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Singularities Appearing on Generic Fibers
of Morphisms between Smooth Schemes

Stefan Schröer

Introduction

The goal of this paper is to explore the structure of singularities that occur on
generic fibers in positive characteristics. As an application of our general results,
we shall determine which rational double points do and which do not occur on
generic fibers.

In some sense, our starting point is Sard’s lemma from differential topology. It
states that the critical values of a differential map between differential manifolds
form a set of measure 0. As a consequence, any general fiber of a differential map
is itself a differential manifold. The analogy in algebraic geometry is as follows.
Let k be an algebraically closed ground field of characteristic p ≥ 0, and suppose
f : S → B is a morphism between smooth integral schemes. Then the generic
fiber Sη is a regular scheme of finite type over the function field E = κ(η).

In characteristic 0, this implies that Sη is smooth over E. Moreover, the ab-
solute Galois group G = Gal(Ē/E) acts on the geometric generic fiber Sη̄ with
quotient isomorphic to Sη. In other words, to understand the generic fiber it suf-
fices to understand the geometric generic fiber, which is again smooth over an
algebraically closed field, together with its Galois action.

The situation is more complicated in characteristic p > 0. The reason is that
over nonperfect fields the notion of regularity, which depends only on the scheme
and not on the structure morphism, is weaker than the notion of geometric regu-
larity, which coincides with formal smoothness. Here it easily happens that the
geometric generic fiber Sη̄ acquires singularities. This special effect already plays
a crucial role in the extension of Enriques’ classification of surface to positive
characteristics: as Bombieri and Mumford [3] showed, there are quasi-elliptic fi-
brations for p = 2 and p = 3, which are analogous to elliptic fibrations but have
a cusp on the geometric generic fiber.

We call a proper morphism f : S → B of smooth algebraic schemes a quasi-
fibration if OB = f∗(OS) and if the generic fiber Sη is not smooth. The existence
of quasi-fibrations should by no means be viewed as pathological. Rather, they
involve some fascinating geometry and apparently offer new freedom to achieve
geometrical constructions that are impossible in characteristic 0. The theory of
quasi-fibrations, however, is still in its infancy. In [15, Rem. 1.2], Kollár asks
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whether or not there are Fano contractions on 3-folds whose geometric generic
fibers are nonnormal del Pezzo surfaces. Some results in this direction appear in
[22]. Mori and Saito [19] studied Fano contractions whose geometric generic fibers
are nonreduced quadrics. Examples of quasi-fibrations involving minimally ellip-
tic singularities appear in [23] in connection with Beauville’s generalized Kummer
varieties.

Of course, nonsmoothness of the generic fiber Sη leads to unusual complica-
tions. However, singularities appearing on the geometric generic fiber Sη̄ are not
arbitrary. First and foremost, they are locally of complete intersection; hence many
powerful methods from commutative algebra apply. Yet they also satisfy far more
restrictive conditions, and the goal of this paper is to analyze these conditions.
Hirokado [14] started such an analysis, and he characterized those rational double
points in odd characteristics that appear on geometric generic fibers. His approach
was to study the closed fibers Sb (b ∈ B) and their deformation theory. Our ap-
proach is somewhat different: we look at the generic fiber Sη and deliberately work
over the function field κ(η).

In fact, we will mainly work in the following abstract setting. Given a field F

in characteristic p > 0 and a subfield E such that the field extension E ⊂ F is
purely inseparable, we consider F-schemes X of finite type that descend to regu-
lar E-schemes Y ; that is, X 	 Y ⊗E F. Our first results on such schemes X are as
follows. In codimension 2, the local fundamental groups are trivial and the torsion
of the local class groups are p-groups. Moreover, the Tjurina numbers are divisi-
ble by p, the stalks of the Jacobian ideal have finite projective dimension, and the
tangent sheaf �X is locally free in codimension 2. These conditions are compara-
tively straightforward but already give strong conditions on the singularities. The
following restriction on the cotangent sheaf was a bit of a surprise to me; it is the
first main result of this paper.

Theorem. If an F-scheme X descends to a regular scheme then, for each point
x ∈X of codimension 2, the stalk �1

X/F,x contains an invertible direct summand.
In other words, �1

X/F,x 	 OX,x ⊕M for some OX,x-module M.

Note that any torsion-free module of finite type over an integral local Noetherian
ring is an extension of some ideal by a free module. Such extensions, however,
do not necessarily split, so the preceding result puts a nontrivial condition on the
cotangent sheaf.

As an application of all these results, we shall determine which rational dou-
ble points appear on surfaces descending to regular schemes and which do not.
This was already settled by Hirokado [14] in the case of odd characteristics. Re-
call that Artin [2] classified rational double points in positive characteristics. Here
the isomorphism class is determined not only by a Dynkin diagram but sometimes
also by some additional integral parameter r (this is the case for p = 2, 3, 5).
It turns out that the situation is most challenging in characteristic 2: besides the
An-singularities, which behave as in characteristic 0, there are the following iso-
morphism classes:
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Dr
n with 0 ≤ r ≤ n/2� − 1 and E 0

6,E1
6,E 0

7, . . . ,E3
7,E 0

8 , . . . ,E 4
8 .

For simplicity, I state the second main result of this paper only in characteristic 2,
which answers a question of Hirokado [14].

Theorem. In characteristic 2, the rational double points that appear on sur-
faces and descend to regular surfaces are: A2e−1 with e ≥ 1;D0

n with n ≥ 4; and
E 0

n with n = 6, 7, 8.

Observe that this includes (but does not coincide with) all rational double points
that are purely inseparable double coverings of a smooth scheme. Shepherd-Barron
calls them special and shows [24] that they play an important role in the geometry
of surfaces in characteristic 2. The D0

2m+1-singularities are not special but never-
theless descend to regular surfaces. I also wish to point out that all members of
our list have a tangent sheaf that is locally free, although there are other rational
double points with locally free tangent sheaf.

The paper proceeds as follows. Section 1 sets up notation and gives some ele-
mentary examples and results; in the next four sections, we analyze F-schemes X
that descend to regular E-schemes Y. In Section 2 we treat the local fundamen-
tal groups. In Section 3, we shall see that integer-valued invariants attached to the
singularities of X like Tyurina numbers are multiples of p. Section 4 deals with
the finite projective dimension of sheaves obtained from the cotangent sheaf �1

X/F .

Here we will also see that the tangent sheaf �X is locally free in codimension 2.
Our first main result appears in Section 5, where we show that each stalk of the co-
tangent sheaf �X/F in codimension 2 contains an invertible summand. This gives
a powerful and easy-to-use criterion for complete intersections defined by a sin-
gle equation. We will exploit this in Section 6, where we determine which rational
double points are possible on schemes descending to regular schemes.

Acknowledgments. I wish to thank Holger Brenner, Torsten Ekedahl, Almar
Kaid, Manfred Lehn, and my wife Le Van for helpful discussion. I have used the
computer algebra system Magma for some computations of lengths of Artin rings.

