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Sato–Tate Conjecture on Average
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1. Introduction

1.1. Motivation

A rather old conjecture asserts that if m = p is prime then, for any fixed ε > 0 and
sufficiently large p, for every integer a there are integers x and y with |x|, |y| ≤
p1/2+ε and such that a ≡ xy (modp); see [14; 16; 17; 18] and references therein.
The question has probably been motivated by the following observation. Using
the Dirichlet pigeon-hole principle, one can easily show that, for every integer
a, there exist integers x and y with |x|, |y| ≤ 2p1/2 and with a ≡ y/x (modp).
Unfortunately, this is known only with |x|, |y| ≥ Cp3/4 for some absolute constant
C > 0, which is due to Garaev [15].

On the other hand, it has been shown in the series of works [14; 16; 17; 18]
that the congruence a ≡ xy (modp) is solvable for all but o(m) values of a =
1, . . . ,m − 1, where x and y are significantly smaller than m3/4. In particular, it
is shown by Garaev and Karatsuba [17] for x and y in the range 1 ≤ x, y ≤
m1/2(logm)1+ε. Certainly this result is very sharp. Indeed, it has been observed
by Garaev [14] that well-known estimates for integers with a divisor in a given in-
terval immediately imply that, for any ε > 0, almost all residue classes modulo m

are not of the form xy (mod m) with 1 ≤ x, y ≤ m1/2(logm)κ−ε, where

κ = 1 − 1 + log log 2

log 2
= 0.08607. . . .

One can also derive from [10] that, for any ε > 0, the inequality

max{|x|, |y| : xy ≡ 1 (mod m)} ≥ m1/2(logm)κ/2(log logm)3/4−ε

holds:

• for all positive integers m ≤ M, except for possibly o(M) of them;
• for all prime m = p ≤ M, except for possibly o(M/logM) of them.

Similar questions about the ratios x/y have also been studied; see [14; 17; 28].
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1.2. Our Results

It is clear that these problems are special cases of more general questions about
the distribution in small intervals of residues modulo m of ratios a/x and prod-
ucts ax, where |x| ≤ X. In fact, here we consider this for x from more general
sets X ⊆ [−X,X].

Accordingly, for integers a,m,Y,Z and a set of integers X , we denote

Ma,m(X ;Y,Z) = #{(x, y)∈ X × [Z + 1,Z + Y ] :

gcd(x,m) = 1, a/x ≡ y (mod m)},
Na,m(X ;Y,Z) = #{(x, y)∈ X × [Z + 1,Z + Y ] : ax ≡ y (mod m)},

where the inversion is always taken modulo m.

We note that although in general the behavior of Na,m(X ;Y,Z) is similar to the
behavior of Ma,m(X ;Y,Z), there are some substantial differences. For example,
if X = {x ∈ Z : |x| ≤ X} for some X ≥ 1, then Na,m(X ;X, 0) = 0 for all inte-
ger a with m−m/X − 1 < a ≤ m− 1; see the argument in [14, Sec. 4]. It is also
interesting to note that the question of asymptotic behavior of Na,m(X ;Y,Z) has
some applications to the discrete logarithm problem; see [29].

Here we extend some of the results of Garaev and Karatsuba [17] and show that
if X,Y ≥ m1/2+ε and if X is a sufficiently massive subset of the interval [−X,X],
then Ma,m(X ;Y,Z) and Na,m(X ;Y,Z) are close to their expected average values
for all but o(m) values of a = 1, . . . ,m.

It seems that the method of Garaev and Karatsuba [17] is not suitable for ob-
taining results of this kind. So we use a different approach that is rather similar to
the one used in the proof of [5, Thm. 1].

Finally we remark that one can also obtain analogous results for

N ∗
a,m(X ;Y,Z)

= #{x ∈ X : ax ≡ y (mod m), gcd(x,m) = 1, y ∈ [Z + 1,Z + Y ]}
and several other similar quantities.

1.3. Applications

For integers r and s and a prime p, we consider Kloosterman sums

Kr,s(p) =
p−1∑
n=1

ep(rn + sn−1),

where ep(z) = exp(2πiz/p) and, as before, the inversion is taken modulo p.

