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On Sections of Elliptic Fibrations

Mustafa Korkmaz & Burak Ozbagci

1. Introduction

It is well known that two generic cubics P and Q in CP 2 intersect each other in
nine points z1, . . . , z9. By constructing the corresponding pencil of curves

{sP + tQ | [s : t] ∈ CP 1}
one can define a map f : CP 2 − {z1, . . . , z9} → CP 1. After blowing up CP 2 at
{z1, . . . , z9} one can extend f to a Lefschetz fibration π : E(1) = CP 2 # 9CP 2 →
CP 1 with nine distinguished sections and whose generic fiber is an elliptic curve.
Our aim in this paper is to describe an analogous construction in the smooth cat-
egory, but unfortunately we do not know whether our construction arises from
an algebraic pencil of curves. Nevertheless, many 4-manifold topologists were
curious about such a differential topological construction (e.g., this was posed ex-
plicitly as a question in [4]).

Let �s
g,k denote the mapping class group of a compact connected orientable

genus-g surface with k boundary components and s marked points, so that diffeo-
morphisms and isotopies of the surface are assumed to fix the marked points and
the points on the boundary. (We will drop k if the surface is closed and drop s

if there are no fixed points.) A product
∏m

i=1 ti of right-handed Dehn twists in �g

provides a genus-g Lefschetz fibration X → D2 over the disk with closed fibers.
If

∏m
i=1 ti = 1 in �g then the fibration closes up to a fibration over the sphere S 2.

A lift of the relation
∏m

i=1 ti = 1 to �k
g shows the existence of k disjoint sections

of the induced Lefschetz fibration. The self-intersection of the j th section is −nj

if
∏m

i=1 ti = t
n1
δ1

· · · t nk

δk
in �g,k for some positive integers n1, . . . , nk , where the tδi

are right-handed Dehn twists along circles parallel to the boundary components of
the surface at hand (cf. [3]).

On the other hand, an expression of the form
∏m

i=1 ti = tδ1 · · · tδk
in �g,k naturally

describes a Lefschetz pencil: the relation determines a Lefschetz fibration with k

disjoint sections, where each section has self-intersection −1, and after blowing
these sections down we get a Lefschetz pencil (cf. [4]). Conversely, blowing up the
base locus of a Lefschetz pencil yields a Lefschetz fibration that can be captured
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(together with the exceptional divisors of the blow-ups, which are all sections now)
by a relation of this type.

In this paper we find relations of the form
∏12

i=1 ti = tδ1 · · · tδk
in �1,k for 4 ≤

k ≤ 9, generalizing the well-known cases k = 1, 2, 3. A relation of this type natu-
rally induces a Lefschetz pencil, and by blowing up we obtain an elliptic Lefschetz
fibration with k disjoint sections. Moreover, by taking the nth power of our rela-
tion (for n ≥ 2) we have

(∏12
i=1 ti

)n = t n
δ1

· · · t n
δk

∈ �1,k

for 4 ≤ k ≤ 9. Once again this relation induces an elliptic Lefschetz fibration
E(n) → S 2 with 12n singular fibers and k disjoint sections, where the self-
intersection of each section is equal to −n.

The reader is advised to consult [2; 6; 8] for background material on Lefschetz
fibrations and pencils. To simplify notation in the rest of this paper, we will de-
note a right-handed Dehn twist along a curve α also by α. A left-handed Dehn
twist along α will be denoted by ᾱ. We will multiply the Dehn twists from right
to left; that is, βα means that we first apply α then β.

Acknowledgment. The authors would like to thank John Etnyre, David Gay,
and Andras Stipsicz for their interest in this work. This research was carried out
while the second author was visiting the School of Mathematics at the Georgia
Institute of Technology.

