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Proper Pseudoholomorphic Maps between
Strictly Pseudoconvex Regions
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1. Introduction

The regularity up to the boundary of a proper holomorphic map between strictly
pseudoconvex bounded domains D and D ′ of C

n has been widely studied when
n ≥ 2 and is now as well understood as the one-dimensional case. A continuous
map F : D → D ′ is said to be proper if F −1(K) is compact for every compact
set K in D ′. If D and D ′ have C r -boundaries (r ≥ 2) then such a map F has a
C r−1/2-extension to the boundary, and this is the maximal regularity [4; 20] that
can be expected. Various authors have contributed to this result. We just mention
Fefferman, who proved in 1974 that if D and D ′ have smooth boundaries and if F
is a biholomorphism, then F extends smoothly to the boundary [9]. We refer to
the survey of Forstnerič [10] for a thorough history.

Our aim here is to study the boundary behavior of proper pseudoholomorphic
maps between strictly pseudoconvex regions in almost complex manifolds. In
order to establish an analogue of the known result in the complex situation, we
will need to adapt objects and tools specific to the integrable case. Note, for ex-
ample, that there is no longer a notion of an analytic set and that the Jacobian of
a pseudoholomorphic map is not pseudoholomorphic. Our method uses pseudo-
holomorphic discs. Originally introduced by E. Bishop, this method has provided
geometric proofs of various versions of Fefferman’s theorem [17; 25] even in the
almost complex case [5; 12].

We consider the following situation. Let D be a bounded domain in some
smooth (real) manifold, and let J be an almost complex structure of class C1 on
D that is smooth in D. Throughout this paper, we will say that (D, J ) is a strictly
pseudoconvex region if D is defined by {ρ < 0}, where ρ is a C 2-regular defin-
ing function that is strictly J-plurisubharmonic on D. We say (D, J ) is a strictly
pseudoconvex region of class C r when ρ and J are at least of class C r. In the com-
plex situation, the regularity is thus the regularity of the boundary.

The first step of our proof is to derive the Hölder 1
2 -continuous extension, which

comes from a sized estimate of the set of regular values and from estimates of the
Kobayashi metric. To obtain more regularity, the main obstacle compared with the
biholomorphic case is obviously the existence of critical points. Thus we begin
with studying the locus of all these points. For the complex case, Pinchuk [19; 20]
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used the scaling method to show that every proper holomorphic map between two
bounded strictly pseudoconvex domains in C

n having C 2-boundaries is locally bi-
holomorphic. We prove that this statement is always true in the almost complex
case, at least near the boundary, as follows.

Theorem 1. Let (D, J ) and (D ′, J ′) be some strictly pseudoconvex regions of
the same dimension, and let F be a proper pseudoholomorphic map fromD toD ′.
Then the Jacobian of F is far from zero near the boundary of D.

In particular, the critical points of F form a compact set in D. Our proof is based
on an almost complex adaptation of the scaling method (see also [5]). The idea of
this method consists in anisotropically dilating the domains in order to construct a
limit map between simple model domains. When the manifolds are almost com-
plex, the transformations operating on the domains are not pseudoholomorphic
and so we simultaneously dilate the almost complex structures. Note that if n = 2
then one can normalize the initial structures to obtain the standard structure as a
limit. In the general case, the limit almost complex structures are not necessarily
integrable.

The essential tool for gaining more regularity for the extension to the bound-
ary is the study of a family of pseudoholomorphic discs attached to the boundary
of the domain, which is invariant under the action of pseudobiholomorphisms.
We obtain that the regularity of the extension depends on the regularity of the al-
most complex structures at the boundary, and we also give explicit estimates of
the Hölderian norms via results of [3]. More precisely, we have the following
theorem.

Theorem 2. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of the same
dimension, respectively C r and C r ′, where r, r ′ ≥ 2 are not integers. Then every
proper pseudoholomorphic map F : D→ D ′ has a C s-extension to D, where

s =
{

min(r, r ′) if |r ′ − r| ≥ 1,

max(r − 1, r ′ − 1) if |r ′ − r| < 1.

Moreover, for s ′ = min(r − 1, r ′),

‖F‖C s ′−1(D)
≤ c(s ′)‖(F, t(dF )−1)‖∞

(
1+ c ′√

λJ
′
N ∗(∂D ′ )

)
.

Here λJ
′

N ∗(∂D ′ ) denotes the smallest eigenvalue of the Levi form of the square root
of the distance to the conormal bundle N ∗(∂D ′). We will call it the minimal J-
curvature of N ∗(∂D ′).

When (D, J ) and (D ′, J ′) are smooth, we thus obtain that F has a smooth ex-
tension. Note that J ′ = F∗J near the boundary by Theorem 1. Hence, as in the
biholomorphic case [5], we have the following necessary and sufficient condition
on J ′ for the smooth extension of F.

Corollary 1. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of the
same dimension. Assume that (D, J ) is of class C∞. Then a proper pseudo-
holomorphic map F : D → D ′ extends smoothly to the boundary if and only if
∂D ′ is smooth and J ′ extends smoothly on D ′.
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The paper is organized as follows. Section 2 consists of some preliminaries about
almost complex manifolds. In Section 3 we prove the boundary distance preserv-
ing property for a proper pseudoholomorphic map, which leads to the existence
of the Hölder 1

2 -continuous extension. Section 4 covers application of the scaling
method, after which we study the properties of the limit map. Finally, in Section 5
we prove Theorems 1 and 2 and Corollary 1.

2. Preliminaries

2.1. Strictly Pseudoconvex Domains in Almost Complex Manifolds

We begin by recalling some definitions.

Definition 1. An almost complex structure on a smooth (real) manifold M 2n is
a (1,1)-tensor J—that is, a section from M to End(TM) such that J 2 = −Id.

Every almost complex structure admits a Hermitian metric and also provides an
orientation on the manifold.

Definition 2. A map F : (M, J ) → (M ′, J ′) of class C1 between two almost
complex manifolds is said to be (J, J ′)-holomorphic if J ′ � dF = dF � J.
If (M, J ) is the unit disc of C (i.e., � ⊂ R

2 equipped with the standard com-
plex structure), we say that F is a J-holomorphic disc. Nijenhuis and Woolf [18]
proved that such maps exist. Moreover, one can prescribe F(0) and dF0(∂/∂x).

As in the complex case, the maps verifying the pseudoholomorphy’s equation
inherit their smoothness from the smoothness of the almost complex structures: if
J and J ′ are of class C r, then every (J, J ′)-holomorphic map is of class C r+1. We
also have the following lemma.

