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Klein’s Conjecture for Contact Automorphisms
of the Three-Dimensional Affine Space

Marat Gizatullin

1. Introduction

The ground field k is of characteristic 0.
Let (x, y,p) be three affine coordinates. The Pfaffian form

ω = dy − pdx (1.1)

is said to be a contact form of the three-dimensional space. A birational transfor-
mation T of the three-dimensional (x, y,p)-space defined by

x ′ = f(x, y,p), y ′ = g(x, y,p), p ′ = h(x, y,p) (1.2)

is said to be a contact Cremona transformation of the (x, y)-plane if the transform
T ∗(ω) of the contact form (1.1) is proportional to this form:

T ∗(ω) = ρ(x, y,p) · ω, (1.3)

where ρ(x, y,p) is a nonzero rational function. Our reference to a “plane” may
seem mistaken, but classically it means an action of the transformation on plane
contact elements ((x, y),p) consisting of a point (x, y) and a slope p at the point.
We will say that ρ(x, y,p) is the multiplier of T. The contact transformation T is
said to be a contact affine transformation (or contact polynomial automorphism)
if T and its inverse T −1 are polynomial. For a contact affine transformation of A

3,
the multiplier is a nonzero constant (see Lemma 2.1 for contact transformations of
odd-dimensional spaces).

Example 1.1. Let
x ′ = f(x, y), y ′ = g(x, y) (1.4)

be a Cremona transformation of the (x, y)-plane. It is possible to extend (1.4) to a
contact transformation

x ′ = f(x, y), y ′ = g(x, y), p ′ = h(x, y,p), (1.5)

where

h(x, y,p) =
p
∂g

∂y
+ ∂g

∂x

p
∂f

∂y
+ ∂f

∂x

.
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See [I, 4.5, p. 103] for a description of such an extension for a one-parameter
group. According to tradition, we will say that (1.5) is a contact extension of point
transformation (1.4) or, more briefly, that (1.5) is a point transformation.

Example 1.2. It is not hard to verify that the transformation

L: x ′ = p, y ′ = xp − y, p ′ = x (1.6)

is involutive and contact. It is the Legendre transformation (see [I, 2.5, pp. 40–41]).
The Legendre transformation belongs to the set of duality transformations. All
duality transformations are conjugate by extended plane projective collineations
to the Legendre transformation. See [K, Sec. 62] for a description of space duality
transformations as contact transformations. According to [P, p. 125], the connec-
tion between the reciprocity defined by a quadric and the Legendre transformation
was observed by Michel Chasles.

The following conjecture may be found in [K, Sec. 75.1, p. 300].

Klein’s Conjecture. The group of contact Cremona transformations of the
projective plane is generated by the subgroup of point contact transformations
and by the Legendre transformation.

Remark 1.3. The conjecture’s formulation here is more explicit than Klein’s
original description of his principle. In [K, p. 300] Klein comments on an exam-
ple of decomposition of a contact transformation (it was the pedal transformation)
and writes as follows:

Wir entnehmen aus unserem Beispiel daher das folgende allgemeine
Prinzip: Um Beispiele ein eindeutiger Berührungstransformation
herzustellen, braucht man nur eine beliebige dualistische
Transformation mit einer beliebigen Cremona Transformation
verbunden.

Later authors stated the conjecture without a reference to Klein. For example,
Keller [Ke, p. 651] writes that he does not know a birational contact transformation
of the plane that cannot be presented as a composition of point Cremona transfor-
mations and duality transformations:

Korrelationen und Cremona Transformationen und alles daraus
Zusammengestzen sind Berührungstransformationen. Eine birationale
Berührungstransformation die nicht dieser Gruppe angehört, ist nur
nicht bekannt.

Some other authors (e.g. Hermann [He]) attribute the conjecture to Keller but not
to Klein.