2. Lantern Relation for the Four-holed Sphere

Consider the four-holed sphere in Figure 1. Then we have the relation

δ1δ2δ3δ4 = γσα

in �0,4, which was discovered by Dehn [1]. It was rediscovered by Johnson [7]
and named the lantern relation. We will freely use this relation on any subsurface
(of another surface) that is homeomorphic to a sphere with four holes. The depic-
tion of the lantern relation on the four-holed sphere in Figure 1 will be convenient
in the subsequent discussions. The lantern relation is classically proven by com-
paring the actions of both sides on a suitable system of curves whose complement
is a disc.
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Figure 1 Four-holed sphere with boundary {δ1, δ2, δ3, δ4}
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3. Relations on a Torus with Holes

In this section we will generalize the well-known one-holed torus relation to a re-
lation on the k-holed torus for 2 ≤ k ≤ 9. We will give all the details in each case
since the relation for k + 1 holes is derived by using the relation for k holes with
1 ≤ k ≤ 8. The relations in the cases k = 2, 3 are also known, but we compute
them anyway for the sake of completeness and to show our method.

We note that if two circles are disjoint then the corresponding Dehn twists com-
mute. Also, if two circles α and β intersect transversely at one point, then the
corresponding Dehn twists satisfy the braid relation: αβα = βαβ.

3.1. One-holed Torus. If α and β are two circles on a torus with one boundary
δ1 that intersect each other transversely at one point, then

(αβ)6 = δ1.

We call this the one-holed torus relation (it turns out that this relation was known
to Dehn [1] in a slightly different form). The one-holed torus relation, just like
the lantern relation, is proven by comparing the actions of both sides on a suitable
system of curves whose complement is a disc.

3.2. Two-holed Torus. Consider the two-holed torus in Figure 2. By the
lantern relation, we have

α2
2 δ1δ2 = γ1σ1α1.

The one-holed torus relation is

γ1 = (α2β)6.

Observe that σ1 = β̄ᾱ2 ᾱ2α1βᾱ1α2α2β. Then we have

δ1δ2 = ᾱ2 ᾱ2γ1σ1α1

= ᾱ2 ᾱ2(α2βα2βα2βα2βα2βα2β)(β̄ᾱ2 ᾱ2α1βᾱ1α2α2β)α1

= ᾱ2 ᾱ2α2α2βα2α2βα2βα2βᾱ2α1βᾱ1α2α2βα1

= βα2α2βα2α2βα1βᾱ1α2α2βα1

= βα2α2βα2α2α1βα2α2βα1

= βα2βα2βα2α1βα2α2βα1

= α2βα2α2βα2α1βα2α2βα1

= α2α2βα2α1βα2α2β(α1α2β)

= α2βα2βα1βα2α2β(α1α2β)

= α2βα2α1βα1α2α2β(α1α2β)

= α2βα1α2βα2(α1α2β)(α1α2β)

= α2βα1βα2β(α1α2β)2

= α2α1β(α1α2β)(α1α2β)2

= (α1α2β)4.
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Figure 2 Two-holed torus with boundary {δ1, δ2}
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Figure 3 Three-holed torus with boundary {δ1, δ2, δ3}

3.3. Three-holed Torus. Consider the three-holed torus in Figure 3. By the
lantern relation,

α3α1δ2δ3 = γ2σ2α2,

and by the two-holed torus relation,

δ1γ2 = (α1α3β)4.

Note that σ2 = β̄ᾱ1ᾱ3α2βᾱ2α3α1β. Then

δ1δ2δ3 = ᾱ1ᾱ3δ1γ2σ2α2

= ᾱ1ᾱ3(α1α3βα1α3βα1α3βα1α3β)(β̄ᾱ1ᾱ3α2βᾱ2α3α1β)α2

= βα1α3βα1α3βα2βᾱ2α3α1βα2

= βα1α3βα1α3α2βα3α1βα2.

Using the appropriate braid and commutation relations (as we did when deriving
the two-holed torus relation) it follows that

δ1δ2δ3 = (α1α2α3β)3.

This relation was called the star relation in [5].

3.4. Four-holed Torus. The lantern relation for the sphere with boundary
{α4, α2, δ3, δ4} in Figure 4 is

α4α2δ3δ4 = γ3σ3α3.
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Figure 4 Four-holed torus with boundary {δ1, δ2, δ3, δ4}

The relation on the three-holed torus with boundary {δ1, δ2, γ3} given in Sec-
tion 3.3 is

δ1δ2γ3 = (α1α2α4β)3.

