′
(0S)∩P ′ − tr degK ′ S ′.

To finish the proof, note that Lemma 3.8 yields d = tr degK ′ P ′.
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Formal properties of Hochschild cohomology have implications for bigrade, as
the following remarks show.

Remark 3.10. For any homomorphism of rings K → K ′ we identify K ′ and
K ⊗K K ′ via the canonical isomorphism, set S ′ = S ⊗K K ′, and note that
σ ⊗K K ′:K ′ → S ′ is (essentially) of finite type, or flat, along with σ. Also,
set S ′e = S ′ ⊗K ′ S ′.

When K → K ′ is flat so is S e → S ′e, owing to the canonical isomorphism of
K ′-algebras S ′e ∼= S e ⊗K K ′. Thus, for each n∈ Z one gets isomorphisms

ExtnS ′e(S ′, S ′e) ∼= ExtnS e(S, S ′e) ∼= ExtnS e(S, S e)⊗S S
′.

As a consequence, for every flat homomorphism K → K ′ one obtains

bigrade(σ) ≤ bigrade(σ ⊗K K ′);
equality holds when K ′ is faithfully flat over K.

Remark 3.11. Let τ :K → T be a flat homomorphism essentially of finite type.
For R = S × T, and for each n∈ Z there are canonical isomorphisms

ExtnRe(R,R e) ∼= (S ⊗R ExtnRe(R,R e))⊕ (T ⊗R ExtnRe(R,R e)),

S ⊗R ExtnRe(R,R e) ∼= ExtnS e(S, S e),

T ⊗R ExtnRe(R,R e) ∼= ExtnT e(T, T e)

of R-modules, S-modules, and T -modules, respectively.
In particular, for the diagonal map δ:K → K×K the following equality holds:

bigrade((σ × τ)δ) = min{bigrade(σ), bigrade(τ )}.
We illustrate Theorem 3.1 in a concrete situation. When every associated prime
ideal q of S satisfies dim(S/q) = dim S we say that S is equidimensional.

Proposition 3.12. Let K be a field, and S an N-graded K-algebra, generated
by finitely many elements in S≥1. For the inclusion σ :K → S one then has

depth S ≤ bigrade(σ) ≤ dim S.

The first inequality is strict when S is equidimensional, but not Cohen–Macaulay.

Proof. Set d = dim S, and let P be the K-subalgebra of S generated by some ho-
mogeneous system of parameters. Thus, P is a polynomial ring in d variables and
K → P → S is a smooth-by-finite factorization of relative dimension d.

Set p = pdP S. The Auslander–Buchsbaum equality gives d −p = depth S, so
Theorem 3.1(1) implies the desired inequalities. When S is equidimensional and
q is in Ass S one has dim(S/q) = d = dimP. Since S/q is finite over P and since
P is a domain, this implies q∩P = (0). When S is not Cohen–Macaulay one has
p > 0, hence

ExtpP (S,P)q ∼= (ExtpP (S,P)⊗P P(0))⊗P(0) Sq

∼= ExtpP(0)(S(0),P(0))⊗P(0) Sq

= 0.

From Theorem 3.1(2) we now conclude that bigrade(σ) > d − p holds.
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Next we show that the second inequality in the proposition can be strict as well.

Example 3.13. When K is a field of characteristic 0, the subring

S = K[x3, x 2y, x 2z, xy2, xz2, y3, y2z, yz2, z3]

of a polynomial ring K[x, y, z] and the inclusion map σ :K → S satisfy

bigrade(σ) = 2 < 3 = dim S.

Indeed, for the equality on the right note that the field of fractions of S is equal
to K(x, y, z). The one on the left results from the isomorphisms

ExtnS e(S, S e) ∼=
{

0 for n ≤ 1,

K for n = 2.

For K = Q these isomorphisms are established through a computation with
Macaulay 2. The general case follows from here and Remark 3.10.

4. Cohen–Macaulay Homomorphisms

Recall that a flat homomorphismK → S is said to be Cohen–Macaulay at a prime
ideal n of S if the local ring Sn/(n ∩ K)Sn is Cohen–Macaulay; the homomor-
phism is Cohen–Macaulay if it has this property at each n ∈ Spec S.