Lemma 1. Let F be a pseudoholomorphic map between almost complex mani-
folds of the same dimension. Then F either preserves or inverts the orientation
provided by the almost complex structures.

Proof. After fixing local coordinates, we must show that the sign of the Jacobian
of F is constant on D. The almost complex structure J verifies Jp = PJstP

−1 for
some matrix P, where Jst =

( 0 −In
In 0

)
is the standard complex structure on R

2n.

Such a factorization is not unique, but if Jp = PJstP
−1 = QJstQ

−1 then the ma-
trix Q−1P commutes with Jst and hence det(Q−1P) > 0. Thus, the sign of detP
depends only on p and J ; we denote it by δJ(p).

Given p0 ∈D, let (e(p0)

1 , . . . , e(p0)

2n ) be a basis such that, for all k ≥ 1, e(p0)

n+k =
Jp0e

(p0)

k . Denote by Pp the matrix of (e(p0)

1 , . . . , e(p0)
n , Jpe

(p0)

1 , . . . , Jpe
(p0)
n ), and let

V be a neighborhood of p0 in which the matrix Pp remains invertible. In partic-
ular, for every p ∈V, detPp and detPp0 have the same sign. It follows that δJ is
locally constant on D and hence is constant.

For any p ∈ D and q ∈ D ′, we write Jp = PpJstP
−1
p and J ′q = P ′

qJstP
′−1
q .

By the (J, J ′)-holomorphy of F, for all p ∈ D we have dFpJp = J ′F(p)dFp, so
(P ′−1

F(p)dFpPp) commutes with the complex standard structure and
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det(P ′−1
F(p)dFpPp) ≥ 0.

Finally, the sign of the Jacobian of F is equal to δJ × δJ
′
at any noncritical point.

Definition 3. Let (M, J ) be an almost complex manifold and let ρ be a C 2-
smooth function from M to R. For all X ∈ TM, define dcJρ(X) = −dρ(JX) and
LJρ = d(dcJρ)(X, JX). The quadratic form LJρ is called the Levi form of ρ. The
function ρ is said to be strictly J-plurisubharmonic (resp. J-plurisubharmonic) if
its Levi form is positive definite (resp. positive).

Remark 1. One may show that a C 2-regular map ρ : # → R is J-plurisubhar-
monic if and only if all the compositions ρ � h, for any J-holomorphic disc h
valued in #, are subharmonic on the unit disc �. Indeed, there is the following
link between the Laplacian of ρ � h and the Levi form of ρ [7; 13]:

∀ζ ∈�, �(ρ � h)ζ = LJ
h(ζ)(ρ)

(
∂h

∂x
(ζ)

)
.

2.2. Holomorphic Mappings between Simple Model Domains

Model almost complex structures naturally appear as limits of rescaled almost
complex structures. We refer to [12] for a detailed treatment of model structures.

Throughout this paper, we denote by (x0, y0, . . . , xn, yn) the coordinates in
R

2n+2 and by z = (z0, . . . , zn) = (z0, ′z) the associated complex coordinates. Thus
R

2n+2 may be identified with C
n+1 by means of the standard complex structure

J (n+1)
st =




0 −1
1 0 (0)

. . .

(0) 0 −1
1 0



.

Definition 4. An almost complex structure J on R
2n+2 is called a model struc-

ture if it is defined by

J(z) =
(J (1)

st BJ(′z)
0 J (n)

st

)
, (1)

where BJ(′z) ∈ M2,2n(R) is R-linear in x1, . . . , xn, y1, . . . , yn. A pair (), J ) is
called a model domain if ) = {z ∈ C

n+1 | Re z0 + P(′z, ′z̄) < 0}, where P is
some real homogeneous polynomial of degree 2 and J is a model structure such
that ) is strictly J-pseudoconvex at 0.

For such a matrix BJ, the corresponding complex matrix is

BC(
′z) = (B

2j−1
2k−1 + iB

2j
2k−1)1≤j,k≤n

=
( n∑

k=1

(aJ1,k zk + bJ1,k z̄k) · · ·
n∑
k=1

(aJn,k zk + bJn,k z̄k)

)
,

where aJj,k and bJj,k are complex constants.
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Definition 5. The model structure J given by (1) is simple if aJj,k = 0 for all j, k.

For any model domain (), J ) there exists a simple model structure J and a
(J, J )-biholomorphism between ) and H fixing (−1, ′0), where H = {z∈C

n+1 |
Re z0 + ‖′z‖2 < 0} is the Siegel half-plane [16].

The proof shows that the map constructed is in fact a global diffeomorphism of
C
n+1 given by

.(z) = (z0 + ψ(′z), ′.(′z)),

where ψ is a polynomial of degree at most 2 in ′z and ′z̄ and where ′. : C
n → C

n

is C-linear in ′z. Consequently:

(1) for all t < 0, .(t, ′0) = (t, ′0);
(2) if the model domain) is given by the equation 0 = r̃(z) = Re z0+P(′z, ′z̄) <

0, with P some real homogeneous polynomial of degree 2 on C
n, then

r̃ �.−1(z) = Re z0 + ‖′z‖2.

The proof also implies that, if the model structure J is integrable, then we can in
fact prescribe J = Jst .

Because of the special form of simple model structures, a pseudoholomorphic
map F = (F0, ′F ) between simple model domains has an interesting behavior.
We can suppose that the domains are both the Siegel half-plane H.

Proposition 1 [16]. Assume that J and J ′ are non-integrable simple model
structures on H. If F : (H , J ) → (H , J ′) is a pseudoholomorphic map, then
there exists a real constant c such that

∀z = (z0, ′z)∈H , F(z) = (cz0 + f(′z), ′F(′z)), (2)

where f : C
n → C is antiholomorphic and ′F : C

n → C
n is holomorphic (with

respect to the standard complex structure).

Proof. The proof is given in [16] in the case of a pseudobiholomorphism. We
sketch it here for the general case using the notation of Definition 4.