Here we identify the curves (α1, α2, α3) in Figure 3 with the curves (α1, α2, α4) in
Figure 4. Combining, we obtain

δ1δ2δ3δ4 = δ1δ2 ᾱ2 ᾱ4γ3σ3α3

= ᾱ2 ᾱ4δ1δ2γ3σ3α3

= ᾱ2 ᾱ4(α1α2α4β)3σ3α3

= α1β(α1α2α4β)2σ3α3

= (α1α2α4β)2σ3α3α1β.

Remark. Although we will not need it in the rest of the paper, by plugging in

σ3 = β̄ᾱ4 ᾱ2α3βᾱ3α2α4β

it is easy to see that this relation may also be written in a more symmetric form as

δ1δ2δ3δ4 = (α1α3βα2α4β)2.

3.5. Five-holed Torus. In Figure 5, the lantern relation for the sphere with
boundary {α5, α3, δ4, δ5} is

α5α3δ4δ5 = γ4σ4α4.
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Figure 5 Five-holed torus with boundary {δ1, δ2, δ3, δ4, δ5}
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The relation on the four-holed torus with boundary {δ1, δ2, δ3, γ4} given in Sec-
tion 3.4 is

δ1δ2δ3γ4 = (α3α5α2β)2σ3α1α3β.

Here we identify the curves (α1, α2, α3, α4) in Figure 4 with the curves (α3, α5,
α1, α2) in Figure 5. Combining then yields

δ1δ2δ3δ4δ5 = ᾱ3 ᾱ5δ1δ2δ3γ4σ4α4

= ᾱ3 ᾱ5(α3α5α2β)2σ3α1α3βσ4α4

= α2βα3α5α2βσ3α1α3βσ4α4

= α2α3α5βσ3α1α3βσ4α4α2β.

3.6. Six-holed Torus. The lantern relation for the sphere with boundary {α6, α4,
δ5, δ6} in Figure 6 is

α6α4δ5δ6 = γ5σ5α5.

The relation for the five-holed torus with boundary {δ1, δ2, δ3, δ4, γ5} given in Sec-
tion 3.5 is

δ1δ2δ3δ4γ5 = α4α6α2βσ3α3α6βσ4α1α4β.
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Figure 6 Six-holed torus with boundary {δ1, δ2, . . . , δ6}

We identify the curves (α1, α2, α3, α4, α5) in Figure 5 with the curves (α3, α4, α6,
α1, α2) in Figure 6. Combining, we have

δ1δ2δ3δ4δ5δ6 = ᾱ4 ᾱ6δ1δ2δ3δ4γ5σ5α5

= ᾱ4 ᾱ6α4α6α2βσ3α3α6βσ4α1α4βσ5α5

= α2βσ3α3α6βσ4α1α4βσ5α5

= β2α2σ3α3α6βσ4α1α4βσ5α5

= α2α3α6βσ4α1α4βσ5α5β2σ3,

where β2 = α2βᾱ2.

3.7. Seven-holed Torus. The lantern relation for the sphere with boundary
{α7, α5, δ6, δ7} in Figure 7 is

α7α5δ6δ7 = γ6σ6α6.
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Figure 7 Seven-holed torus with boundary {δ1, δ2, . . . , δ7}

The relation on the six-holed torus with boundary {δ1, δ2, δ3, δ4, δ5, γ6} given in
Section 3.6 is

δ1δ2δ3δ4δ5γ6 = α5α7α3βσ4α4α1βσ5α2β5σ3,

where we use the identification (α1, α2, α3, α4, α5, α6) → (α4, α5, α7, α1, α2, α3)

to go from Figure 6 to Figure 7. We may then combine to obtain

δ1δ2δ3δ4δ5δ6δ7 = ᾱ5ᾱ7δ1δ2δ3δ4δ5γ6σ6α6

= ᾱ5ᾱ7α5α7α3βσ4α4α1βσ5α2β5σ3σ6α6

= α3βσ4α4α1βσ5α2β5σ3σ6α6

= β3α3σ4α4α1βσ5α2β5σ3σ6α6

= β3σ4α3α4α1βσ5α2β5σ3σ6α6

= α3α4α1βσ5α2β5σ3σ6α6β3σ4,

where β3 = α3βᾱ3 and β5 = α5βᾱ5.