We begin by fixing notation and hypotheses for the rest of the section.

4.1. Let K be a Noetherian ring, σ :K → S a flat homomorphism essentially
of finite type, and K → P → S an essentially smooth-by-surjective factoriza-
tion of σ of relative dimension d. We assume that Spec S is connected (but see
Remark 3.11).

Theorem 4.2. The following conditions are equivalent :

(i) σ is Cohen–Macaulay;
(ii) gradeP S = gradePn∩P Sn = pdPn∩P Sn = pdP S for every n ∈ Spec S;

(iii) gradeP S = pdP S;
(iv) ExtnP (S,P) = 0 for gradeP S < n ≤ d.

The homomorphism σ is Gorenstein if and only if it is Cohen–Macaulay and the
S-module ExtgP (S,P) is invertible.

The theorem is proved after some reminders on localizations of homomorphisms.

4.3. For each n ∈ Spec S the following inequalities hold:

gradeP S ≤ gradePn∩P Sn ≤ pdPn∩P Sn ≤ pdP S ≤ d.

The first three are standard, the last one comes from Section 3.2.

4.4. The homomorphism σ is Cohen–Macaulay if and only if for every n ∈
Spec S one has pdPn∩P Sn = gradePn∩P Sn; this follows from [6, (3.5) and (3.7)].

Proof of Theorem 4.2. The flat homomorphism σ is Gorenstein if and only if it is
quasi-Gorenstein (see [5, (8.1)]), so the desired criterion for Gorensteinness is a
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special case of Corollary 2.3. The rest of the proof is devoted to establishing the
equivalence of the conditions in Theorem 4.2. Set g = gradeP S and p = pdP S.

(i) ⇒ (ii). We start by proving that, for all n, n′ ∈ Spec S one has

gradePn∩P Sn = pdPn∩P Sn = gradePn′∩P Sn′ = pdPn′∩P Sn′ .

For the first and last equalities it suffices to remark that σn and σn′ are Cohen–
Macaulay along with σ and then refer to Section 4.4. When n is contained in n′,
the equality in the middle is obtained by applying the chain of inequalities in Sec-
tion 4.3 to σn′ . Since Spec S is connected, when n and n′ are arbitrary one can find
in Spec S a path

n = n0 ⊇ n1 ⊆ n2 ⊆ · · · ⊇ nj−1 ⊆ nj = n′.

The already treated case of embedded prime ideals shows that the invariants we
are tracking remain constant on each segment of such a path.

When n ranges over Spec S the infimum of gradePn∩P Sn equals g, and the supre-
mum of pdPn∩P Sn equals p, so one gets g = p.

(ii) ⇒ (iii) ⇒ (iv). These implications are evident.
(iv) ⇒ (iii). From Section 3.2 one gets p ≤ d. Since P is Noetherian and S is

a finite P -module, one has ExtpP (S,P) �= 0. The definition of grade and the hy-
pothesis imply that for n ∈ [0, d ] one has ExtnP (S,P) �= 0 only when n = g, so
p = g holds.

(iii) ⇒ (ii). This follows from Section 4.3.
(ii) ⇒ (i). This follows from Section 4.4.

In the next result we collect some properties of the S-module ExtP
(
S,

∧d
P )P |K

)
,

for use in the next section. The setup is as in Section 4.1.

Theorem 4.5. Assume that σ is Cohen–Macaulay and set p = pdP S. For all
q ∈ Min S and n ∈ Spec S there are equalities

bigrade(σ) = bigrade(σn) = tr degσ k(q). (4.5.1)

The S-module C = ExtpP
(
S,

∧d
P )P |K

)
has the following properties.

(1) There is an equality AssS C = Ass S.
(2) For each n∈ Z , there is an isomorphism of S-modules

ExtnS e(S, S e) ∼= Extn−b
S (C, S), where b = bigrade(σ).

(3) If K is Gorenstein, then Cn is a canonical module for Sn for each n ∈ Spec S.

Proof. Set V = ∧d
P )P |K. We deal with C = ExtpP (S,V ) first.