1. Purely Inseparable Descent

Let F be a field of characteristic p ≥ 0 and let E ⊂ F be a subfield. For each
E-scheme Y, base-change gives an F-scheme X = Y ⊗E F. Conversely, given an
F-scheme X, one may ask whether there exists an E-scheme Y with the property
X 	 Y ⊗E F. If this is the case, we shall say that X descends along E ⊂ F. Then
the fiber product R = X ×Y X defines an equivalence relation on X, and we may
view Y = X/R as the corresponding quotient. The topic of this paper is schemes
that are not themselves regular but do descend to regular schemes.

Definition 1.1. We say that a locally Noetherian F-scheme X descends to a
regular scheme if there exist a subfield E ⊂ F and a regular E-scheme Y with
X 	 Y ⊗E F.
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This notion is of little interest in characteristic 0, for then any locally Noether-
ian scheme descending to a regular scheme is itself regular (this follows from [8,
Prop. 6.7.4]). Hence assume from now on that we are in characteristic p > 0.
Throughout, X usually denotes a locally Noetherian F-scheme.

Lemma 1.2. Suppose that the F-scheme X descends to a regular scheme. Then
there is a subfield E inside F and a regular E-scheme Y with X 	 Y ⊗E F such
that the field extension E ⊂ F is purely inseparable.

Proof. We have X 	 Y0 ⊗E0 F with a regular E0-scheme Y0 for some subfield
E0 ⊂ F. Choose a transcendence basis fα ∈ F (α ∈ I ) for this field extension,
and let E be the separable algebraic closure of E0(fα)α∈I inside F. Then the field
extension E ⊂ F is purely inseparable, and the scheme Y = Y0 ⊗E0 E remains
regular by [8, Prop. 6.7.4].

We now discuss an example to see how this might happen. Suppose v0, v1, . . . , vn
is a collection of indeterminates and let f ∈ E[v0, v1, . . . , vn] be a polynomial
of the form f = v

q

0 + g, where q = pe is a power of the characteristic and where
g ∈ (v1, . . . , v2)

2 does not involve the indeterminate v0 and has neither constant
nor linear terms. Suppose there is an element λ ∈E that is not a pth power in E

but does become a qth power in F. Consider the two affine schemes

Y = SpecE[v0, v1, . . . , vn]/(f − λ), X = SpecF [v0, v1, . . . , vn]/(f ).

Let y ∈ Y be the closed point defined by v1 = · · · = vn = 0. Note that this is not a
rational point; rather, its residue field is κ(y) = E(λ1/q). Let x ∈X be the rational
point given by v0 = v1 = · · · = vn = 0.

Proposition 1.3. With the preceding assumptions, the local ring OY,y is regu-
lar, the local ring OX,x is not regular, and OX,x 	 OY,y ⊗E F holds. Hence some
open neighborhood of the singularity x ∈X descends to a regular scheme.

Proof. To check that OY,y is regular, set A
n
E := SpecE[v1, . . . , vn] and consider

the canonical morphism ϕ : Y → A
n
E. This is flat of degree q, and the fiber over

the origin 0 ∈ A
n
E is isomorphic to the spectrum of E[v0 ]/(vq

0 − λ), which is a
field. In particular, the base A

n
E and the fiber ϕ−1(0) are both regular schemes.

According to [7, Prop. 17.3.3], this implies that the local ring OY,y is regular.
By our assumptions on f , we have

x ∈ Spec k[v0, v1, . . . , vn]/(v0, v1, . . . , vn)
2 ⊂ X.

Therefore, edim(OX,x) ≥ n + 1 > n = dim(OX,x). It follows that the local ring
OX,x is not regular. Finally, the automorphism of F [v0, v1, . . . , vn] defined by the
substitution v0 �→ v0 + λ1/q maps f − λ to f , whence X 	 Y ⊗E F, and this iso-
morphism gives OX,x 	 OY,y ⊗E F.

Remark 1.4. There are singularities of different structure that descend to regular
schemes—for example, rational double points of type D0

2m+1 in characteristic 2.
See Section 6.
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Schemes descending to regular schemes are not arbitrary. Rather, they satisfy sev-
eral strong conditions. Recall that a locally Noetherian scheme S is called locally
of complete intersection if, for each point s ∈ S, the formal completion is of the
form O∧

S,s 	 R/(f1, . . . , fr), where R is a regular complete local Noetherian ring
and f1, . . . , fr ∈R is a regular sequence.

Proposition 1.5. Suppose that a locally Noetherian F-scheme X descends to a
regular scheme. Then X is locally of complete intersection.

Proof. Clearly, regular schemes are locally of complete intersection. According
to [10, Cor. 19.3.4], the property of being locally of complete intersection is pre-
served under base field extensions.

Suppose k is a ground field of characteristicp > 0, and let S be a smooth k-scheme.
Suppose f : S → B is a morphism onto an integral k-scheme of finite type, and
let η ∈ B be the generic point. Then the generic fiber Sη is regular because the
morphism Sη → S is flat with regular fibers. It follows that the geometric generic
fiber Sη̄, which is of finite type over F = κ(η), descends to a regular scheme. We
have the following converse.

Proposition 1.6. Let X be a connected F-scheme of finite type that descends to
a regular scheme. Then there exist smooth connected Fp-schemes of finite type S

and B, a dominant morphism f : S → B, and an inclusion of fields κ(η) ⊂ F

with X 	 Sη ⊗κ(η) F. Here η ∈B denotes the generic point.

Proof. Write X = Y ⊗E F for some regular E-scheme Y. The E-scheme Y is of
finite type because the F-scheme X is [12, Exp.VIII, Prop. 3.3]. We may thus as-
sume that the field E is finitely generated over its prime field Fp according to [9,
Thm. 8.8.2]. Then E = κ(B) is the function field of some integral Fp-scheme B

of finite type. Moreover, Y is isomorphic to the generic fiber of some dominant
morphism f : S → B. Shrinking S and B, we may assume that S and B are reg-
ular. Then they are also smooth, because the finite field Fp is perfect.

Now suppose that S is smooth and proper. We call a morphism f : S → B onto
another proper k-scheme B a quasi-fibration if OB = f∗(OS) and if the generic
fiber Sη is not smooth. Hence the geometric generic fiber Sη̄ is singular but de-
scends to a regular scheme. The most prominent examples of quasi-fibrations are
quasi-elliptic surfaces.

2. Local Fundamental Groups

Let F be a field of characteristic p > 0, and let X be a locally Noetherian F-
scheme. To avoid endless repetition of the same hypothesis, we suppose through-
out this section that X descends to a regular scheme. In other words, there is a
subfield E such that this field extension E ⊂ F is purely inseparable, and a reg-
ular E-scheme Y with X = Y ⊗E F. The goal of this section is to find out what
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this implies for fundamental groups attached to X. The main idea is to use the
Zariski–Nagata purity theorem.