Computation of the coefficients of the Nijenhuis tensor NJ together with the
hypothesis that J is nonintegrable yields some j, k such that bJ

j,k − bJ
k,j �= 0. Let

us fix such a pair (j, k). We may identify the coefficients in dF
(
NJ

(
∂
∂zj

, ∂
∂zk

)) =
NJ ′

(
dF

(
∂
∂zj

)
, dF

(
∂
∂zk

))
and obtain, equivalently,

∀l ≥ 1,
∂Fl

∂z0
= ∂Fl

∂z̄0
= 0, (3)

∂F0

∂z0
= 1

bJ
j,k − bJ

k,j

n∑
l,m=1

∂Fl

∂z̄j

∂Fm

∂z̄k
(bJ ′

l,m − bJ ′
m,l). (4)

The system obtained in (3) means that F1, . . . ,Fn do not depend on z0 and z̄0

(precisely, of x0 and y0). Moreover, F is (J, J ′)-holomorphic, and since J and
J ′ are simple model structures it follows that

dF � J = J ′ � dF �⇒
{ J (1)

st � dz0F = dz0F � J (n)
st ,

J (n)
st � d(′F ) = d(′F ) � J (n)

st .
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Hence ′F : ′z �→ (F1(
′z), . . . ,Fn(′z)) and z0 �→ F0(z0, ′z) are holomorphic (with

respect to the standard complex structure). This implies that ∂F0
∂z0

is independent of
z0 and antiholomorphic in ′z:

F0(z) = c(′z)z0 + f(′z),

where c and f are antiholomorphic. For any ′z ∈ C
n, the map z0 �→ F0(z0, ′z)

is defined on {ζ ∈ C | Re ζ < −‖′z‖2}, and it takes its values in {ζ ∈ C |
Re ζ < −‖′F(′z)‖2}. This requires that c be real-valued and antiholomorphic,
hence constant.

3. Hölder 1
2 -Continuous Extension

3.1. Regular Values of Proper Maps

We recall that a critical point of a C1 map F from D to D ′ is a point p ∈D such
that the Jacobian of F vanishes at p. In the sequel, we will denote by C the set of
all critical points. A critical value is the image by F of some critical point. Every
point of D ′ that is not a critical value, even if it is not in F(D), is called a regular
value.

Remark 2. If F : (D, J )→ (D ′, J ′) is pseudoholomorphic then, for any critical
point p ∈D, the subspace Ker dFp contains a subspace of dimension 2 because it
is preserved by Jp. By [8, Thm. 3.4.3] we then have that the Hausdorff dimension
of the set F(C) of all critical values is less than 2n− 2.

We also show the following property of proper pseudoholomorphic maps.

Lemma 2. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of dimen-
sion 2n, and let F be a proper pseudoholomorphic map from D to D ′. Then there
is at least one point p ∈D such that F(p) is a regular value.

Proof. It suffices to prove that the open set D \ C is not empty. Indeed, this will
imply, by means of the rank theorem, that the (Hausdorff ) dimension of F(D \C)
is equal to 2n. According to Remark 2, we will have F(C) �= F(D \ C).

Assume by way of contradiction that C = D. Then the maximal rank r0 of dF
in D is less than 2n− 2, and it is nonzero because F is necessarily nonconstant.
The locus C0 where the rank of dF is r0 is an open set, so F(C0) is a submanifold
of (Hausdorff ) dimension r0.

Since the rank of the map dF is less than r0 −1 (in fact, r0 − 2) on D \C0, [8,
Thm. 3.4.3] yields dimH F(D \ C0) ≤ r0 − 1. Thus F(C0) �= F(D \ C0). This
allows us to pick q ∈ F(C0) \ F(D \ C0). The set N = F −1({q}) included in
the open set C0 is then a submanifold of D of dimension 2n − r0. Moreover, N
is compact and its tangent bundle Ker dF is preserved by J. Hence J induces an
almost complex structure on N.

Let ρ be some C 2-regular and strictly J-plurisubharmonic function on D. The
map ρ reaches its maximum on N at some point p. According to [18], there exists
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a pseudoholomorphic disc h that takes its values inN, is centered at p, and verifies
∂h
∂x
(0) �= 0. By the maximum principle, the strictly subharmonic function ρ � h is

constant. This leads to a contradiction because 0 = �(ρ �h)p = LJ
p(ρ)

(
∂h
∂x
(0)

)
>

0 in view of Remark 1.

The next statement is well known in the complex case.

Proposition 2. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of
the same dimension. If F is proper and pseudoholomorphic from D to D ′, then
F(D) = D ′. Moreover, all the regular values of F have the same ( finite) number
of antecedents, and they form a path-connected open set that is dense in D ′.

Proof. Recall (see e.g. [24]) that ifX and Y are two oriented connected manifolds
of the same dimension and if F : X→ Y is a smooth proper map, then the degree
of F is equal to

∑
p∈F −1(q) sgn(det dFp) for any regular value q ∈Y. In particular,

if q is not in the image of F, then the degree of F is 0. Let q ∈ F(D) \ F(C) be
a regular value of F. The degree of F is either positive or negative by Lemma 1,
so F(D) = D ′ and the preimage of any regular value of F has exactly degF
elements.

The set of all critical points of F is closed in D. Indeed, F is proper and hence
closed, and D ′ \ F(C) is an open set in D ′. According to [22, Prop. 14.4.2] and
Proposition 2, F(C) has no interior. That D ′ \ F(C) is path-connected follows
from classical geometric arguments, as in the complex case.

3.2. Boundary Distance Preserving Property

The aim of this section is to prove the following statement, which will give as a
corollary the Hölder 1

2 -continuous extension of a proper pseudoholomorphic map.

Proposition 3. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of di-
mension 2n, and let F be a proper pseudoholomorphic map from D to D ′. Then
there exist c1, c2 > 0 such that

∀p ∈D, c1 ≤ dist(F(p), ∂D ′)
dist(p, ∂D)

≤ c2.

Proof. The Hopf lemma in the almost complex situation [5] applies to the map
ρ ′ � F on D and gives some c ′ > 0 such that

∀p ∈D, |ρ ′(F(p))| ≥ c ′ dist(p, ∂D).

The idea of the proof of Proposition 3 is to construct a J-plurisubharmonic map
on D ′, say ρ ′ � F −1, in order to apply again the Hopf lemma. More precisely, we
define

u : D ′ � q �→ Max
p∈F −1({q})

{ρ(p)}.

Note that u takes negative values and is continuous on D ′ \F(C). Indeed, for any
q in D ′ \F(C), the compact set K = F −1({q}) consists of noncritical, hence iso-
lated, points; thusK is finite. SetK = {p1, . . . ,pk}, where k = |degF |.According
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to the inverse function theorem, for each j = 1, . . . , k one can construct a neigh-
borhood Vj of pj and a neighborhood W of q included in the open set D ′ \ F(C)
such that (a) F induces a C1-diffeomorphism from Vj to W and (b) F −1(W ) =⊔
Vj . For j = 1, . . . , k, set Fj = F |Vj : Vj → W and uj = ρ � F −1

j . The maps
uj are continuous and J-plurisubharmonic. Consequently, u = Max1≤j≤k uj is
continuous.