Let F
�−→ S be a resolution with each Fi finite projective over P and Fi = 0 for

i /∈ [0,p]. Theorem 4.2 yields gradeP S = p, so one has ExtnP (S,V ) = 0 for n �=
p; see (3.4.1). Thus, one gets quasi-isomorphisms of complexes of P -modules,

RHomP (S,V ) � HomP (F,V ) � Σ−pC. (4.5.2)

Each HomP (Fi,V ) is finite projective, and one has isomorphisms of complexes
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HomP (HomP (F,V ),V ) ∼= HomP (HomP (F,P)⊗P V,V )

∼= HomP (HomP (F,P), HomP (V,V ))

∼= HomP (HomP (F,P),P)
∼= F.

These computations localize. In particular, for each n ∈ Spec S one gets

pdPn∩P Cn = pdPn∩P Sn. (4.5.3)

(1) An ideal n ∈ Spec S is associated to C if and only if depthSn
Cn = 0. The

finiteness of Sn as a Pn∩P -module and the Auslander–Buchsbaum equality to-
gether yield

depthSn
Cn = depthPn∩P Cn = depthPn∩P Pn∩P − pdPn∩P Cn.

Thus, n ∈ AssS C is equivalent to pdPn∩P Cn = depthPn∩P Pn∩P . Similarly, n ∈
Ass S amounts to pdPn∩P Sn = depthPn∩P Pn∩P . Now (4.5.3) gives AssS C =
Ass S.

(2) From (4.5.2) and Section 3.3, for each n∈ Z one gets

ExtnS e(S, S e) ∼= Extn−d+p
S (C, S).

We have just proved Ass S ∩ SuppS ExtpP (S,P) �= ∅, so Theorem 3.1(2) implies

bigrade(σ) = d − p. (4.5.4)

Now we can prove (4.5.1). Pick n in Spec S. The induced homomorphisms
Kn∩K → Pn∩P → Sn provide a smooth-by-surjective factorization of relative
dimension d of σn:Kn∩K → Sn. We have already proved that σn is Cohen–
Macaulay, and pdPn∩P Sn = p holds, so we get bigrade(σ) = bigrade(σn) from
formula (4.5.4) applied to σn. This proves the first equality. Theorem 3.1 gives the
second one.

(3) When K is Gorenstein the rings P and S are Gorenstein and Cohen–
Macaulay, respectively, as they are flat over K with fibers of the correspond-
ing type. For n ∈ Spec S and m = n ∩ P Theorem 4.2(1) gives pdPm

Sn = p

and (3.4.2) gives Cn
∼= ExtpPm

(Sn,Pm), so Cn is a canonical module for Sn by
[9, (3.3.7)].

5. Gorenstein Homomorphisms

Combining earlier results we get a “structure theorem” for Gorenstein algebras.

Theorem 5.1. If K is a Noetherian ring and σ :K → S is a Gorenstein homo-
morphism essentially of finite type, then for some q ≥ 0 one has

{n∈ Z | ExtnS e(S, S e) �= 0} = {n1, . . . , nq}.
Furthermore, there is an isomorphism of K-algebras

S ∼=
q∏
i=1

Si with Si = S/Ann(Extni
S e(S, S e)),
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for each i the map K → S → Si is Gorenstein, ni = tr degσ k(q) for every q
in Min Si, the Si-module ExtniS e

i
(Si, S e

i ) is invertible, and ExtnS e
i
(Si, S e

i ) = 0 for

n �= ni.

Proof. The gradedS-module ExtS e(S, S e) is invertible by Theorem 2.4. In particu-
lar, ExtnS e(S, S e) is not zero for finitely many values ofn, sayn1, . . . , nq. Lemma 2.5
provides the decomposition of S and Remark 3.11 an equivariant isomorphism

ExtS e(S, S e) ∼=
q⊕
i=1

ExtS e
i
(Si, S

e
i )

of graded modules. It implies that the Si-module ExtnS e
i
(Si, S e

i ) is invertible for
each n ∈ {n1, . . . , nq} and is zero otherwise. Theorem 2.4 now shows that every
composition K → S → Si is Gorenstein. In particular, it is Cohen–Macaulay, so
Theorem 4.5 yields ni = tr degσ k(q) for every q ∈ Min Si.