I note Klein’s sorrowful remark at the end of [K, Sec. 75.1]. He says that so far
we do not have a general theory of one-to-one algebraic contact transformations:
“Eine allgemeine Theorie der eindeutigen und algebraischen Berührungstransfor-
mationen sheint noch nicht entwickelt zu sein.” Moreover, I add that Klein stated
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his conjecture for the first time in his lectures on higher geometry, printed litho-
graphically (the first publication of [K]) in 1893.

Our result is the following theorem.

Theorem1.4. Any polynomial contact automorphism of the affine (x, y,p)-space
is a composition of some extended point polynomial automorphisms of the (x, y)-
plane and of some number of Legendre transformations.

In Section 4 we present a description of the structure of a polynomial contact trans-
formation of multidimensional affine space.

Acknowledgments. I would like to thank the organizers of the Oberwolfach
Conference on Affine Algebraic Geometry (7–13 January 2007), where I had a
happy opportunity to meet my geometer colleagues and to discuss topics relevant
to the paper.
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to Bonn, where the preprint MPIM-2007-11 containing an extended text of the talk
was published.

I would like to thank Igor Dolgachev for linguistic corrections of my English
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2. General Definitions and Lemmas

We begin with general multidimensional formulations of the basic definitions.
Here we consider the odd-dimensional affine space A

2n+1 with point coordinates

(x, y, p) = (x1, . . . , xn, y,p1, . . . ,pn),

its even-dimensional (sub/quotient)space A
2n with coordinates

(x, p) = (x1, . . . , xn,p1, . . . ,pn),

the differential form on A
2n+1,

ω(x, y, p) = dy − p1dx1 − · · · − pndxn, (2.1)

and the differential

� = dω = dx1 ∧ dp1 + · · · + dxn ∧ dpn. (2.2)

Certainly, (2.1) generalizes (1.1). A birational transformation T of the (2n + 1)-
dimensional affine space A

2n+1 defined by

x ′
i = fi(x, y, p),

y ′ = g(x, y, p), (2.3)

p ′
i = hi(x, y, p),
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where 1 ≤ i ≤ n, is said to be a contact Cremona transformation of the space if
the transform T ∗(ω) of the contact form (2.1) is proportional to the form

T ∗(ω) = ρ(x, y, p) · ω, (2.4)

where ρ(x, y, p) is a nonzero rational function.
The function ρ(x, y, p) is the multiplier of T. The contact Cremona transfor-

mation T is said to be a contact affine transformation if T and its inverse T −1

are polynomial. By Lemma 2.1, the multiplier of any contact affine (biregular)
transformation is a nonzero constant. A birational transformation S of the 2n-
dimensional affine space A

2n defined by

x ′
i = fi(x, p),

p ′
i = hi(x, p)

(2.5)

is said to be a conformally symplectic Cremona transformation of the space if the
image S ∗(�) of the symplectic form (2.2) is proportional to the form

S ∗(�) = σ(x, p) ·�, (2.6)

where σ(x, p) is a nonzero rational function. The function σ is the conformal mul-
tiplier of S.

A few words about the proof of Lemma 2.1 to follow. According to [P, p. 138],
an assertion as in our lemma but for the multidimensional case was proved by Lie
(the proof is reproduced in [Ca, p. 109]). Carathéodory did not use exterior dif-
ferential forms, and Polistchuk writes that the idea of applying differential forms
in a proof is due to Frobenius and Cartan. We use this idea in the sequel.

Lemma 2.1. For a contact Cremona transformation T defined by (2.3), the de-
terminant J(T ) of the Jacobian matrix

M(T ) =




∂f1

∂x1
. . .

∂f1

∂xn

∂f1

∂y

∂f1

∂p1
. . .

∂f1

∂pn
...

. . .
...

...
...

. . .
...

∂fn

∂x1
. . .

∂fn

∂xn

∂fn

∂y

∂fn

∂p1
. . .

∂fn

∂pn

∂g

∂x1
. . .

∂g

∂xn

∂g

∂y

∂g

∂p1
. . .

∂g

∂pn

∂h1

∂x1
. . .

∂h1

∂xn

∂h1

∂y

∂h1

∂p1
. . .

∂h1

∂pn
...

. . .
...