We also have that u is J-plurisubharmonic on W ′ in the following sense: the
composition u�h is subharmonic on the unit disc� ⊂ C for every J-holomorphic
disc h : �→W (this extends Definition 3 to the case of an upper semicontinuous
function). Thus u is locally J-plurisubharmonic on D ′ \ F(C), which is equiva-
lent to being globally J-plurisubharmonic.

Since dimH (F(C)) ≤ 2n − 2, we obtain that lim sup(u) is plurisubharmonic
on the whole D ′ (see [6]). By the Hopf lemma, there is some constant c > 0 such
that |lim sup(u)(q)| ≥ c dist(q, ∂D ′) for any q ∈ D ′. The map ρ is continuous
and so,

∀p ∈D, |ρ(p)| ≥ |lim sup(u)(F(p))| ≥ c dist(F(p), ∂D ′);
thus we obtain the desired inequalities.

Corollary 2. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of di-
mension 2n, and let F be a proper pseudoholomorphic map from D to D ′. Then
F has a continuous extension F : D→ D ′ such that F(∂D) ⊂ ∂D ′. Moreover, F
is Hölder continuous with exponent 1

2 .

Proof. Once F is known to preserve the distance to the boundary, Corollary 2 fol-
lows from estimates of the infinitesimal Kobayashi pseudometric (as in the proof
of [5, Prop. 3.3]). We sketch the arguments here for the sake of completeness.

For every p ∈D and for v a tangent vector at point p, set

K(D,J )(p, v)

= inf{α > 0 | ∃h∈OJ(�,D) with h(0) = p and (∂h/∂x)(0) = v/α},
which is well-defined according to [18]. Let us now recall the following result [5;
11]: under our hypotheses, there exists a constant C > 0 such that

∀p ∈D, ∀v ∈ TpM,
1

C

‖v‖
dist(p, ∂D)1/2

≤ K(D,J )(p, v) ≤ C
‖v‖

dist(p, ∂D)
.

Then, by the decreasing property of the infinitesimal Kobayashi pseudometric, for
any p ∈D and v ∈ TpM we have

C1
‖dFp(v)‖

dist(F(p), ∂D ′)1/2
≤ K(D ′,J ′ )(F(p), dFp(v))

≤ K(D,J )(p, v) ≤ C2
‖v‖

dist(p, ∂D)
,

which implies the estimate

‖|dFp‖| ≤ C
‖v‖

dist(p, ∂D)1/2
.

This gives the statement by Hardy and Littlewood’s theorem.
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Figure 1

4. The Scaling Method

The proof of Theorem 1 is based on the scaling method. The idea is to rectify ∂D
and ∂D ′ via successive changes of variable in order to obtain ∂H. To make the
transformations holomorphic, we also rescale the almost complex structures as in
[12] (see also [16]). See Figure 1.

4.1. Dilations

Let (pk) be a sequence of points of D converging to p∞ ∈ ∂D, and set qk =
F(pk). According to the boundary distance preserving property, (qk) converges
to q∞ = F(p∞)∈ ∂D ′.
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4.1.1. Choice of Local Coordinates
In an adapted local coordinate system: : U → R

2n+2 aboutp∞ with:(p∞) = 0,
we identify p∞ with 0 and U with R

2n+2. Moreover, we may assume that ρ �:−1

is bounded for the C1 norm and that the following statements hold.

• J(0) = J ′(0) = Jst .

• D = {p ∈ R
2n+2 | ρ(p) < 0} and T0(∂D) = {x0 = 0}, where the defining

function ρ can be expressed by

ρ(z) = Re z0 + Re

(
z0

∑
j≥1

(ρj zj + ρj̄ z̄j )

)
+ P(′z, ′z̄)+ ρε(z)

with P a real homogeneous polynomial of degree 2 and ρε(z) = o(‖z‖2).

• D ′ = {p ∈ R
2n+2 | ρ ′(p) < 0} and T0(∂D

′) = {x0 = 0}, where the defining
function ρ can be expressed by

ρ ′(z) = Re z0 + Re

(
z0

∑
j≥1

(ρ ′j zj + ρ ′
j̄
z̄j )

)
+Q(′z, ′z̄)+ ρ ′ε(z)

with Q a real homogeneous polynomial of degree 2 and ρ ′ε(z) = o(‖z‖2).

4.1.2. Centering
Recall that for every neighborhood V of 0 one can find some constant δ > 0 such
that, for all p ∈ V ∩ ∂D, the closed ball of radius δ centered at p − δ

→
np is in

D ∪ {p} (here →
np denotes the outer normal to D at p). Hence ṗk ∈ ∂D and q̇k ∈

∂D ′ such that

dist(pk , ∂D) = ‖pk − ṗk‖ = dk and dist(qk , ∂D
′) = ‖qk − q̇k‖ = d ′k

are uniquely defined for some sufficiently large k. Then there exists a rigid motion
φk : R

2n+2 → R
2n+2, with φk(ṗk) = 0 and φk(pk) = (−dk , 0, . . . , 0), verifying:

• the tangent space to ∂(φk(D)) at 0 is {Re z0 = 0} and the complex tangent space
to ∂(φk(D)) at 0 (for the induced almost complex structure (φk)∗J ) is {0}×C

n;
• φk converges to the identity mapping on any compact subset of R

2n+2 with re-
spect to the C 2-topology.

Consequently, J̇ k = (φk)∗J converges to J in the C1 sense on any compact
subset and is expressed by

J̇ k(0) =
(
J̇ k(1,1)(0) 02,2n

J̇ k(2,1)(0) J̇ k(2,2)(0)

)
. (5)

The sequence ρk = ρ �φ−1
k also converges to ρ at second order with respect to the

compact-open topology:

ρk(z) = ρ � φ−1
k (z)

= τk

(
Re z0 + Re

(
z0

∑
j≥1

(ρkj zj + ρk
j̄
z̄j )

)
+ P k(′z, ′z̄)+ ρkε (z)

)
,
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where P k is some real homogeneous polynomial of degree 2 and ρkε (z) = o(‖z‖2)

uniformly in k. Let us also define the inhomogeneous dilation

δk : (z1, . . . , zn) �→
(
z1

dk
,
z2√
dk

, . . . ,
zn√
dk

)

and set
@k = δk � φk �:, Dk = @k(D),

rk = 1

dkτk
ρ �@−1

k , J k = (@k)∗J.