Next we search for a converse, in the spirit of the conjecture stated in the Intro-
duction.

One says that S is generically Gorenstein if for each q ∈ Min S the ring Sq is
Gorenstein. The next result was proved independently in [3, (2.1)] and [14, (2.2)].

5.2. If S is a generically Gorenstein, Cohen–Macaulay local ring with canonical
module C, and ExtnS(C, S) = 0 holds for 1 ≤ n ≤ dim S, then S is Gorenstein.

When K is a Gorenstein ring, a homomorphism σ :K → S with S Noetherian is
Gorenstein if and only if the ring S is Gorenstein (see [15, (23.4)]). Thus, our next
result is a reformulation of Theorem 4 from the Introduction.

Theorem 5.3. Let K be a Gorenstein ring, S a Cohen–Macaulay ring with con-
nected spectrum, and K → S a flat homomorphism essentially of finite type.

If S is generically Gorenstein, and for some minimal prime ideal q of S one has

ExtnS e(S, S e) = 0 for tr degσ k(q) < n ≤ tr degσ k(q)+ dim S,

then the ring S is Gorenstein.

Proof. Note that σ is Cohen–Macaulay because it is flat and its target is a Cohen–
Macaulay ring; see [15, (23.3), Cor.]. Theorem 4.5(3) then yields a finite S-module
C, such that Cn is a canonical module for the Cohen–Macaulay local ring Sn for
each n ∈ Spec S. Theorem 4.5(2) and formula (4.5.1) translate our hypothesis into
equalities ExtnSn

(Cn, Sn) = 0 for 1 ≤ n ≤ dim S. It remains to invoke Section 5.2.

It is instructive to compare the criterion that we just proved with the one afforded
by Theorem 4.2: The ring S is Gorenstein if for some essentially smooth-by-
surjective factorization K → P → S of σ of relative dimension d the S-module
ExtnP (S,P) is zero for gradeP S < n ≤ d and is projective for n = gradeP S.

On the face of it, the difference lies only in the condition on the S-module struc-
ture of a single, finitely generated module ExtnP (S,P). However, this structure
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is induced through an inherently infinite construction. We elaborate in the next
remark.

Remark 5.4. The action of any single element s ∈ S on every Ext iP (S,P) can be
computed from a free resolution of S over P, as the result of applying the map

Hi(HomR(s idF,P): Hi(HomR(F,P)) −→ Hi(HomR(F,P)).

Each Fj can be chosen finite free, so to compute such a map it suffices to know
the i + 1 matrices with elements in P that describe the differentials ∂Fj for j =
1, . . . , i + 1.

However, the S-module structure of Ext iP (S,P) comes through an isomorphism
Ext iP (S,P) ∼= Hi(HomP (S, I )), where I is an injective resolution of P over itself.
The information needed to construct I is not finite in two distinct ways: (1) the
module I i is a direct sum of injective envelopes of P/m for every m ∈ Spec S of
P with Ext iP (P/m,P)m �= 0, and for 1 ≤ i < dimP infinitely many distinct m
satisfy this property; (2) injective envelopes are not finitely generated, unless m is
minimal.

To finish, we take another look at Theorem 2.4 and Theorem 5.3 this time against
backdrops provided by results coming from three different directions:

(1) characterizations of regular local rings (R, m, k) by the finiteness of pdR k,
or the vanishing of ExtnR(k, k) for all (respectively, for some) n > dimR

(see [15]);
(2) characterizations of Gorenstein local rings (R, m, k) by the finiteness of idR R,

or the vanishing of ExtnR(k,R) for all (respectively, for some) n > depthR
(see [15]);

(3) characterizations of smoothK-algebrasS essentially of finite type by the finite-
ness of pdS e S, or the vanishing of ExtnS e(S, S) for all n ≥ m (respectively, for
n∈ [m,m+dim S ])when)S |K can be generated bym−1 elements (see [7]).

Comparing the statements of these results one will observe that the homolog-
ical properties of a flat algebra of finite type, viewed as a bimodule over itself,
encode information about all its fibers, and that the code is similar to the one that
translates properties of a local ring into homological data on its residue field.

This is the reasoning behind the conjecture stated in the Introduction.
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