3.8. Eight-holed Torus. The lantern relation for the sphere with boundary
{α8, α6, δ7, δ8} in Figure 8 is

α8α6δ7δ8 = γ7σ7α7.
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Figure 8 Eight-holed torus with boundary {δ1, δ2, . . . , δ8}
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The relation on the seven-holed torus with boundary {δ1, δ2, δ3, δ4, δ5, δ6, γ7} given
in Section 3.7 is

δ1δ2δ3δ4δ5δ6γ7 = α6α8α4βσ5α5β1σ3σ6α2β6σ4,

where we use the identification (α1, α2, α3, α4, α5, α6, α7) → (α4, α5, α6, α8,
α1, α2, α3) to go from Figure 7 to Figure 8. By combining, we get

δ1δ2δ3δ4δ5δ6δ7δ8 = ᾱ6 ᾱ8δ1δ2δ3δ4δ5δ6γ7σ7α7

= ᾱ6 ᾱ8α6α8α4βσ5α5β1σ3σ6α2β6σ4σ7α7

= α4βσ5α5β1σ3σ6α2β6σ4σ7α7

= β4α4σ5α5β1σ3σ6α2β6σ4σ7α7

= β4σ5α4α5β1σ3σ6α2β6σ4σ7α7

= α4α5β1σ3σ6α2β6σ4σ7α7β4σ5,

where β1 = α1βᾱ1, β4 = α4βᾱ4, and β6 = α6βᾱ6.

3.9. Nine-holed Torus. The lantern relation for the sphere with boundary
{α9, α7, δ8, δ9} in Figure 9 is

α9α7δ8δ9 = γ8σ8α8.

The relation on the eight-holed torus with boundary {δ1, δ2, δ3, δ4, δ5, δ6, δ7, γ8}
given in Section 3.8 is

δ1δ2δ3δ4δ5δ6δ7γ8 = α7α9β4σ3σ6α5β1σ4σ7α2β7σ5,

where we identify (α1, α2, α3, α4, α5, α6, α7, α8) with (α4, α5, α6, α7, α9, α1, α2, α3)

to go from Figure 8 to Figure 9. Combining then yields

δ1δ2δ3δ4δ5δ6δ7δ8δ9 = ᾱ7 ᾱ9δ1δ2δ3δ4δ5δ6δ7γ8σ8α8

= ᾱ7 ᾱ9α7α9β4σ3σ6α5β1σ4σ7α2β7σ5σ8α8

= β4σ3σ6α5β1σ4σ7α2β7σ5σ8α8,

where β1 = α1βᾱ1, β4 = α4βᾱ4, and β7 = α7βᾱ7.
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Figure 9 Nine-holed torus with boundary {δ1, δ2, . . . , δ9}
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Remark. The curious reader might wonder why we stopped at k = 9. First of
all, our process will not allow us to go any further because we will not have the
canceling right-handed Dehn twists to kill off the left-handed Dehn twists that ap-
pear in the appropriate lantern relations. In fact, there is a good reason for this: An
elliptic fibration E(1) → S 2 admits at most nine disjoint sections (all with nega-
tive self-intersections). So we conclude that there is no such relation for a k-holed
torus with k ≥ 10.

4. Sections of the Elliptic Fibrations

First we consider the case k = 4. The relation

δ1δ2δ3δ4 = (α1α2α4β)2σ3α3α1β

in �1,4 that we derived in Section 3.4 induces the word (α3β)3 = 1 in �1, which
gives us an elliptic Lefschetz fibration on the elliptic surface E(1) = CP 2 # 9CP 2.