We construct in the same way, φ ′k : R
2n+2 → R

2n+2, J̇ ′k = (φ ′k)∗J, ρ ′k =
ρ ′ � φ ′−1

k , and the dilation δ ′k. We also define @′k , D
′
k , r

′
k , and J ′k. Finally, we set

Fk = @′k � F �@−1
k : Dk → D ′

k.

4.1.3. Convergence
Dilation yields dk rk(z) = dk(Re z0 + P k(′z, ′z̄)) + O

(
dk
√
dk

)
, from which our

next lemma follows.

Lemma 3. The sequence (rk) converges at second order to r̃ with respect to the
compact-open topology, andDk converges in the sense of local Hausdorff set con-
vergence to D̃ = {z∈R

2n+2 | r̃(z) < 0}, where

r̃(z) = Re z0 + P(′z, ′z̄).

There is a similar statement for (r ′k) and D ′
k.

Lemma 4. The sequence of almost complex structures (J k), respectively (J ′k ),
converges on any compact subset to a model structure J̃, respectively J̃ ′, in the C1

sense.

Proof. We follow [16]. Writing almost complex structures as matrices, we have

J(z) = J(0)+
(
A(z) B(z)

C(z) D(z)

)
=

( J (1)
st + A(z) B(z)

C(z) J (n−1)
st +D(z)

)

and

J̇ k(z) = J̇ k(0)+
(
Ȧk(z) Ḃ k(z)

Ċ k(z) Ḋk(z)

)

=
(
J̇ k(1,1)(0)+ Ȧk(z) Ḃ k(z)

J̇ k(2,1)(0)+ Ċ k(z) J̇ k(2,2)(0)+ Ḋk(z)

)
,

where Ȧk → A, Ḃ k → B, Ċ k → C, and Ḋk → D with respect to the C1-topology
on any compact subset. Let us define

J k(z) =
( 1

dk
I2 0

0 1√
dk
I2n

)
J̇ k(δ−1

k (z))

(
dkI2 0

0
√
dkI2n

)

=
(

J̇ k(1,1) + Ȧk(δ−1
k (z)) 1√

dk
Ḃ k(δ−1

k (z))
√
dkJ̇

k
(2,1) +

√
dkĊ

k(δ−1
k (z)) J̇ k(2,2) + Ḋk(δ−1

k (z))

)
.
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Since δ−1
k converges uniformly to 0 and J̇ k converges uniformly to J on any com-

pact subset, it follows that

J̇ k(1,1) + Ȧk(δ−1
k (z))→ J (1)

st ,√
dkJ̇

k
(2,1) +

√
dkĊ

k(δ−1
k (z))→ 0,

J̇ k(2,2) + Ḋk(δ−1
k (z))→ J (n)

st

on any compact subset with respect to the C1 topology. Thus Ḃ k(z) and B(z) may
be expressed as

Ḃ k(z) =
n∑

j=1

(Bk
2j−1xj + Bk

2jyj )+ Bk
ε (z),

B(z) =
n∑

j=1

(B2j−1xj + B2jyj )+ Bε(z),

where Bk
j is a sequence of constant matrices that converges to Bj as k → +∞,

Bk
ε → Bε in the C1 sense on any compact subset, and Bk

ε = o(‖z‖) uniformly in
k. Therefore,

1√
dk
Ḃ k(δ−1

k (z)) = √
dk(B

k
1x1 + Bk

2 y1)

+
n∑

j=2

(Bk
2j−1xj + Bk

2jyj )+
1√
dk
Bk
ε (dk z1,

√
dk

′z)

→
n∑

j=2

(B2j−1xj + B2jyj ) as k→+∞.

We obtain that J k converges on any compact subset of R
2n+2 with respect to the

C1 topology to J̃ defined as

J̃(z) =
( J (1)

st B̃(′z)
0 J (n)

st

)
, B̃(′z) =

n∑
j=2

(B2j−1xj + B2jyj ).

Lemma 5. (D̃, J̃ ) and (D̃ ′, J̃ ′) are model domains.

Proof. We recall the proof given in [12] for the sake of completeness. Define r̃k =
ρ � δ−1

k and J̃ k = δk∗J. As for ṙk and J̇ k, one can show that r̃k/dk converges to r̃
at second order with respect to the compact-open topology and that J̃ k converges
to J̃ in the C1 sense on any compact subset. Consequently, for any v,

LJ̃ k

0

(
r̃k

dk

)
(v) −−−−→

k→+∞
LJ̃

0 r̃(v).

By the invariance of the Levi form we obtain LJ
0ρ(v) = LJ̃ k

0 r̃k(dδk(v)). Since
J̃ k(0) = Jst it follows that any complex tangent vector to the domain defined by
r̃k is of the form (0, v ′), and dδk(v) = v/

√
dk. For such a v,
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LJ
0ρ(v) = LJ̃ k

0 r̃k(dδk(v)) = LJ̃ k

0 r̃k

(
v√
dk

)
= LJ̃ k

0

(
r̃k

dk

)
(v).

Passing to the limit, we have that LJ̃
0 r̃(v) > 0 for every v in the complex tangent

space to D̃ at 0.

Lemma 6. The sequence (Fk) admits a subsequence that converges at first order
with respect to the compact-open topology to a map F̃ defined on D̃ and valued
in D̃ ′. The map F̃ is (J̃, J̃ ′)-holomorphic and verifies F̃(−1, ′0) = (−1, ′0).

Proof. Suppose that K is some compact subset in D̃. Observe that, in order to
show the existence of the desired subsequence, we need only prove that (Fk) is
bounded in the C 0-norm on K. Indeed, cover K by small bidiscs and consider two
transversal foliations by J-holomorphic curves on every bidisc. Such a foliation
is a small perturbation of the foliation by complex lines because J is a small per-
turbation of the standard structure (see [18]). The restriction of Fk on every such
curve is bounded in the C 0-norm; hence it is bounded in the C1-norm by the elliptic
estimates [23]. Since the bounds are uniform with respect to curves, the sequence
(Fk) is bounded in the C1-norm on K.

Now we follow [16]. First, recall that there exists an α > 0 such that, for any
sufficiently large k and r ∈ [0;1[ and for any J k-holomorphic disc h : � →
Dk ∩ U such that h(0) ∈ Q(0,α), there is a positive constant Cr such that
h(�r) ⊂ Q(0,Cr α).