To start with, we recall the definition of fundamental groups in algebraic ge-
ometry. Suppose that S is a connected scheme. We shall denote by Et(S) the
category of finite étale morphisms S ′ → S. It is a Galois category in the sense
of [12, Exp. V, Sec. 5.1] and hence equivalent to the category C(π) of finite sets
endowed with a continuous action of a profinite group π. This is deduced as fol-
lows. Suppose a : Spec(�) → S is a base point for some separably closed field
�. Then we have a fiber functor Et(S) → (Set), S ′ �→ S ′a. The fundamental
group π1(S, a) is defined as the automorphism group of this fiber functor. As ex-
plained in [12, Exp. V, Sec. 4], this makes the fundamental group profinite, and
the fiber functor yields an equivalence Et(S) → C(π1(S, a)). The choice of dif-
ferent base points yields isomorphic fundamental groups, but the isomorphism is
unique only up to inner automorphisms. By abuse of notation, we sometimes write
π1(S) when speaking about group-theoretical properties that depend only on iso-
morphism classes of groups.

Return now to our situation X = Y ⊗E F. Let a be a geometric point on X and
b the induced geometric point on Y. We have the following basic fact.

Lemma 2.1. The canonical homomorphism π1(X, a) → π1(Y, b) is an isomor-
phism of topological groups.

Proof. By assumption, the field extension E ⊂ F is purely inseparable. Consider
first the special case that E ⊂ F is finite as well. Then [12, Exp. IX, Thm. 4.10]
tells us that the pull-back functor Et(Y ) → Et(X), Y ′ �→ Y ′ ×Y X is an equiva-
lence of categories. In the general case writeF =⋃

Fλ as a union of subfields that
are finite over E. Using [9, Thm. 8.8.2] allows us to infer that the pull-back func-
tor Y ′ �→ Y ′ ×Y X is still an equivalence of categories. The assertion follows.

This lemma leads to the following result.

Theorem 2.2. Suppose our F-scheme X is local and henselian with closed point
x ∈ X. Let A ⊂ X be a closed subset of codimension ≥ 2 and let U ⊂ X be its
complement. Then U is connected and its fundamental group π1(U) is isomorphic
to the absolute Galois group of the residue field κ(x).

Proof. If follows from Proposition 1.5 that the scheme X is Cohen–Macaulay and
hence depth(OX,a) ≥ 2 for all points a ∈A. By Hartshorne’s connectedness the-
orem [11, Exp. III, Thm. 3.6], the complement U is connected. Let V ⊂ Y be the
open subset corresponding to U ⊂ X, and consider the following chain of restric-
tion and pull-back functors:

Et(U)
r1←− Et(V )

r2←− Et(Y )
r3←− Et(X)

r4←− Et(x).

According to Lemma 2.1, the pull-back functors r1, r3 are equivalences. By as-
sumption, Y is regular, so we may apply the Zariski–Nagata theorem (see [11,
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Exp. X, Thm. 3.4] for a scheme-theoretic proof ) and deduce that the restriction
functor r2 is an equivalence as well. Since X is henselian, the restriction functor r4

is an equivalence (as explained in [10, Prop. 18.5.15]). The assertion follows.

Recall that a local scheme is called strictly henselian if it is henselian and if the
residue field of the closed point is separably closed.

Corollary 2.3. Let the assumptions of Theorem 2.2 be given. If X is strictly
henselian, then U is connected and simply connected.

Recall that, for a local scheme S, the local fundamental group π loc
1 (S, a) is defined

as the fundmental group of the complement of the closed point s ∈ S, where a de-
notes a base point on the scheme S \ {s}. We may apply the preceding corollary
to the strict henselization Spec(O sh

X,x) of a point x ∈ X, where X is an arbitrary
locally Noetherian scheme.

Corollary 2.4. Let x ∈X be a point of codimension≥ 2. Thenπ loc
1 (O sh

X,x) = 0.

Proof. In order to apply Corollary 2.3, we merely have to verify that the henseliza-
tion S := Spec(O sh

X,x) descends to a regular scheme. Indeed, let y ∈ Y be the image
of x ∈ X. The canonical map O sh

Y,y → O sh
X,x coming from the universal property

of strict henselizations on Y induces a map ϕ : O sh
Y,y ⊗E F → O sh

X,x. The scheme
O sh

Y,y ⊗E F is clearly local with separably closed residue field, and it follows from
[10, Thm. 18.5.11] that it is henselian as well. Therefore, the universal property of
strict henselization on X yields the desired inverse map ψ : O sh

X,x → O sh
Y,y ⊗E F.

For an arbitrary locally Noetherian scheme S we define the class group as Cl(S) =
lim−→Pic(U), where the filtered direct limit runs over all open subsets U ⊂ S such
that depth(OS,s) ≥ 2 for all s ∈ S \U. When S is normal, this is indeed the group
of Weil divisors modulo principal divisors [11, Exp. XI, Prop. 3.7.1]. For nonnor-
mal or even nonreduced schemes, however, our definition here seems to be more
suitable.

Corollary 2.5. Let x ∈X be a point of codimension≥ 2. Then the torsion part
of the class group Cl(O sh

X,x) is a p-group.

Proof. Set S = Spec(O sh
X,x). It follows from Proposition 1.5 that the scheme S is

Cohen–Macaulay. Hence the points s ∈ S with depth(OS,s) ≥ 2 are precisely the
points of codimension ≥ 2. Seeking a contradiction, we suppose that there is an
open subset U ⊂ S whose complement has codimension≥ 2 and also an invertible
OU -module L whose order l > 1 in Pic(U) is finite but not a p-power. Passing
to a suitable multiple, we may assume that l is a prime number different from p.

Choosing a trivialization of L⊗l, we obtain an OU -algebra structure on the coher-
ent OU -module A = OU⊕L⊕· · ·⊕L⊗(l−1). Its relative spectrum U ′ = Spec(A)

is a finite étale Galois covering U ′ → U of degree l. This covering is nontrivial,
from which it follows that U is not simply connected. On the other hand, Corol-
lary 2.3 tells us that U is simply connected—a contradiction.
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We now specialize the preceding result to the case of normal surface singulari-
ties. Let x ∈X be a point of codimension 2, and assume that the local Noetherian
ring OX,x is normal. Let r : X̃→ X be a resolution of singularities (whose ex-
istence we tacitly assume) and D = r−1(x)red the reduced exceptional divisor.
Consider the connected component Pic0

D/κ(x) of the Picard scheme, which param-
eterizes invertible sheaves on D with 0 degree on each integral component. We
call the singularity x ∈X unipotent if the Picard scheme Pic0

D/κ(x) is unipotent. It
is easy to verify that this does not depend on the choice of resolution of singulari-
ties. Note also that, to check this, we may use any divisor D ⊂ X̃ whose support
is the full fiber. Rational singularities are examples of unipotent singularities.

Corollary 2.6. Let x ∈ X be a point of codimension 2. Then the singularity
x ∈X is unipotent.

Proof. Seeking a contradiction, we assume that the singularity x ∈X is not unipo-
tent so that the group scheme Pic0

D/k is not unipotent, where k = κ(x). Choose a
separable closure k ⊂ k s and set Ds = D⊗k k

s. Then there must be an invertible
sheaf L0 ∈ Pic(Ds ) of finite order l prime to p. It extends to an invertible sheaf L
on the strict henselization O sh

X,x of order l, as explained in [21, Lemma 2.2]. Re-
stricting to the complement U ⊂ Spec(O sh

X,x) of the closed point, we obtain an
invertible sheaf LU ∈ Pic(U) of order l in contradiction to Corollary 2.5.