For the complex conjugated sum we have

Kr,s(p) = K−r,−s(p) = Kr,s(p),

so Kr,s(p) is real. According to the Weil bound (see [20; 23; 24; 26]), we have

|Kr,s(p)| ≤ 2
√
p, gcd(r, s,p) = 1.
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Hence we can now define the angles ψr,s(p) by the relations

Kr,s(p) = 2
√
p cosψr,s(p) and 0 ≤ ψr,s(p) ≤ π.

The famous Sato–Tate conjecture asserts that, for any fixed nonzero integers r
and s, the angles ψr,s(p) are distributed according to the Sato–Tate density

µST(α,β) = 2

π

∫ β

α

sin2 γ dγ

(see [20, Sec. 21.2]). That is, if πr,s(α,β; T ) denotes the number of primes p ≤
T with α ≤ ψr,s(p) ≤ β, where as usual π(T ) denotes the total number of primes
p ≤ T, then the Sato–Tate conjecture predicts that

πr,s(α,β; T ) ∼ µST(α,β)π(T ), T → ∞,

for all fixed real 0 ≤ α < β ≤ π; see [20, Sec. 21.2]. It is also known that, if p is
sufficiently large and if r and s run independently through F

∗
p , then the distribu-

tion of ψr,s(p) is in accordance with the Sato–Tate conjecture [20, Thm. 21.7]. An
explicit quantitative bound on the discrepancy between the distribution of ψr,s(p)

for r, s ∈ F
∗
p and the Sato–Tate distribution is given by Niederreiter [27]. Various

modifications and generalizations of this conjecture are given by Katz and Sarnak
[23; 24]. Despite a series of significant efforts toward this conjecture, it remains
open. See, for example, [1; 7; 11; 12; 23; 24; 25; 27] and references therein.

Here, combining our bounds ofMa,m(X ;Y,Z)with a result of Niederreiter [27],
we show that on average over r and s and ranging over relatively short intervals
|r| ≤ R, |s| ≤ S, the Sato–Tate conjecture holds on average and the sum

%α,β(R, S, T ) = 1

4RS

∑
0<|r|≤R

∑
0<|s|≤S

πr,s(α,β; T )

satisfies
%α,β(R, S, T ) ∼ µST(α,β)π(T ).

Furthermore, over larger intervals, we also estimate the dispersion

&α,β(R, S, T ) = 1

4RS

∑
0<|r|≤R

∑
0<|s|≤S

(πr,s(α,β; T ) − µST(α,β)π(T ))2.

We recall that Fouvry and Murty [13] have proved the Lang–Trotter conjecture
for supersingular primes on average over |r| ≤ R and |s| ≤ S for the family of
elliptic curves Er,s given by the affine Weierstraß equation:

Er,s : U 2 = V 3 + rV + s.

Several more interesting questions on elliptic curves have been studied “on aver-
age” for similar families of curves in [3; 4; 6; 8; 9; 19; 21; 22]. However, a similar
question for Kloosterman sums has not been addressed.

We note that the technical details of our approach are different from those of
Fouvry and Murty [13] (which is based on an application of the Weil bound of ex-
ponential sums). For example, their result is nontrivial only if
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RS ≥ T 3/2+ε and min{R, S} ≥ T 1/2+ε

for some fixed ε > 0, where the second restriction is related to the range where
the Weil bound on incomplete exponential sums with polynomials is nontrivial.
The technique of [3] can also be applied to deriving an asymptotic formula for
%α,β(R, S, T ) for the same range of parameters R, S, and T. Apparently it can
also be applied to &α,β(R, S, T ) but certainly in an even narrower range of pa-
rameters. On the other hand, our results for %α,β(R, S, T ) and &α,β(R, S, T ) are
nontrivial for

RS ≥ T 1+ε (1)

and
RS ≥ T 2+ε, (2)

respectively.
We also remark that the results of this work on the behavior of Ma,m(X ;Y,Z)

on average have been applied in [2] to estimating the number of SL2(Fp) matrices
with entries in a given segment [−T, T ].

1.4. Notation

Throughout the paper, any implied constants in symbols O and � may occa-
sionally depend, where obvious, on the real positive parameter ε and are absolute
otherwise. We recall that the expressions U � V and U = O(V ) are both equiv-
alent to the statement that |U | ≤ cV holds with some constant c > 0.