For every p ∈ D̃, there is a neighborhood Up of p and a family Hp of pseudo-
holomorphic discs centered at p such that Up ⊂ ⋃

h∈Hp
h(�r(p)) (see [7; 14; 15]).

Hence one can find a finite covering {Utj}j=0,...,m of K such that t0 = (−1, ′0)
and Utj ∩ Utj+1 �= ∅. Set r = max{r(tj )}. Since δ ′−1

k � Fk(−1, ′0) = (−d ′k , ′0) ∈
Q(0, d ′k), we have δ ′−1

k � Fk � h(�r) ⊂ Q(0,Cr d
′
k) for all h∈H t0 , and

δ ′−1
k � Fk(Ut0) ⊂ Q(0,Cr d

′
k).

For all h ∈H t1, there exists an ω ∈ �r such that h(ω) ∈ Ut0 ∩ Ut1. The pseudo-
holomorphic disc g : ζ �→ h

( ζ+ω
1+ω̄ζ

)
verifies g(0) ∈Q(0,Cr d

′
k) and g(ω) = h(0).

Thus δ ′−1
k � Fk(t1) ∈Q(0,C2

r d
′
k) and δ ′−1

k � Fk(Ut1) ⊂ Q(0,C2
r d

′
k). Iterating this

process yields δ ′−1
k � Fk(Utm) ⊂ Q(0,C2m+1

r d ′k), whence

Fk(K) ⊂ δ ′k(Q(0,CKd
′
k)) = Q(0,CK).

Let (Fk ′) be a subsequence converging at first order with respect to the compact-
open topology to some map F̃ : D̃ → D̃ ′. Passing to the limit in the pseudo-
holomorphy condition, we get that F̃ is (J̃, J̃ ′)-holomorphic.

In the particular case n = 2, one can also find a proof of this statement in [5] that
is based on the method developed in [1; 2].

4.2. Properties of the Limit Map G

There exist simple model structures J, J ′ on H and pseudobiholomorphisms
. : D̃→ H and. ′ : D̃ ′ → H fixing (−1, ′0) and both continuous and one-to-one
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to the boundary. Let us define G = . ′ � F̃ � .−1. By construction, G : H → H̄

is (J, J ′)-holomorphic and fixes (−1, ′0).
If the almost complex structure J (resp. J ′) is integrable, then we can prescribe

J = Jst (resp. J ′ = Jst ).

4.2.1. Boundary Distance Preserving Property

Lemma 7. For any bounded subsetK in H , there exist some constantsCK ,C ′
K >

0 such that, for all p ∈K,

CK ≤ dist(G(p), ∂H)

dist(p, ∂H)
≤ C ′

K.

In particular, G takes its values in H (and not only in H̄) and admits a locally
Hölder 1

2 -continuous extension to H̄ verifying G(∂H) ⊂ ∂H.

Proof. The proof of Proposition 3 gives two constants c, c ′ > 0 such that, for any
p ∈D,

|ρ ′(F(p))| ≥ c dist(p, ∂D) and |ρ(p)| ≥ c ′ dist(F(p), ∂D ′).

Since Fk = @′k � F �@−1
k , for all p ∈Dk = @k(D) it follows that

c dist(@−1
k (p), ∂D) ≤ |ρ ′ �@′−1

k (Fk(p))| = d ′kτ
′
k|r ′k(Fk(p))|,

c ′ dist(F �@−1
k (p), ∂D

′) ≤ |ρ �@−1
k (p)| = dkτk|rk(p)|.

(6)

Let q be a point of the boundary ∂D. Then

‖@−1
k (p)− q‖ ≥ 1

Max
D
‖dφk‖‖δ

−1
k (p −@k(q))‖ ≥ dk

Max
D
‖dφk‖‖p −@k(q)‖.

Therefore, by (6) we obtain

ck dist(p, ∂D̃k) ≤ |r̃ ′k(Fk(p))| where ck = c
dk

d ′kτ
′
k Max

D
‖dφk‖;

c ′k dist(Fk(p), ∂D̃
′
k) ≤ |r̃k(p)| where c ′k = c ′

d ′k
dkτk Max

D
‖dφ ′k‖

.

According to Proposition 3,

d ′k
dk

= dist(F(pk), ∂D ′)
dist(pk , ∂D)

is bounded between two positive constants. Passing to the limit, we obtain con-
stants C,C ′ > 0 such that, for any p ∈ D̃ (and hence p ∈ D̃k for some sufficiently
large k),

c dist(F̃(p), ∂D̃ ′) ≤ |r̃(p)|,
c ′ dist(p, ∂D̃) ≤ |r̃ ′(F̃(p))|.

(7)

Applying the diffeomorphisms . ′ and .−1, we obtain the two desired inequali-
ties. The same arguments as in the proof of Corollary 2 give the locally Hölder
1
2 -continuous extension to H̄.
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Corollary 3. Writing G = (G0, ′G), one has

Re(G0(t,
′0)) −−−−−−−→

t∈R, t→−∞
−∞.

Proof. Since r(z) = Re z0+‖′z‖2 ≥ Re z0, we need only show that r(G(t, ′0))→
−∞. Moreover, for any t ∈R

−,

r(G(t, ′0)) = r̃ ′(F̃(.−1(t, ′0))) = r̃ ′(F̃(t, ′0)) ≥ c dist((t, ′0), ∂D̃)

according to (7). So it suffices to derive dist((t, ′0), ∂D̃) −−−−−−−→
t∈R, t→−∞

∞. The do-

main D̃ is defined by 0 = Re z0 + P(′z, ′z̄), where P is a real homogeneous poly-
nomial of degree 2. Let γ > 0 be such that, for any ′z ∈C

n, |P(′z, ′z̄)| ≤ γ ‖′z‖2.

One may easily verify that, for any z = (z0, ′z) ∈ C
n+1 such that ‖(t, ′0) − z‖ <√|t |/(1+ γ ), we have r̃(z) < 0 as soon as |t |/(1+ γ ) ≥ 1. Whence, for t suffi-

ciently large, dist((t, ′0), ∂D̃) ≥ √|t |/(1+ γ ).

4.2.2. Studying the Jacobian
In order to simplify the notation, we assume hereafter that D̃ = D̃ ′ = H and . =
. ′ = Id.

Lemma 8. There exist some constants 0 < α ≤ β <∞ such that, for all p ∈H ,

α|Jacp G| ≤ lim inf|Jac@−1
k
�δ−1

k
(p) F | ≤ lim sup|Jac@−1

k
�δ−1

k
(p) F | ≤ β|Jacp G|.