Corollary 2.7. Given the assumption of Corollary 2.6, let D ⊂ X̃ be the re-
duced fiber over the singularity x ∈X and let Di ⊂ D be its integral components.
Then the schemes Di are geometrically unibranch, and their intersection graph is
a tree. If Di is smooth, then it is isomorphic to a quadric in P

2 and h1(ODi
) = 0.

Proof. If any of the conditions did not hold then the Picard scheme PicD/κ(x) would
not be unipotent, as explained in [4, Chap. 9].

Remark 2.8. Recall that a normal point x ∈ X of codimension 2 is called a
simple elliptic singularity if the reduced fiber D ⊂ X̃ is an elliptic curve. Corol-
lary 2.7 tells us that such singularities do not descend toE-schemes that are regular.
Hirokado [14] showed this by using the equations for simple elliptic singularities.

3. Residue Fields and p-Divisibility

In this section, X denotes an F-scheme of finite type. We continue to assume
throughout that X descends to a regular scheme. In other words, there is a sub-
field E such that this field extension E ⊂ F is purely inseparable, and a regular
E-scheme Y with X = Y ⊗E F.

Let x ∈X be a point and y ∈ Y its image. By our assumption, the local ring OY,y

is regular. What can be said about the local ring OX,x and the inclusion OY,y ⊂
OX,x? We start with an observation on the residue fields. Consider the commuta-
tive diagram
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κ(y) −−→ κ(x)
�

�

E −−→ F

of fields, and choose an algebraic closure κ(x) ⊂ �.

Proposition 3.1. Suppose x ∈X is not regular. Then the subfields κ(y),F ⊂ �

are not linearly disjoint over E.

Proof. Seeking a contradiction, we assume that the subfields κ(y),F ⊂ � are lin-
early disjoint. By definition, this means that the canonical map κ(y)⊗E F → �

is injective and so the ring R = κ(y)⊗E F is integral. Using that the ring exten-
sion κ(y) ⊂ R is integral, we infer that the ring R is actually a field. It follows
that the fiber Xy = Spec(R) of the projection X→ Y is a regular scheme. By our
assumptions, y ∈ Y is regular. By [8, Cor. 6.5.2], this implies that x ∈X is regu-
lar—a contradiction.

This result has the following numerical consequence.

Proposition 3.2. Suppose x ∈ X is not regular. Then the field extension E ⊂
κ(y) is not separable. If, in addition, x ∈ X is closed, then the characteristic p

divides the degree [κ(y) : E ] of the image point y ∈ Y.

Proof. Suppose that E ⊂ κ(y) is separable. Then the ring R = κ(y)⊗E F is re-
duced. It is also irreducible, because E ⊂ F is purely inseparable. It follows that
R is integral; hence the canonical map R → � must be injective and so κ(y),F ⊂
� are linearly disjoint—contradiction.

If the point x ∈X is closed, then the field extension κ(y) ⊂ E is finite and its
degree is of the form [κ(y) : E ] = pe[κ(y) : E ]s , where the second factor is the
separable degree and e ≥ 0 is an integer. Because E ⊂ κ(y) is not separable, we
must have e > 0.

We shall apply this result frequently in the following form.

Lemma 3.3. Let FY be a coherent zero-dimensional sheaf on Y supported on the
nonsmooth locus, and let FX = FY ⊗E F be the corresponding coherent sheaf on
X. Then the number h0(X, FX) is a multiple of p.

Proof. Recall that h0(X, FX) is the dimension of H 0(X, FF ) viewed as an F-
vector space. By flat base-change, we have h0(Y, FY) = h0(X, F ). The coherent
zero-dimensional sheaf FY has a Jordan–Hölder series with factors isomorphic
to residue fields κ(y), where y ∈ Y are nonsmooth closed points. By Proposi-
tion 3.2, the dimension of the E-vector space κ(y) is a multiple of p, and the
assertion follows.

There are many such coherent sheaves FX = FY ⊗E F coming from the sheaf of
Kähler differentials, provided that the nonsmooth locus is zero-dimensional. We
mention a few as follows.
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Proposition 3.4. Suppose the nonsmooth locus of X is zero-dimensional. Then,
for all m > dim(X), the numbers h0(X,�m

X/k) are multiples of p.

Proof. The coherent sheaf �1
Y/k is locally free of rank d = dim(Y ) on the smooth

locus. For m > dim(Y ), the coherent sheaf FY = �m
Y/k is therefore supported on

the nonsmooth locus. Hence Lemma 3.3 applies.

Next, consider the coherent sheafs Tm, T ′
m defined by the exact sequence

0 −→ Tm −→ �m
X/k −→ (�m

X/k)
∨∨ −→ T ′

m −→ 0,

where the map in the middle is the canonical evaluation map into the bidual.

Proposition 3.5. Suppose the nonsmooth locus of X is zero-dimensional. Then,
for all m ≥ 0, the numbers h0(X, Tm) and h0(X, T ′

m) are multiples of p.

Proof. This follows as before from Lemma 3.3.

Recall that the Jacobian ideal is defined as the dth Fitting ideal of �1
X/F , where

d = dim(X). Here we tacitly assume that X is equidimensional. We call the
closed subscheme X ′ ⊂ X defined by the Jacobian ideal the Jacobian subscheme.
It comprises the points x ∈X that are not smooth and puts a scheme structure on
this locus, which is usually nonreduced.

Proposition 3.6. Suppose that the nonsmooth locus of X is zero-dimensional;
that is, suppose the Jacobian subscheme X ′ ⊂ X is zero-dimensional. Then the
number h0(X, OX ′) is a multiple of p.

Proof. Again this follows from Lemma 3.3.

If x ∈ X is an isolated nonsmooth point, then the local length l(OX ′,x) is called
the Tjurina number of the singularity x ∈X. We can see that the p-divisibility of
Tjurina numbers is a necessary condition for an F-scheme to descend to regular
schemes.

4. Finite Projective Dimension

We keep the assumptions from the preceding section with X an F-scheme of finite
type that descends to a regular E-scheme Y, where E ⊂ F is a purely inseparable
field extension. The goal of this section is to exploit finer properties of coherent
sheaves FX = FY ⊗E F related to commutative algebra rather than field theory.

Suppose M is a coherent OX-module. Given a point x ∈ X, the projective
dimension pd(Mx) is defined as the infimum over all numbers n such that there
exists a finite free resolution

0 −→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ Mx −→ 0,

where the Fn are free OX,x-modules of finite rank. If no such resolution exists
then we write pd(Mx) = ∞.

Lemma 4.1. Let FY be a coherent sheaf on Y, and let FX = FY ⊗E F be the
induced sheaf on X. Then FX,x has finite projective dimension for all x ∈X.
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Proof. Let y ∈ Y be the image of x ∈X. Since OY,y is regular by assumption, it fol-
lows by Serre’s criterion that the stalk FY,y has finite projective dimension. Since
X→ Y is flat, this implies that FX,x has finite projective dimension as well.

In particular, the stalks of �1
X/F have finite projective dimension. From this we

can immediately deduce the following facts.