We also write o(1) for a quantity that tends to zero when the “main” parame-
ter tends to infinity (that is, when m → ∞ in Sections 2.1 and 2.2, p → ∞ in
Section 3.1, and T → ∞ in Section 3.2).

We use p, with or without a subscript, to denote a prime number and use m to
denote a positive integer. Finally, ϕ(m) denotes, as usual, the Euler function of m.

Acknowledgment. The author wishes to thank Moubariz Garaev for many use-
ful discussions.

2. Congruences

2.1. Inverses

We start with the estimate of the average deviation between Ma,m(X ;Y,Z) and
its expected value taken over a = 1, . . . ,m. If the set X ⊆ [−X,X] is dense
enough—for example, if #X ≥ Xmo(1)—then this bound is nontrivial for X,Y ≥
m1/2+ε for any fixed ε > 0 and sufficiently large m.

Theorem 1. For all positive integers m,X,Y, an arbitrary integer Z, and a set
X ⊆ {x ∈ Z : |x| ≤ X},

m∑
a=1

∣∣∣∣Ma,m(X ;Y,Z) − #Xm

Y

m

∣∣∣∣
2

≤ #X (X + Y )mo(1),

where
Xm = {x ∈ X : gcd(x,m) = 1}.
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Proof. Denote
em(z) = exp(2πiz/m).

Using the identity

1

m

∑
−(m−1)/2≤h≤m/2

em(hv) =
{

1 if v ≡ 0 (mod m),

0 if v �≡ 0 (mod m),

we write

Ma,m(X ;Y,Z) =
∑
x∈Xm

Z+Y∑
y=Z+1

1

m

∑
−(m−1)/2≤h≤m/2

em(h(ax
−1 − y))

= 1

m

∑
−(m−1)/2≤h≤m/2

∑
x∈Xm

em(hax
−1)

Z+Y∑
y=Z+1

em(−hy)

= 1

m

∑
−(m−1)/2≤h≤m/2

em(−hZ)

X∑
x=1

gcd(x,m)=1

em(hax
−1)

Y∑
y=1

em(−hy).

The term corresponding to h = 0 is

1

m

∑
x∈Xm

Y∑
y=1

1 = #Xm

Y

m
.

Hence

Ma,m(X ;Y,Z) − #Xm

Y

m
� 1

m
Ea,m(X,Y ),

where

Ea,m(X,Y ) =
∑

1≤|h|≤m/2

∣∣∣∣
∑
x∈Xm

em(hax
−1)

∣∣∣∣
∣∣∣∣

Y∑
y=1

em(−hy)

∣∣∣∣.
Therefore,

m∑
a=1

∣∣∣∣Ma,m(X ;Y,Z) − #Xm

Y

m

∣∣∣∣
2

≤ 1

m2

m∑
a=1

Ea,m(X ,Y )2. (3)

We now put J = �log(Y/2)� and define the sets

H0 =
{
h

∣∣∣ 1 ≤ |h| ≤ m

Y

}
;

Hj =
{
h

∣∣∣ ej−1m

Y
< |h| ≤ ej

m

Y

}
, j = 1, . . . , J ;

HJ+1 =
{
h

∣∣∣ eJ m
Y

< |h| ≤ m

2

}
.

(We can certainly assume that J ≥ 1 since otherwise the bound is trivial.)
By the Cauchy inequality we have

Ea,m(X ,Y )2 ≤ (J + 2)
J+1∑
j=0

Ea,m,j(X ,Y )2, (4)
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where

Ea,m,j(X ,Y ) =
∑
h∈Hj

∣∣∣∣
∑
x∈Xm

em(hax
−1)

∣∣∣∣
∣∣∣∣

Y∑
y=1

em(−hy)

∣∣∣∣.
Using the bound

∣∣∣∣
Y∑

y=1

em(−hy)

∣∣∣∣ =
∣∣∣∣

Y∑
y=1

em(hy)

∣∣∣∣ � min

{
Y,

m

|h|
}

,

which holds for any integer h with 0 < |h| ≤ m/2 (see [20, Bound (8.6)]), we
conclude that

Y∑
y=1

em(−hy) � e−jY, j = 0, . . . , J + 1.