To draw a Kirby diagram (cf. [6]) of this elliptic fibration we start with a 0-
handle, attach two 1-handles (see Figure 10), and then attach a 2-handle, which
yields D2 × T 2. A torus fiber of the trivial fibration D2 × T 2 → D2 can be
viewed in Figure 10 as follows. Take the obvious disk on the page, attach two
2-dimensional 1-handles (going through two 4-dimensional 1-handles) and cap off
by a 2-dimensional disk. Then we draw the curves that appear in the monodromy
of the elliptic fibration on parallel copies of this fiber. Observe that these curves are
the attaching curves of some 2-handles. By attaching all twelve of these 2-handles
with framing one less than the page framing we get an elliptic Lefschetz fibration
over D2 with twelve singular fibers, which then can be closed off to an elliptic Lef-
schetz fibration over S 2. We illustrate the four disjoint sections s1, s2, s3, s4 of the
induced fibration in Figure 10. (Imagine replacing the si in Figure 10 with holes
where they intersect the page and embedding the curves in Figure 4 into distinct
fibers.) For each i = 1, 2, 3, 4, the curve si bounds two disks—one in the neigh-
borhood of a regular fiber and one outside of that neighborhood—from which we

s3s2

s1

s4

Figure 10 Elliptic Lefschetz fibration E(1) → S 2 with four disjoint sections
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obtain a section of the elliptic Lefschetz fibration by gluing these two disks along
their common boundary si .

Similarly, we can draw the Kirby diagrams corresponding to the relations we
derived for k = 5, 6, . . . , 9 and explicitly indicate the locations of the k disjoint
sections of E(1) → S 2 in these diagrams. We skip the cases k = 5, . . . , 8 and
jump to the case k = 9 (see Figure 11). The relation

δ1δ2δ3δ4δ5δ6δ7δ8δ9 = σ4σ7α2β7σ5σ8α8β4σ3σ6α5β1

on the nine-holed torus induces the word (α3βα)3 = 1 in the mapping class group
�1; this gives us an elliptic Lefschetz fibration on the elliptic surface E(1) =
CP 2 # 9CP 2, where βα = αβᾱ (which is indeed a right-handed Dehn twist).
Note that we cyclicly permuted the curves in the equation derived in Section 3.9
to obtain the relation just displayed.
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Figure 11 Elliptic Lefschetz fibration E(1) → S 2 with nine disjoint sections
(intersection points of sections with the regular fiber are indicated by circled
numbers corresponding to the boundary components δ1, . . . , δ9 of the nine-holed
torus)

Finally, for 4 ≤ k ≤ 9, by taking the nth power of our relation for the k-holed
torus we can find k disjoint sections of the corresponding elliptic fibration on the
elliptic surface E(n) for any n ≥ 1.

5. Final Comments

Suppose that the product δ1δ2 · · · δk , where δi denotes a right-handed Dehn twist
along a curve parallel to the ith boundary component of a surface with k boundary
components, can be expressed as a product of right-handed Dehn twists along inte-
rior (i.e., nonboundary parallel) curves on the surface. We will call such a relation
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in the corresponding mapping class group a boundary–interior relation. The tech-
nique we applied to derive a boundary–interior relation in �1,k (2 ≤ k ≤ 9) can be
easily generalized to derive a boundary–interior relation in �g,k for g ≥ 2. As elab-
orated in this paper, one can start with a certain boundary–interior relation in �g,1

and then derive a boundary–interior relation in �g,2, and then a boundary-interior
relation in �g,3, and so forth. In fact, by applying our trick, it might be possible to
derive a boundary–interior relation in �g,k+1 if we are given a boundary–interior
relation in �g,k. Hence our method can be applied to construct additional sections
of a given Lefschetz fibration in certain situations.

It is intriguing to note that, once we fix a boundary–interior relation in �g,1 for
some g ≥ 2, then (for simple homological reasons) there is a maximum k for which
we obtain a boundary–interior relation in �g,k by applying our method. It appears
that this number depends not only on g but also on the initial boundary–interior
relation in �g,1.
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