Proof. Pick p ∈H. Then p ∈Dk for some sufficiently large k, and

d(Fk)p = d(δ ′k) � d(@′k) � dF@−1
k
�δ−1

k
(p) � d@−1

k � dδ−1
k .

The rigid motion @k converges to the identity mapping. Hence, taking the deter-
minant in the previous equality, we have

Jac@−1
k
�δ−1

k
(p) F = µk Jacp Fk , (8)

where µk depends only on k. Moreover, µk ∼
k→+∞ (d ′k/dk)n+1 remains bounded

between two positive constants by the boundary distance preserving property of
F. Since Jacp Fk = det(d(Fk)p) −−−−→

k→+∞
Jacp G, we conclude the proof by pass-

ing to the limit in (8).

Lemma 9. For any sequence P = (pk)k of points of D converging to p∞ ∈ ∂D,
the sequence (Jacpk F )k is bounded. If Jacpk F −→

+∞
0 then, for any other se-

quence (p ′k)k of points of D converging to p∞, we have Jacp ′
k
F −→

+∞
0.

Proof. Denote by GP the limit map obtained by applying the scaling method to
the sequence P. Lemma 8 taken at p = (−1, ′0)∈H gives

α|Jac(−1,′0) G
P | ≤ lim inf|Jacpk F | ≤ lim sup|Jacpk F | ≤ β|Jac(−1,′0) G

P |.
This implies that the sequence (Jacpk F )k is bounded.
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Assume that Jacpk F → 0, and let (p ′k)k be another sequence converging to p∞.
Set p ′′2k = pk and p ′′2k+1 = p ′k. For any cluster point λ of (Jacp ′

k
F ), the sequence

(Jacp ′′
k
F ) has at least 0 and λ as cluster points. The scaling method applied to the

sequence P ′′ = (p ′′k ) and Lemma 8 taken at p = (−1, ′0)∈H together show that

α ′′|Jac(−1,′0) G
P ′′| ≤ 0 ≤ |λ| ≤ β ′′|Jac(−1,′0) G

P ′′|.
Hence Jac(−1,′0) G

P ′′ = 0 and λ = 0.

Lemma 10. Let P = (pk) be a sequence of points of D converging to p∞ ∈ ∂D.
Then the Jacobian of G = GP does not vanish in H.

Proof. We may assume p∞ = 0.
First, we show that if the Jacobian of G vanishes at some point p ∈ H then it

vanishes identically in H. The scaling method applyed to P and Lemma 8 taken at
p give a sequence (p ′′k ), where p ′′k = @−1

k � δ−1
k (p), such that Jacp ′′

k
F → 0. Then,

for any p ′ ∈H , we have

α|Jacp ′ G| ≤ lim inf|Jac@−1
k
�δ−1

k
(p ′ ) F |

≤ lim sup|Jac@−1
k
�δ−1

k
(p ′ ) F | ≤ β|Jacp ′ G|. (9)

Hence Jacp ′ G = 0 if and only if Jac@−1
k
�δ−1

k
(p ′ ) F → 0. According to Lem-

ma 9, it only remains to prove that the sequence (p ′k) converges to 0 with p ′k =
@−1
k � δ−1

k (p ′). But
@−1
k � δ−1

k (p ′) −−−−→
k→+∞

0,

which gives the statement.
Suppose by contradiction that the Jacobian of G is identically zero in H. There

exist a neighborhood U of 0, a constant δ > 0, and a function ϕ that is continuous
on U ∩H and strictly J-plurisubharmonic on U ∩H such that,

∀z∈U ∩H , ϕ(z) < −δ‖z‖2. (10)

Let us fix ε > 0 such that B
(
0,
√
ε/δ

) ⊂ U and set H ε = {z ∈ U ∩ H |
ϕ(z) > −ε}. ThenH ε ⊂ U by (10). By hypothesis, the maximal rank r0 of dG on
U ∩H is less than 2n+1. Moreover, according to Lemma 7, G(U ∩H) ⊂ U ∩H

and its continuous extension verifies G(∂H) ⊂ ∂H. Hence G is nonconstant and
r0 > 0.

As in the proof of Lemma 2, we obtain the existence of some q ∈ G(U ∩ H)

such that N = G−1({q}) is an almost complex submanifold of (real) dimension
2n + 2 − r0 in U ∩ H. The continuous function ϕ reaches its maximum on the
compact set N ∩H ε at some point p0. If p0 ∈N ∩H ε then there exists a pseudo-
holomorphic disc h in the open subset N ∩ H ε of N, centered at p0, such that
∂h
∂x
(0) �= 0 [18]—but this is impossible by the maximum principle. Thus p0 ∈

N ∩ ∂H ε. Because of the continuity of ϕ,

∂H ε = (U ∩ ∂H) ∪ {z∈U ∩H | ϕ(z) = −ε}.
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The boundary distance preserving property of G implies that N does not intersect
∂H. Consequently,

ϕ(p0) = −ε and Max
N∩H ε

ϕ = −ε.

Hence ϕ is constant equal to−ε on N ∩H ε, which contradicts the strict plurisub-
harmonicity of ϕ.

4.2.3. Computation of ∂G0
∂z0

Lemma 11. For all z∈H ,
∂G0

∂z0
(z) = 1.

Proof. First notice that, by Lemma 10, the almost complex structures J and J ′
are either both integrable or both nonintegrable.

Suppose that J and J ′ are both integrable. In this case, we have seen that J =
J ′ = Jst . The map G : H → H is thus holomorphic for the standard structure
and admits a continuous extension to the boundary (Lemma 7). Denote by : the
biholomorphism (for the standard structure) from H to the unit ball B of C

n+1 de-
fined by

:(z0, ′z) �→
(
z0 + 1

z0 − 1
,

1

1− z0

′z
)
;

: extends to a homeomorphism from H̄ to B̄ by defining :(∞) = (1, ′0) and
:−1(1, ′0) = ∞.

The map G̃ = : � G � :−1 from B to B is holomorphic and continuous up to
S ∗ = ∂B \ {(1, ′0)}. Moreover, G̃(S ∗) ⊂ ∂B. Such a map is an automorphism of
the ball (see [21, Prop. 2.3]). We have G̃(0) = 0 and, for all u∈ [0;1[,

G̃(u, ′0) = : �G
(
u+ 1

u− 1
, ′0

)
=

(
Z0 + 1

Z0 − 1
,

√
1

1− Z0

′Z
)

,

where G
(
u+1
u−1, ′0

) = (Z0, ′Z). Corollary 3 implies that, as u tends to 1−, the real

part ofZ0 tends to−∞ and so Re Z0+1
Z0−1 → 1. Since the image of: is the unit ball,

necessarily
G̃(u, ′0) −−−−−−−→

u∈[0;1[, u→1
(1, ′0).