Thus

Ea,m,j(X ,Y ) � e−jY

∣∣∣∣
∑
h∈Hj

ϑh

∑
x∈Xm

em(hax
−1)

∣∣∣∣, j = 0, . . . , J + 1,

for some complex numbers ϑh with |ϑh| ≤ 1 for |h| ≤ m/2. Therefore,
m∑
a=1

Ea,m,j(X ,Y )2 � e−2jY 2
m∑
a=1

∣∣∣∣
∑
h∈Hj

ϑh

∑
x∈Xm

em(hax
−1)

∣∣∣∣
2

= e−2jY 2
m∑
a=1

∑
h1,h2∈Hj

ϑh1ϑh2

∑
x1,x2∈Xm

em(a(h1x
−1
1 − h2x

−1
2 ))

= e−2jY 2
∑

h1,h2∈Hj

ϑh1ϑh2

∑
x1,x2∈Xm

m∑
a=1

em(a(h1x
−1
1 − h2x

−1
2 )).

Clearly the inner sum vanishes if h1x
−1
1 �≡ h2x

−1
2 (mod m) and is equal to m other-

wise. As a result,
m∑
a=1

Ea,m,j(X ,Y )2 � e−2jY 2mTj , (5)

where Tj is the number of solutions to the congruence

h1x2 ≡ h2x1 (mod m), h1,h2 ∈ Hj , x1, x2 ∈ Xm.

We now see that if h1 and x2 are fixed then h2 and x1 are such that their product
s = h2x1 � ejmX/Y belongs to a prescribed residue class modulo m. Thus there
are at most O(ejX/Y + 1) possible values of s and for each fixed s � ejmX/Y

there are mo(1) values of h2 and x1 with s = h2x1 (see [30, Sec. I.5.2]). Therefore,

Tj ≤ #X#Hj

(
ejX

Y
+ 1

)
mo(1) = e2jX#Xm1+o(1)

Y 2
+ ej#Xm1+o(1)

Y
;

substitution into (5) then yields
m∑
a=1

Ea,m,j(X ,Y )2 � e−2jY 2mTj = X#Xm2+o(1) + e−j#XYm2+o(1).
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A combination of this bound with (4) yields the inequality
m∑
a=1

Ea,m(X ,Y )2 ≤ J 2X#Xm2+o(1) + #XYm2+o(1) = #X (X + Y )m2+o(1).

Finally, recalling (3), we conclude the proof.

Corollary 2. For all positive integers m,X,Y, an arbitrary integer Z, and the
set X = {x ∈ Z : |x| ≤ X},

m∑
a=1

∣∣∣∣Ma,m(X ;Y,Z) − 2XY
ϕ(m)

m2

∣∣∣∣
2

≤ X(X + Y )mo(1).

Proof. Using the Möbius inversion formula involving the Möbius function µ(d)

(see [20, Sec. 1.3] or [30, Sec. I.2.5]), we obtain
∑

|x|≤X
gcd(x,m)=1

1 =
∑
d|m

µ(d )

(
2X

d
+ O(1)

)
= 2X

∑
d|m

µ(d )

d
+ O

(∑
d|m

|µ(d)|
)
.

Using that ∑
d|m

µ(d )

d
= ϕ(m)

m

[30, Sec. I.2.7] and estimating∑
d|m

|µ(d)| ≤
∑
d|m

1 = mo(1)

[30, Sec. I.5.2], we derive
∑

|x|≤X
gcd(x,m)=1

1 = 2X
ϕ(m)

m
+ O(mo(1)). (6)

Substituting (6) in to Theorem 1 concludes the proof.

From Corollary 2 we may now immediately derive the following.

Corollary 3. For all positive integers m,X,Y, an arbitrary integer Z, the set
X = {x ∈ Z : |x| ≤ X}, and an arbitrary real 3 < 1,∣∣∣∣Ma,m(X ;Y,Z) − 2XY

ϕ(m)

m2

∣∣∣∣ ≥ 3
ϕ(m)

m2
XY

for at most 3−2Y−1(X−1 + Y−1)m2+o(1) values of a = 1, . . . ,m.

2.2. Multiples

We now estimate the average deviation between Na,m(X ;Y,Z) and its expected
value taken over a = 1, . . . ,m. Our arguments are almost identical to those of
Theorem 1, so we only indicate a few places where they differ (mostly only typo-
graphically). As before, if X ⊆ [−X,X] is dense enough (e.g., if #X ≥ Xmo(1)),
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then this bound is nontrivial for X,Y ≥ m1/2+ε for any fixed ε > 0 and sufficiently
large m.