Proposition 4.2. Any coherent OX-module obtained from �1
X/F by taking ten-

sor powers, symmetric powers, alternating powers, Fitting ideals, duals, biduals,
kernels and cokernels of biduality maps, et cetera has stalks with finite projective
dimension.

In particular, the stalks of the Jacobian ideal J ⊂ OX have finite projective di-
mension. When the Jacobian subscheme X ′ ⊂ X is zero-dimensional, we have as
invariants the Tjurina numbers—that is, the lengths l(OX,x/Jx) ≥ 0 of the Jaco-
bian subscheme at x ∈X.

Recall that, for any coherent ideal I ⊂ OX, we define the bracket ideal I [p] ⊂
OX as the ideal whose stalks are generated by fp with f ∈ Ix.

Theorem 4.3. Suppose that the Jacobian subscheme X ′ ⊂ X is zero-dimen-
sional, and let d = dim(X). Then, for all closed points x ∈X, the length formula
l(OX,x/J [p]

x ) = pdl(OX,x/Jx) holds.

Proof. The scheme X is locally of complete intersection by Proposition 1.5. If x ∈
X is smooth then both lengths in question are 0, so it suffices to treat only the case
x ∈X ′. Because X ′ is discrete, the ideal Jx ⊂ OX,x is mx-primary. According to
Miller’s result [18, Cor. 5.2.3], the length formula l(OX,x/I [p]

x ) = pdl(OX,x/Ix)

holds for an ideal Ix ⊂ OX,x defining a zero-dimensional subscheme if and only if
Ix has finite projective dimension. Then Proposition 4.2 implies the assertion.

Example 4.4. Assume that X is a normal surface over F in characteristic p =
2. Suppose x ∈ X is a rational point such that the local ring OX,x is a rational
double point of type E3

8 . When k ⊂ k̄ is an algebraic closure we have O∧
X, x̄ 	

k[[x, y, z]]/(f ), where f = z2 + x3 + y 5 + y3z (as explained in Artin’s paper
[2]). Then

Jx̄ = (x 2, y 4 + y2z, y3) = (x 2, y2z, y3).

From this one easily computes the lengths l(OX,x/Jx) = 10 and l(OX,x/J [2]
x ) =

44, which implies that the F-scheme X does not descend to an E-scheme that is
regular. Note that the local fundamental group of the strict henselization of x ∈X

is trivial, so Proposition 2.3 does not allow this conclusion.

Let us finally have a closer look the tangent sheaf�X = Hom(�1
X/k , OX). Clearly,

�X = �Y ⊗E F holds and so, by Proposition 4.2, the stalks of �X have finite pro-
jective dimension. In small codimensions we also have the following statement.

Proposition 4.5. Let x ∈X be a point of codimension 2. Then the stalk �X,x is
a free OX,x-module.
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Proof. The scheme X is Cohen–Macaulay, whence depth(OX,x) = 2. As a dual,
the sheaf �X satisfies Serre’s condition (S2) according to [13, Thm. 1.9]. In par-
ticular, depth(�X,x) ≥ 2. The stalks of �X have finite projective dimension and
so the Auslander–Buchsbaum formula,

pd(�X,x)+ depth(�X,x) = depth(OX,x),

holds. We infer that pd(�X,x) = 0, which means that the stalk �X,x is free.

Remark 4.6. Lipman [17, Prop. 5.2] proved that, if �X is locally free, than all ir-
reducible components of the Jacobian subscheme X ′ ⊂X have codimension ≤ 2.

Remark 4.7. We notice that there is a close connection between the length for-
mula of Theorem 4.3 and the local freeness of the tangent sheaf in Proposition 4.5,
which is independent of our assumption that X descends to a regular scheme. Sup-
pose that S is the spectrum of F [x, y, z]/(f ) for some polynomial f , and assume
that S is normal. As explained in [1, Thm. 6.2], dualizing the short exact sequence
0 → I/I 2 → �1

A
3
E
/E|S → �1

S → 0 yields an exact sequence

0 −→ �S −→ �A
3
F
|S −→ (I/I 2)∨ −→ T 1

S −→ 0,

where I =OA
3
F
(−S) and the cokernel T 1

S is isomorphic to the sheaf Ext1(�1
S/F , OS)

of first-order extension. This exact sequence shows that the annulator ideal of T 1
S

coincides with the Jacobian ideal J and that T 1
S is an invertible module over OS/J.

It follows that pd(�S) = pd(J )− 2; it follows also that �S is locally free if and
only if the length formula l(OS,s/J [p]

s ) = p2 l(OS,s/Js) holds. Although this for-
mula is fairly easy to check, finding an explicit basis of the stalks of the tangent
sheaf seems to involve some nontrivial guesswork.

5. Invertible Summands of the Cotangent Sheaf

Let X be an F-scheme of finite type, and let E ⊂ F be a subfield such that the field
extension E ⊂ F is purely inseparable. In previous sections we saw necessary
conditions for X to descend to a regular E-scheme that involved local fundamental
groups, degrees of residue fields, Jacobian ideals, and the tangent sheaf. However,
these conditions are not always strong enough to rule out the possibility that X de-
scends to a regular scheme. In this section we give another condition in terms of
the sheaf of Kähler differentials �1

X/F . Together with the other criteria, this will be
enough to settle the case of rational double points, which we shall do in Section 6.

We begin with the following simple observation from commutative algebra.
Suppose R is a local ring. Let M be an R-module, let M∨ = Hom(M,R) be the
dual module, and let 4 : M ×M∨ → R be the canonical bilinear map (a, f ) �→
f(a).

Lemma 5.1. The following conditions are equivalent.

(i) The induced linear map 4 : M ⊗M∨ → R is surjective.
(ii) There are elements a ∈M and f ∈M∨ with f(a) /∈mR.

(iii) There is an R-module M ′ and a decomposition M 	 R ⊕M ′.
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Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are easy, so our task is to ver-
ify (ii) ⇒ (iii). Suppose f(a) /∈mR for some a ∈M and f ∈M∨. Then f(a)∈R

must be a unit because R is local. It follows that the map M → R, x �→ f(x) is
surjective. Hence there is an exact sequence

0 −→ M ′ −→ M
f−→ R −→ 0

with M ′ = kern(f ). Such a sequence splits because R is free.

We say that an R-module M has an invertible summand if the equivalent con-
ditions of the lemma hold. In the Noetherian situation, we may check this by
passing back and forth to formal completions. More generally, we have the fol-
lowing result.

Proposition 5.2. SupposeM is of finite presentation, and letR → R ′ be a faith-
fully flat ring homomorphism. Then the R-module M has an invertible summand
if and only if this holds for the induced R ′-module M ′ = M ⊗R R ′.

Proof. The condition is clearly necessary. Conversely, suppose that the evaluation
map M ′ ⊗ (M ′)∨ → R ′ is surjective. Using that the canonical homomorphism
M∨ ⊗R R ′ → (M ⊗R R ′)∨ is bijective, we infer that M ⊗M∨ → R is surjective
as well.

In our next theorem we apply this concept to the stalks M = �1
X,x of the cotangent

sheaf.