By [4, p. 467], we obtain G̃0 ≡ Id. Hence G0(z0, ′z) = z0 for every z∈H.

Suppose that J and J ′ are both nonintegrable. In this case, by (2) we have

G(z0, ′z) = (cz0 + f1(
′z)+ if2(

′z), ′G(′z)),

where c �= 0 is a real constant and where f1 and f2 are real-valued. Since the
map G is continuous to the boudary and verifies G(∂H) ⊂ ∂H , for any ′z∈C

n we
obtain

Re z0 + ‖′z‖2 = 0 �⇒ cRe(z0)+ f1(
′z)+ ‖′G(′z)‖2 = 0.
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As a consequence, f1(
′z) = c‖′z‖2 − ‖′G(′z)‖2, f1(

′0) = ‖′G(′0)‖2, and

(−1, ′0) = G(−1, ′0) = (−c + f1(
′0)+ if2(

′0), ′G(′0)) �⇒
{ ′G(′0) = ′0,

c = 1.

Therefore, ∂G
∂z0
(z) = 1 for all z∈H.

5. Proofs of the Theorems

5.1. Behavior Near the Boundary

The different properties of G proved in the previous section give us some infor-
mation on F near the boundary. In particular, Lemma 10 implies that there is no
sequence (pk) of points of D converging to some point of the boundary such that
Jacpk F → 0. This proves Theorem 1.

As a consequence, the map F is locally pseudobiholomorphic out of some com-
pact set. Whence, in order to study the regularity near the boundary, it suffices to
understand the pseudobiholomorphic case. We also know (by [5, Prop. 3.5]) some
precise estimates of the Kobayashi metric, which give the asymptotic behavior of
the differential according to the directions. We begin by fixing notation. Consider
the vector fields

v0 = ∂ρ

∂x0

∂

∂y0
− ∂ρ

∂y0

∂

∂x0

and

vj = ∂ρ

∂x0

∂

∂xj
− ∂ρ

∂xj

∂

∂x0
for j = 1, . . . , n.

Restricting if necessary the neighborhood U of 0 on which we are working, the
vector fields defined by Xj = vj − iJvj (1 ≤ j ≤ n) form a basis of the J-
complex tangent space to {ρ = ρ(z)} at any z∈U. Moreover, if X 0 = v0 − iJv0

then the family X = (X 0,X1, . . . ,Xn) forms a basis of (1, 0) vector fields on U.
Similarly, we construct a basis X ′ = (X ′0,X ′1, . . . ,X ′n) of (1, 0) vector fields on
U ′ such that (X ′1(w), . . . ,X ′n(w)) defines a basis of the J ′-complex tangent space
to {ρ ′ = ρ ′(w)} at any w ∈U ′. In the sequel, we will denote by A(pk) the matrix
of the map dFpk with respect to X(pk) and X ′(F(pk)).

Proposition 4 [5]. The matrix A(pk) satisfies the following estimates:

A(pk) =
(

O1,1(1) O1,n(dist(pk , ∂D)1/2)

On,1(dist(pk , ∂D)−1/2) On,n(1)

)
.

Remark 3. The asymptotic behavior ofA(pk) depends only on the distance from
pk to ∂D, not on the choice of the sequence (pk)k.

In the case of a biholomorphism, one immediately obtains a similar estimate for
(dFpk )

−1 = d(F −1)F(pk). For a proper map, the control of the inverse matrix comes
from Proposition 4 and the control of the Jacobian.
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Proposition 5. The matrix A(pk) is invertible, and its inverse verifies the fol-
lowing estimates:

A(pk)
−1 =

(
O1,1(1) O1,n(dist(pk , ∂D)1/2)

On,1(dist(pk , ∂D)−1/2) On,n(1)

)
.

Proof. The formula A−1 = 1
JacF × tcomA, together with Lemma 9 and Theo-

rem 1, shows that we need only derive estimates for the matrix B = tcomA. The
determinant extracted from A and appearing in the entry Bi,j can be expressed by
developing along the row number 0 and/or the column number 0 of A. This gives
the statement according to Proposition 4.

Lemma 11 provides, exactly as in [12, Prop. 4.5], more information on the entry
(0, 0) in the matrix A(pk). Observe that X and X ′, and hence the matrix A(pk),
were normalized by the condition J(p∞) = Jst ; hence we write A(p∞,pk) in
place of A(pk).

Proposition 6. The entry (0, 0) of the matrixA verifies the following properties.

• Every cluster point of the function z �→ A0,0(p, z) is real when z tends to
p ∈ ∂D.

• Given z ∈D, let p ∈ ∂D be such that dist(z, ∂D) = ‖p − z‖; then there exists
a constant A > 0, independent of z∈D, such that |A(0,0)(p, z)| ≥ A.

By means of Theorem 1 and Propositions 5 and 6, we may use the arguments of
the proof of [12, Thm. 0.1]. As a consequence we obtain the following result.

Theorem 3. Let (D, J ) and (D ′, J ′) be strictly pseudoconvex regions of the
same dimension. Then every proper pseudoholomorphic map from D to D ′ has a
C1-extension to D.

5.2. Proof of Theorem 2 and Corollary 1

We suppose that the conditions of Theorem 2 are satisfied. Since F is a local bi-
holomorphism near the boundary, we can apply [3, Cor. 2] to the map (F, t(dF )−1)

withN = N ∗D andN ′ = N ∗D ′. We obtain that the map (F, t(dF )−1) is locally of
class C t1−1, where t1 = min(r − 1, r ′). Likewise, the map (F −1, t(dF )) (which is
well-defined near the boundary) is locally of class C t2−1, where t2 = min(r ′ − 1, r).

Hence F is of class C s, where s = max(t1, t2). This gives s = max(r − 1,
r ′ − 1) if |r ′ − r| < 1 and s = min(r, r ′) if |r ′ − r| ≥ 1. Moreover,

‖F‖C s−1(D)
≤ c(s)‖(F, t(dF )−1)‖∞

(
1+ c ′√

λJ
′
N ′

)
.

This concludes the proof of Theorem 2.
Corollary 1 follows immediately, since the almost complex structure J ′ is de-

fined near the boundary by J ′q = dFq � J � (dFq)−1.
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