Theorem 4. For all positive integers m,X,Y, an arbitrary integer Z, and a set
X ⊆ {x ∈ Z : |x| ≤ X},

m∑
a=1

∣∣∣∣Na,m(X ;Y,Z) − #X Y

m

∣∣∣∣
2

≤ #X (X + Y )mo(1).

Proof. As in the proof of Theorem 1, we write

Na,m(X ;Y,Z) =
∑
x∈X

Z+Y∑
y=Z+1

1

m

∑
−(m−1)/2≤h≤m/2

em(h(ax − y))

and obtain, instead of (3), that

m∑
a=1

∣∣∣∣Na,m(X ;Y,Z) − #X Y

m

∣∣∣∣
2

≤ 1

m2

m∑
a=1

Fa,m(X ,Y )2 + Y 2m−1+o(1),

where

Fa,m(X ,Y ) =
∑

1<|h|≤m/2

∣∣∣∣
∑
x∈X

em(hax)

∣∣∣∣
∣∣∣∣

Y∑
y=1

em(−hy)

∣∣∣∣.
Furthermore, instead of (4) we obtain

Fa,m(X ,Y )2 ≤ (J + 2)
J+1∑
j=0

Fa,m,j(X ,Y )2,

where

Fa,m,j(X ,Y ) =
∑
h∈Hj

∣∣∣∣
∑
x∈X

em(hax)

∣∣∣∣
∣∣∣∣

Y∑
y=1

em(−hy)

∣∣∣∣,

with the same sets Hj as in the proof of Theorem 1. Accordingly, instead of (5)
we get

m∑
a=1

Fa,m,j(X ,Y )2 � e−2jY 2mVj ,

where Vj is the number of solutions to the congruence

h1x1 ≡ h2x2 (mod m), h1,h2 ∈ Hj , x1, x2 ∈ X , gcd(x1x2,m) = 1.

Fixing h1 and x1 and counting the number of possibilities for the pair (h2, x2) as
before, we obtain

Vj ≤ e2jX#Xm1+o(1)

Y 2
+ ej#Xm1+o(1)

Y
,

which yields the desired result.
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Using (6), we deduce an analogue of Corollary 2.

Corollary 5. For all positive integers m,X,Y, an arbitrary integer Z, and the
set X = {x ∈ Z : |x| ≤ X},

m∑
a=1

∣∣∣∣Na,m(X ;Y,Z) − 2XY
ϕ(m)

m2

∣∣∣∣
2

≤ X(X + Y )mo(1).

Using this corollary, we now immediately derive Corollary 6.

Corollary 6. For all positive integers m,X,Y, an arbitrary integer Z, the set
X = {x ∈ Z : |x| ≤ X}, and an arbitrary real 3 < 1,∣∣∣∣Na,m(X ;Y,Z) − 2XY

m

∣∣∣∣ ≥ 3
XY

m

for at most 3−2Y−1(X−1 + Y−1)m2+o(1) values of a = 1, . . . ,m.

3. Distribution of Kloosterman Sums

3.1. Distribution for a Fixed Prime

Let Qα,β(R, S,p) be the set of pairs (r, s) of integers r and s with |r| ≤ R, |s| ≤ S,
and gcd(rs,p) = 1 and such that α ≤ ψr,s(p) ≤ β.

Theorem 7. For all primes p and positive integers R and S,

max
0≤α<β≤π

|#Qα,β(R, S,p) − 4µST(α,β)RS| � RSp−1/4 + R1/2S1/2p1/2+o(1).

Proof. Let Ap(α,β) be the set of integers a with 1 ≤ a ≤ p−1 and such that α ≤
ψ1,a(p) ≤ β. By the result of Niederreiter [27], we have:

max
0≤α<β<π

|#Ap(α,β) − µST(α,β)p| � p3/4. (7)

Assume that R ≤ S. Then, using that

Kr,s(p) = K1,rs(p)

and defining the set
R = {r ∈ Z : |r| ≤ R}, (8)

we write

#Qα,β(R, S,p) =
∑

a∈Ap(α,β)

Ma,p(R; 2S + 1, −S − 1) + O

(
RS

p

)
,

where the term O(RS/p) accounts for r and s with gcd(rs,p) > 1. Thus the
Cauchy inequality and Theorem 1 yield
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#Qα,β(R, S,p) − #Ap(α,β)
2R(2S + 1)

p

�
∑

a∈Ap(α,β)

∣∣∣∣Ma,p(R; 2S + 1, −S − 1) − 2R(2S + 1)

p

∣∣∣∣ + RS

p

�
(
p

p∑
a=1

∣∣∣∣Ma,p(R; 2S + 1, −S − 1) − 2R(2S + 1)

p

∣∣∣∣
2)1/2

+ RS

p

� √
R(R + S)p1/2+o(1) + RS

p
.