Theorem 5.3. Suppose our F-scheme of finite type X is equidimensional of di-
mension dim(X) ≥ 1 and descends to a regular scheme. Then, for all points x ∈
X of codimension ≤ 2, the stalk �1

X,x has an invertible summand.

Proof. If x ∈ X is smooth, then �1
X/k is locally free at x ∈ X of rank dim(X) ≥

1; hence there is nothing to show. So assume that x ∈X is not smooth. Let y ∈ Y

be its image. It suffices to check that �1
Y/E,y has an invertible summand. Our task

is therefore to find a local vector field δ ∈ �Y,y together with a local section s ∈
OY,y with δ(s) = 1.

First of all, we may assume that Y is affine. Let Y ′ = {y} be the reduced closure
of the point y ∈ Y, and let L = κ(y) be its residue field. Then the finitely gener-
ated field extension E ⊂ L has transcendence degree trdegE(L) = dim(Y ′). Let
E ⊂ K ⊂ L be the separable closure of E(x1, . . . , xm), where x1, . . . , xm ∈ L is a
transcendence basis. Then the finite field extension K ⊂ L is purely inseparable.
According to Proposition 3.1, we have K �= L. It follows from [5, Sec. 6, No. 3,
Thm. 3] that �1

L/K �= 0. In light of the exact sequence �1
L/E → �1

L/K → 0, there
must be some λ ∈L with nonzero differential dλ∈�1

L/E. After replacing Y by a
suitable affine open subscheme, we may extend the value λ ∈ L = κ(y) to some
section s ′ ∈H 0(Y ′, OY ′). By the same token, we may further assume that the co-
herent OY ′ -module �1

Y ′/E is locally free. Moreover, we may lift s ′ to a section s ∈
H 0(Y, OY). Then ds(y) �= 0 as an element of the κ(y)-vector space �1

Y/E(y).
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Consider the biduality map�1
Y/E → (�1

Y/E)
∨∨, which sends differentials

∑
sidfi

to the evaluation map δ �→ δ
(∑

sidfi
)
. Let us denote this evaluation map by the

symbol
(∑

sidfi
)∨∨

, which is thus a local section of �∨Y . Our aim now is to verify
that the value at y of the evaluation map (ds)∨∨, which is an element of �∨Y/E(y),
does not vanish. Here the problem is that the biduality map for Kähler differen-
tials on Y is not necessarily bijective. However, we know that the biduality map
for Kähler differentials on Y ′ is bijective. Before exploiting this, we make a brief
digression to discuss biduality maps.

Suppose F and G are coherent sheaves on Y and Y ′, respectively. Set F ′ =
F ⊗ OY ′ , and assume we have a homomorphism f : F ′ → G. Consider the ca-
nonical restriction map Hom(F, OY)⊗OY ′ → Hom(F ′, OY ′). Applying it twice,
we obtain a canonical map

Hom(Hom(F, OY), OY)⊗OY ′ → Hom(Hom(F ′, OY ′), OY ′).

We may compose this with the map induced from f : F ′ → G to obtain a map

ϕ : Hom(Hom(F, OY), OY) −→ Hom(Hom(G, OY ′), OY ′).

This yields the commutative diagram

F −−→ Hom(Hom(F, OY), OY)

f

�
�ϕ

G −−→ Hom(Hom(G, OY ′), OY ′),

where the horizontal maps are the biduality maps on Y and Y ′, respectively.
We may apply this to the sheaves F = �1

Y/E and G = �1
Y ′/E and the canonical

surjection�1
Y/E⊗OY ′ → �1

Y ′/E. The result is the following commutative diagram:

�1
Y/E −−→ Hom(Hom(�1

Y/E , OY), OY)
�

�

�1
Y ′/E −−→ Hom(Hom(�1

Y ′/E , OY ′), OY ′).

The lower horizontal map is bijective because�1
Y ′/E is locally free onY ′. Therefore,

(ds ′)∨∨ does not vanish at y ∈ Y. It follows that neither does (ds)∨∨ vanish at y.
Now recall that, by Proposition 4.5, the stalk �Y,y is free; hence (�1

Y/E)
∨∨
y is

free as well. Set e1 = (ds)∨∨ and extend it to a basis e1, . . . , en ∈ (�1
Y/E)

∨∨
y .

Let δ1, . . . , δn ∈�Y,y be the corresponding dual basis. Then δ = δ1 is the desired
local vector field: we have δ(s) = δ(ds) = δ(ds)∨∨ = 1 by construction.

It follows from Lipman’s results [17, Prop. 8.1] that �1
X/F is torsion free if and

only if our scheme X is geometrically normal. According to [6, Thm. 2.14], any
torsion-free module of finite type over a local Noetherian ring is an extension of
an ideal by a free module. But such extensions do not necessarily split, so the
preceding result puts a nontrivial condition on the stalk �1

X/F,x.

It turns out that the result is well suited to ruling out that certain F-schemes de-
scend to regular schemes. Suppose that X is two-dimensional, normal, and locally
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of complete intersection. Let x ∈X be a closed point with embedding dimension
edim(OX,x) = 3. Write O∧

X,x = SpecF [[u, v,w]]/(f ) for some nonzero poly-
nomial f. Using notation from physics, we write fu = ∂f

∂u
and so on for partial

derivatives.

Corollary 5.4. With assumptions as before, suppose that X descends to a reg-
ular scheme. Then, after a suitable permutation of the indeterminates u, v,w, the
ideal a = (fu, fv , f ) inside the formal power series ring F [[u, v,w]] is a param-
eter ideal and, furthermore, fw ∈ a holds.

Proof. We may replace X by Spec(F [u, v,w]/(f )) ⊂ A
3
F so that our point x ∈X

corresponds to the origin 0∈A
3
F . Now we have an exact sequence

0 −→ I/I 2 −→ �1
A

3
F
/F |X −→ �1

X/F −→ 0,

where I = OA
3
F
(−X). Dualizing then yields an exact sequence

(I/I 2)∨ ←− �A
3
F
|X ←− �X ←− 0.

From this it follows that any local vector field δ ∈�X,x is the restriction of some
local vector field of the form

δ̃ = rDu + sDv + tDw

subject to the condition δ̃(f )∈ (f )m, where m = (u, v,w). Here Du,Dv ,Dw de-
note the derivation given by taking partial derivatives. The coefficients are local
sections r, s, t ∈OA3,x = F [u, v,w]m ⊂ F [[u, v,w]].

By Theorem 5.3, the stalk �1
X,x contains an invertible direct summand. Hence

there is a derivation δ̃ = rDu + sDv + tDw such that (i) δ̃(f ) = rfu + sfv + tfw ∈
(f )m and (ii) at least one of the local sections δ̃(u) = r and δ̃(v) = s and δ̃(w) =
t is invertible inside F [u, v,w]m. After a permutation of indeterminates, we may
assume that δ̃(w) = t is invertible. From this we infer that fw ∈ (fu, fv , f ) holds,
where the ideals are considered inside the local ring k[u, v,w]m or, equivalently,
in F [[u, v,w]].

It remains to check that (fu, fv , f ) is a parameter ideal. Indeed, the ideal
(fu, fv , fw, f ) defines the nonsmooth locus of X. This locus is discrete, because
X is a normal surface by assumption. It follows that (fv , fw, f ) = (fu, fv , fw, f )
is a parameter ideal in F [[u, v,w]].