...
...

. . .
...

∂hn

∂x1
. . .

∂hn

∂xn

∂hn

∂y

∂hn

∂p1
. . .

∂hn

∂pn




(2.7)

is equal to (n+ 1)th power of the multiplier :

J(T ) = ρn+1.
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Proof. Indeed, if T is contact then

T ∗(�) = T ∗(dω) = dT ∗(ω)
= dρ ∧ ω + ρ�. (2.8)

Therefore,

J(T )dx1 ∧ · · · ∧ dxn ∧ dy ∧ dp1 ∧ · · · ∧ dpn

= T ∗(dx1 ∧ · · · ∧ dxn ∧ dy ∧ dp1 ∧ · · · ∧ dpn)

= 1

n!
T ∗(ω ∧�∧n) = 1

n!
ρn+1ω ∧�∧n

= ρn+1dx1 ∧ · · · ∧ dxn ∧ dy ∧ dp1 ∧ · · · ∧ dpn.

A parallel similar assertion with almost the same proof can be made for confor-
mally symplectic transformations.

Lemma 2.2. For a conformally symplectic Cremona transformation S defined by
(2.5), the determinant J(S) of the Jacobian matrix

M(S) =




∂f1

∂x1
. . .

∂f1

∂xn

∂f1

∂p1
. . .

∂f1

∂pn
...

. . .
...

...
. . .

...

∂fn

∂x1
. . .

∂fn

∂xn

∂fn

∂p1
. . .

∂fn

∂pn

∂h1

∂x1
. . .

∂h1

∂xn

∂h1

∂p1
. . .

∂h1

∂pn
...

. . .
...

...
. . .

...

∂hn

∂x1
. . .

∂hn

∂xn

∂hn

∂p1
. . .

∂hn

∂pn




(2.9)

is equal to nth power of the conformal multiplier :

J(S) = σ n.

We omit the proof.
We will say that, for a conformally symplectic Cremona transformation (2.5),

there exists a potential U = U(x, p) ∈ k(x1, . . . , xn,p1, . . . ,pn) if the following
identities are fulfilled:

∂U

∂pi
=

n∑
k=1

hk
∂fk

∂pi
,

∂U

∂xi
=

n∑
k=1

hk
∂fk

∂xi
− piσ ;

here 1 ≤ i ≤ n and σ is the conformal multiplier of the transformation. It is clear
that, for any symplectic polynomial automorphism of A

2n, the conformal multi-
plier σ is a constant and a potential exists.
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If σ is a constant and if a potential for (2.5) exists, then

x ′
i = fi(x, p),

y ′ = σy + U(x, p), (2.10)

p ′
i = hi(x, p)

is a contact transformation. We will say that the transformation (2.10) is a contact
lift of (2.5). For such a lift (2.10), the multiplier ρ coincides with σ. Any poten-
tial is defined up to an additive constant. As a result, any lift is defined up to an
element from group Ty(A

2n+1) of translations parallel to the y-axis:

x ′
i = xi, y ′ = y + b, p ′

i = pi, (2.11)

where b is an element of the ground field k.

Lemma 2.3. Any contact polynomial automorphism of the affine (2n+ 1)-space
is a contact lift of some conformally symplectic polynomial automorphism of the
affine 2n-space. That is, such a transformation is representable as (2.10), where
fi, hi, and U are polynomials.

Proof. For a polynomial contact automorphism T defined by (2.3), one can write

det(M(T )) = ∂g

∂x1
F1 + · · · + ∂g

∂xn
Fn + ∂g

∂y
G+ ∂g

∂p1
H1 + · · · + ∂g

∂pn
Hn,

where F1, . . . ,Fn,G,H1, . . . ,Hn are the co-factors of elements in the (n+1)th row
of matrix M(T ) in (2.7).

The plan of the proof is as follows. First, we must show that if the multiplier ρ
is a constant then all the co-factors (with the exception of G) in the (n+1)th row
of M(T ) vanish. But the co-factor G is equal to the nth power of the multiplier;
therefore, according to Lemma 2.2, the (n+ 1)th element ∂g

∂y
in the (n+ 1)th row

of matrix is equal to the multiplier:

∂g

∂y
= ρ.