By (7) we see that, for R ≤ S,

#Qα,β(R, S,p) = 4µST(α,β)RS + O(RSp−1/4 + R1/2S1/2p1/2+o(1))

uniformly over α and β.

For that R > S we write

#Qα,β(R, S,p) =
∑

a∈Ap(α,β)

Ma−1,p(S, 2R + 1, −R − 1),

where S = {s ∈ Z : |s| ≤ S}, and proceed as before.

3.2. Sato–Tate Conjecture on Average

We start with an asymptotic formula for %α,β(R, S, T ).

Theorem 8. For all positive integers R, S, and T,

max
0≤α<β≤π

|%α,β(R, S, T ) − µST(α,β)π(T )| � T 3/4 + R−1/2S−1/2T 3/2+o(1).

Proof. We have

%α,β(R, S, T ) = 1

4RS

∑
p≤T

#Qα,β(R, S,p).

Applying Theorem 7, after simple calculations we obtain the result.

Theorem 9. For all positive integers R, S, and T,

max
0≤α<β≤π

&α,β(R, S, T ) � T 7/4 + R−1/2S−1/2T 3+o(1).

Proof. For two distinct primes p1 and p2, let Ap1p2(α,β) be the set of integers a
with 1 ≤ a ≤ p1p2 − 1 and such that

a ≡ a1 (modp1) and a ≡ a2 (modp2)

with some a1 ∈ Ap1(α,β) and a2 ∈ Ap2(α,β).
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Then, with the set R given by (8), we have
∑

0<|r|≤R

∑
0<|s|≤S

πr,s(α,β; T )2

= 2
∑

p1<p2≤T

( ∑
a∈Ap1p2(α,β)

Ma,p1p2(R; 2S + 1, −S − 1) + O

(
RS

p1

))

+ O(RST ),

where the term O(RS/p1) accounts for r and s with gcd(rs,p1p2) > 1 and the
term O(RST ) accounts for p1 = p2. Therefore,

∑
0<|r|≤R

∑
0<|s|≤S

πr,s(α,β; T )2

= 2
∑

p1<p2≤T

∑
a∈Ap1p2(α,β)

Ma,p1p2(R; 2S + 1, −S − 1) + O(RST ).

As in the proof of Theorem 7, we derive
∑

a∈Ap1p2(α,β)

Ma,p1p2(R; 2S + 1, −S − 1)

= 4#Ap1p2(α,β)
RS

p1p2
+ O

(√
RS(p1p2)

1/2+o(1)
)
.

Thus, using (7) yields
∑

a∈Ap1p2(α,β)

Ma,p1p2(R; 2S + 1, −S − 1)

= 4µST(α,β)2RS + O
(
RSp

−1/4
1 + √

RS(p1p2)
1/2+o(1)

)
.

Hence, ∑
0<|r|≤R

∑
0<|s|≤S

πr,s(α,β; T )2

= 8µST(α,β)2RS
∑

p1<p2≤T

1 + O
(
RST 7/4 + √

RST 3+o(1)
)

= 4µST(α,β)2RSπ(T )2 + O
(
RST 7/4 + √

RST 3+o(1)
)
.

Combining this bound with Theorem 8 then shows the desired result.

Clearly, Theorems 8 and 9 are nontrivial under the conditions (1) and (2), re-
spectively. We also remark that, by combining [12, Lemma 4.4] (taken with r =
1) together with the method of [27], one can prove an asymptotic formula for
#Qα,β(1, S,p) when S ≥ p3/4+ε for any fixed ε > 0. In turn, this leads to an
asymptotic formula for %α,β(1, S, T ) in the same range S ≥ T 3/4+ε. However, it
is not clear how to estimate &α,β(R, S, T ) within this approach.
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