6. Rational Double Points

The goal of this section is to determine which rational double points descend
to regular schemes. Suppose that F is an algebraically closed ground field of
characteristic p > 0, and let X be a normal surface over F. A singular point x ∈
X is called a rational double point if the singularity is rational and Gorenstein
(equivalently, rational and of multiplicity 2). Throughout this section, we tacitly
assume that the field F is not algebraic over its prime field.

Rational double points are classified according to the intersection graph of the
exceptional divisor on the minimal resolution of singularities; these intersection
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graphs correspond to the simply laced Dynkin diagramsAn (n≥ 1) andDn (n≥ 4)
and E6,E7,E8. In characteristic 0, this coincides with the isomorphism classifica-
tion: Two rational double points are formally isomorphic if and only if they have
the same Dynkin type. According to Artin [2], this is no longer true in character-
istic p = 2, 3, 5. However, there are still only finitely many formal isomorphism
classes, and Artin gave a list of formal equations for these isomorphism classes.
Before going into details, we re-prove the following result of Hirokado [14].

Theorem 6.1. (i) A rational double point of type An (n ≥ 1) descends to a reg-
ular scheme if and only if n+ 1= pe for some exponent e ≥ 1.

(ii) In characteristic p ≥ 3, rational double points of type Dn do not descend
to regular schemes.

(iii) For p ≥ 7, rational double points of type En do not descend to regular
schemes.

Proof. Rational double points of type An are defined by f = zn+1−xy. If n+1=
pe, then this rational double point descends to regular schemes by Proposition 1.3.
Conversely, suppose that n+1 is not ap-power. Then the local Picard group Picloc,
which is cyclic of order n+ 1, is not a p-group. By Corollary 2.5, such a rational
double point does not appear on generic geometric fibers. The local Picard group
of a rational double point of type D4 is of order 4. Again using Corollary 2.5 we
conclude that, for p ≥ 3, rational double points of type Dn do not appear on geo-
metric generic fibers. This settles claims (i) and (ii).

It remains to treat the En case. Here we must use local fundamental groups in-
stead of local Picard groups. According to [2, Prop. 2.7], the local fundamental
group π loc

1 of rational double points in characteristic p ≥ 7 are tame, which sim-
ply means that they have order prime to the characteristic. It follows that π loc

1 is
the maximal prime-to-p quotient of the corresponding local fundamental group
in characteristic 0. Their orders are shown in Table 1 (cf. e.g. [16]). We infer that
π loc

1 �= 0 in characteristic p ≥ 7. Proposition 2.3 tells us that the rational double
points of type En for p ≥ 7 do not appear on geometric generic fibers.

Let us now turn to rational double points of typeDn (n ≥ 4) in characteristic 2. Ac-
cording to [2], they are subdivided into n/2� isomorphism classes Dr

n depending
on an additional integral parameter 0 ≤ r ≤ n/2� − 1. The formal equations
f(x, y, z) = 0 are as follows.

D0
2m: f = z2 + x 2y + xym.

Dr
2m: f = z2 + x 2y + xym + xym−rz.

D0
2m+1: f = z2 + x 2y + ymz.

Dr
2m+1: f = z2 + x 2y + ymz+ xym−rz.

(1)

Remark 6.2. Note that the polynomial f = z2 + x 2y + xym defining D0
2m is

contact equivalent to g = z2+x 2y+xym+xymz, which would be the case r = 0
in Dr

2m. This follows easily from the methods in [20, Sec. 2]. Recall that contact
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Table 1 Local Fundamental and Picard Groups
of Rational Double Points

Rational double point An Dn E6 E7 E8

π loc
1 for p = 0 cyclic dihedral Ã4 S̃4 Ã5

order of π loc
1 for p = 0 n+ 1 2(n− 2) 24 48 120

order of Picloc n+ 1 4 3 2 1

equivalence means that the two equations define formally isomorphic singulari-
ties. The situation for Dn with n odd is similar. We thus see that it is not really
necessary to distinguish the cases r = 0 and r > 0 when it comes to giving the
formal equations.

Theorem 6.3. In characteristic p = 2, a rational double point of type Dr
n de-

scends to a regular scheme if and only if r = 0.

Proof. First, the condition is sufficient. Rational double points of typeD0
2m, which

are formally given by f = z2+x 2y+xym, descend to regular schemes according
to Proposition 1.3.

The case D0
2m+1 is slightly more complicated because of the linear z-monomial

that appears in the defining polynomial f = z2+x 2y+ymz. Choose a nonperfect
subfield E ⊂ F and an element λ∈E that is not a square. Consider the spectrum
of A = E[x, y, z]/(f + λ). The ring A is a flat E[x, y]-algebra of degree 2. The
fiber ring A/(x, y)A 	 E(λ1/2) is regular, which implies that the ring A is regu-
lar. It remains to check that f and f + λ define isomorphic singularities over the
algebraically closed field F. In order to do so, we construct an automorphism of
the ring F [[x, y]][z] sending f + λ to f. Clearly, the substitution z �→ z + λ1/2

sends f + λ to f + λ1/2ym. If m = 2 l + 1 is odd, then the additional substitution
x �→ x + λ1/4y l achieves our goal. If the number m = 2 l is even, we make the
substitution z �→ z+ λ1/4y l instead, which maps f + λ1/2ym to f + λ1/4ym+m/2.

Repeating substitutions of the latter kind puts us, after finitely many steps, in po-
sition to apply a substitution of the former kind.

Second, the condition is necessary. Set S = SpecF [x, y, z]/(f ), where f is
the equation of a rational double point of type Dr

n with 1 ≤ r ≤ n/2� − 1, as
given in (1). Let s ∈ S be the singular point. We shall verify that �1

S,s contains no
invertible summand. Toward this end we apply Corollary 5.4, which reduces our
problem to a calculation involving the partial derivatives fx , fy , fz. Suppose that
n = 2m is even. Then we compute

f = z2 + x 2y + xym + xym−rz,

fx = ym + ym−rz,

fy = x 2 +mxym−1+ (m− r)xym−r−1z,

fz = xym−r.
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Consider the ideal Ix = (fy , fz, f ) inside the polynomial ring F [x, y, z]. Reduc-
ing modulo x yields Ix ≡ (z2), and we see that the induced ideal IxOS,s has
height 1. An analogous argument applies to the ideal Iy = (fx , fz, f ), where we
reduce modulo y. Finally, consider the ideal Iz = (fx , fy , f ). Computing mod-
ulo z, we have

Iz = (fx , fy , f ) ≡ (ym, x 2 +mxym−1, x 2y) ≡ (ym, x 2 +mxym−1).

It follows that the residue classes of xiy j with 0 ≤ i ≤ 1 and 0 ≤ j ≤ m−1 form
an F-vector space basis of the residue class ring R = k[x, y]/(ym, x 2+mxym−1).