Second, we must show that if the multiplier ρ of transformation (2.3) is a con-
stant then the right-hand sides fi and gi of (2.3) do not depend on y—that is, the
corresponding lines of formulas for (2.3) have the same form as the lines of (2.10).

The proof of Lemma 2.2 employed identity (2.8). Here the multiplier is a con-
stant, so

T ∗(�) = ρ�. (2.12)

Therefore,
T ∗(�∧n) = ρn�∧n

and

T ∗(dx1 ∧ · · · ∧ dxn ∧ dp1 ∧ · · · ∧ dpn) = ρn · dx1 ∧ · · · ∧ dxn ∧ dp1 ∧ · · · ∧ dpn.

This equality shows that the co-factor G is equal to ρn and that other co-factors
vanish.
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Second, identity (2.12) implies that

n∑
i=1

∣∣∣∣∣∣∣∣

∂fi

∂xm

∂fi

∂y

∂hi

∂xm

∂hi

∂y

∣∣∣∣∣∣∣∣
= 0, m = 1, . . . , n,

or
n∑
i=1

∂hi

∂y

∂fi

∂xm
−

n∑
i=1

∂fi

∂y

∂hi

∂xm
= 0, m = 1, . . . , n.

One may consider the latter identities as a system of homogeneous linear equa-
tions with unknown quantities ∂hi/∂y and ∂fi/∂y. The determinant of the system is
equal (up to a sign) toG (or to the determinant of a matrix of form (2.9)). Because
of nonvanishing of the determinant, the solution to the linear system is trivial. Fi-
nally, it is necessary to observe that, owing to independence of fi and gi on y, the
restriction of T to the (x, p)-hyperplane is symplectic.

We add that a comparison of (2.12) and (2.6) implies the equality ρ = σ.

Remark 2.4. Regarding the second step of our proof: The vanishing of the par-
tial derivatives by y admits an interpretation from the viewpoint of a general theory
of contact varieties (see e.g. [H, Chap. 4]). On a general contact variety, the struc-
ture contact form ω defines a vector field Vω by the condition

Vω(f ) · ω ∧ (dω)∧n = df ∧ (dω)∧n.

For the case of our standardω (see (2.1)), Cartan [C, Chap. XIII] used the notation
{f } instead of Vω(f ). Certainly, for the standard case the vector field is parallel
to the y-axis, {f } = ∂f/∂y. The vanishing of Vω(f ) means that f is a constant
along the trajectories of the vector field Vω, and f is a lift of a function defined on
a symplectic quotient of the contact variety.

3. Proof of Theorem 1.4

We begin with some elementary examples.

Example 3.1. Let P(x) be a polynomial of x, and let

x ′ = x, y ′ = y + P(x), p ′ = p + dP

dx
.

By Example 1.1, this transformation is a contact extension of a triangular point
transformation

x ′ = x, y ′ = y + P(x). (3.1)

If we take
f(x,p) = x, h(x,p) = p + dP

dx

to be an automorphism of the affine (x,p)-plane, then by a lift (in the sense of
the comments after (2.10)) of the automorphism we obtain the transformation of
Example 3.1.
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Example 3.2. The Legendre transformation (1.6) is a lift of the transposition of
variables x and p.

Example 3.3. More generally, the linear transformation

x ′ = Ap, p ′ = Bx, (3.2)

where A∈ k∗ and B ∈ k∗, has the following lift:

x ′ = Ap, y ′ = AB(px − y), p ′ = Bx.

It is clear that the transformation (3.2) is a composition of an extended linear di-
agonal transformation and the Legendre transformation.