Obviously, the residue class of fz = xym−r is nonzero and the Artin ring R is
local. This implies fz /∈ IzOS,s . Invoking Corollary 5.4, we deduce that the ratio-
nal double points of type Dr

2m (r > 0) do not appear on geometric generic fibers.
The case of n = 2m+1odd can be treated with similar arguments. Here we have

f = z2 + x 2y + ymz+ xym−rz,

fx = ym−rz,

fy = x 2 +mym−1z+ (m− r)xym−r−1z,

fz = ym + xym−r.

We proceed as before. Computing modulo x yields

Ix = (fy , fz, f ) ≡ (mym−1z, ym, z2),

and we infer that the residue class of the partial derivative fx = ym−rz inside the
local ring R = k[y, z]/(mym−1z, ym, z2) is nonzero provided r ≥ 2 or m is even.
This implies fx /∈ IxOS,s . It remains to check the case r = 1 and m odd. Then
we compute modulo ym, xy to obtain Ix ≡ (x 2+ ym−1z, z2), and we easily check
that fx = ym−1z is nonzero inside R = k[x, y, z]/(x 2 + ym−1, z2, ym, xy). Again
fx /∈ IxOS,s .

Computing modulo y, we have Iy = (fx , fz, f ) ≡ (z2) and so IyOS,s has
height 1. Finally, Iz ≡ 0 modulo x, z so that IzOS,s has height 1. According to
Corollary 5.4, the rational double points of type Dr

2m+1 with r ≥ 1 do not appear
on geometric generic fibers.

We finally come to the rational double points of type E6,E7,E8, which are the
most challenging cases.

Theorem 6.4. (i) Suppose p = 5. Among the four rational double points of type
En, only E 0

8 descends to a regular scheme.
(ii) Suppose p = 3. Among the seven rational double points of type En, only

E 0
6 and E 0

8 descend to regular schemes.
(iii) Suppose p = 2. Among the eleven rational double points of type En, only

E 0
7 and E 0

8 descend to regular schemes.

Proof. The formal equations f(x, y, z) = 0 for rational double points were de-
termined by Artin [2] and appear in Tables 2–4. Proposition 1.3 immediately tells
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Table 2 Rational Double Points of Type En in Characteristic p = 2

Formal relation π loc
1 l(O/J ), l(O/J [2]) � free

E 0
6 z2 + x3 + y2z C3 8, 32 yes

E1
6 z2 + x3 + y2z+ xyz C6 6, 28 no

E 0
7 z2 + x3 + xy3 0 14, 56 yes

E1
7 z2 + x3 + xy3 + x 2yz 0 12, 48 yes

E 2
7 z2 + x3 + xy3 + y3z 0 10, 40 yes

E3
7 z2 + x3 + xy3 + xyz C4 8, 35 no

E 0
8 z2 + x3 + y 5 0 16, 64 yes

E1
8 z2 + x3 + y 5 + xy3z 0 14, 56 yes

E 2
8 z2 + x3 + y 5 + xy2z C2 12, 48 yes

E3
8 z2 + x3 + y 5 + y3z 0 10, 44 no

E 4
8 z2 + x3 + y 5 + xyz C3 � C4 8, 37 no

Table 3 Rational Double Points of Type En in Characteristic p = 3

Formal relation π loc
1 l(O/J ), l(O/J [3]) � free

E 0
6 z2 + x3 + y 4 0 9, 81 yes

E1
6 z2 + x3 + y 4 + x 2y2 C3 7, 71 no

E 0
7 z2 + x3 + xy3 C2 9, 81 yes

E1
7 z2 + x3 + xy3 + x 2y2 C6 7, 75 no

E 0
8 z2 + x3 + y 5 0 12, 108 yes

E1
8 z2 + x3 + y 5 + x 2y3 0 10, 99 no

E 2
8 z2 + x3 + y 5 + x 2y2 SL(2, F3) 8, 85 no

Table 4 Rational Double Points of Type En

in Characteristic p = 5

Formal relation π loc
1 l(O/J ), l(O/J [5]) � free

E6 z2 + x3 + y 4 A4 6, 173 no

E7 z2 + x3 + xy3 S4 7, 198 no

E 0
8 z2 + x3 + y 5 0 10, 250 yes

E1
8 z2 + x3 + y 5 + xy 4 C5 8, 239 no
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us that the rational double points of type E 0
n , as stated in the assertion, descend

to regular schemes. Our task is to argue that the remaining rational double points
do not.

We begin by collecting further information from the tables. The third columns
give the local fundamental groups, which were determined by Artin [2]. The
fourth columns contain information on the Jacobian ideal J ⊂ F [x, y, z]/(f ) and
the corresponding bracket ideal J [p]. Recall that J and J [p] are induced from
the ideals (fx , fy , fz, f ) and (f

p
x , fp

y , fp
z , f ), respectively, inside the polynomial

ring F [x, y, z]. Column three contains the length of the quotient by J and J [p].

According to Theorem 4.3, the length formula

l(F [x, y, z]/(fx , fy , fz, f )) = p2 l(F [x, y, z]/(fp
x , fp

y , fp
z , f ))

holds if the singularity descends to a regular surface. By Remark 4.7, the length
formula holds if and only if the tangent sheaf is locally free. The latter information
appears in the last column of the tables. Using the information on the local Picard
group for Proposition 2.4 and the information about the length for Theorem 4.3,
we rule out all rational double points except the following three in characteristic
p = 2.

E1
7: f = z2 + x3 + xy3 + x 2yz.

E 2
7 : f = z2 + x3 + xy3 + y3z. (2)

E1
8: f = z2 + x3 + y 5 + xy3z.

For these points, the local fundamental group is trivial and the tangent sheaf is lo-
cally free. We shall discard them by showing that the cotangent sheaf does not
contain an invertible direct summand at the singularity. As in the case of Dn-
singularities, we will apply Corollary 5.4; here we treat the case of E1

7. The partial
derivatives are

f = z2 + x3 + xy3 + x 2yz,

fx = x 2 + y3,

fy = xy2 + x 2z,

fz = x 2y.

Consider the ideal Ix = (fy , fz, f ) inside the power series ring F [[x, y, z]]. We
have Ix ⊂ (x, z), so Ix is not a parameter ideal. Next, consider the ideal

Iy = (fx , fz, f ) = (x 2 + y3, x 2y, z2) = (x 2 + y3, y 4, z2).

The residue classes of the monomials xiy jzk with 0 ≤ i, k ≤ 1 and 0 ≤ j ≤ 3 con-
stitute an F-vector space basis for the quotient ring F [[x, y, z]]/Iy. It follows that
the residue class of fy = xy2+ x 2z is nonzero and thus fy /∈ Iy. Finally, consider
the ideal Iz = (fx , fy , f ) = (x 2+y3, xy2+y3z, z2+y 4z). Computing modulo z

yields Iz ≡ (x 2 + y3, xy2) = (x 2 + y3, xy2, y 5), and it is straightforward to see
that the residue classes of 1, y, . . . , y 4, x, xy form a F-vector space basis modulo
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Iz + (z). Therefore, fz = x 2y ≡ y 4 is not contained in Iz. Using Corollary 5.4,
we conclude that rational double points of type E1

7 do not appear on geometric
generic fibers. The remaining two cases E 2

7 and E1
8 are similar and are left to the

reader.
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