Example 3.4. One of the lifts of the triangular transformation

x ′ = x + F(p), p ′ = p, (3.3)

where F(p)∈ k[p], is

x ′ = x + F(p), y ′ = y + U(p), p ′ = p,

where U(p)∈ k[p] and dU/dp = pF(p). The latter transformation is a composi-
tion of two Legendre transformations L from (1.6) and of a point transformation.
Indeed, if R is the point transformation

x ′ = x, y ′ = y − U(x)+ xF(x), p ′ = p + F(x),

then the lift coincides with LRL.

Remark 3.5. Lie preferred the following notation for the lift of (3.3):

x ′ = x + dW(p)

dp
, y ′ = y −W(p)+ p

dW(p)

dp
, p ′ = p.

Certainly, Lie considered W(p) more general than a rational function with real
coefficients. He proved in [L, Chap. 2, Thm. 11, p. 60] that such a commuta-
tive subgroup of contact transformations coincides with its own centralizer in the
group of all contact transformations.

Proof of Theorem 1.4 (continued ). It is enough to find a set of generators of the
group of contact polynomial automorphisms of the affine 3-space such that any
generator is decomposable into a composition of some extended point transforma-
tions and some number of the Legendre transformations.

According to a well-known theorem of Jung and Van der Kulk [J; V], the group
of polynomial automorphisms of the (x,p)-plane is generated by transformations
(3.2) and (3.3) from Examples 3.3 and 3.4, respectively. We saw that some con-
tact lifts of the transformations exist. Any contact lift is defined up to a translation
parallel to the y-axis as

x ′ = x, y ′ = y + b, p ′ = p. (3.4)
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By Lemma 2.3 and the theorem of Jung and Van der Kulk, the union

of the set of lifted transformations (3.3) and (3.2)
with the set of extended (3.1)
and with the set of translations (3.4)

generates the group of contact polynomial automorphisms of the affine 3-space. It
is clear that any translation is a point transformation. Moreover, we saw that the
lifts of (3.3) and (3.2) satisfy Klein’s conjecture.

4. A Group Extension

We would like to say a few final words about the structure of the group of contact
polynomial automorphisms of an odd-dimensional space.

Let CSAut(A2n) denote the group of all conformally symplectic polynomial
automorphisms of A

2n (see (2.5) and (2.6)), let ContAut(A2n+1) denote the group
of all contact polynomial automorphisms of A

2n+1 (see (2.3) and (2.4)), and let
Ty(A

2n+1) be the group of translations parallel to the y-axis (see (2.11)). The group
of such translations is a subgroup ContAut(A2n+1). Lemma 2.3 says that by omit-
ting the middle line in (2.3) we obtain formulas of type (2.5). Thus we have a
homomorphism of ContAut(A2n+1) to CSAut(A2n). The latter homomorphism is
surjective. Hence we obtain the following result.

Theorem 4.1. The sequence of homomorphisms

{1} → Ty(A
2n+1) → ContAut(A2n+1) → CSAut(A2n) → {1} (4.1)

is exact.

Proof. The theorem is a reformulation of Lemma 2.3.

Remark 4.2. In (4.1), the middle group is an extension of the abelian invariant
subgroup Ty(A

2n+1) by CSAut(A2n). One can describe such an extension with the
help of an action of the quotient group on the kernel together with a system of
factors (see [Ku, Sec. 48]). In our case, the action coincides with the multiplica-
tion by the Jacobian determinant; that is, if α ∈ CSAut(A2n) is the image of gα ∈
ContAut(A2n+1) and if t is the translation (2.11), then gα tg−1

α is defined by

x ′
i = xi, y ′ = y + J(α)b, p ′

i = pi,

where J(α) is the Jacobian determinant of α. For a general extension, the system
of factors is the function mα,β of pairs of elements α,β of the quotient group with
values in the kernel, and the function is defined (after a fixation of some represen-
tatives gα) by the identity

gαgβ = mα,βgαβ.

For our case, we can fix the representatives by the condition of vanishing of po-
tentials at the origin (0). After doing so, the constant bα,β corresponding to the
translation mα,β is defined by

bα,β = Uα(gβ(0)),

with Uα(x, p) the potential of α vanishing at (0). The produced familymα,β is the
system of factors defining extension (4.1).
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