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On Abelian Coverings of Surfaces

E. B. Vinberg

In this paper we consider only orientable compact topological surfaces without
boundary, which for brevity are simply called surfaces. All autohomeomorphisms
of surfaces are presumed to be orientation preserving.

We are interested in a classification of finite abelian coverings of surfaces up to
the following equivalence relation: two coverings π1 : T1 → S1 and π2 : T2 → S2

are equivalent if there are homeomorphisms ϕ : S1 → S2 and ψ : T1 → T2 such
that the diagram

T1
ψ

��

π1

��

T2

π2

��

S1 ϕ
�� S2

commutes.
If π : T → S is a Galois covering with Galois group G (acting on T ), then

S � T/G. Conversely, if G is a finite group of autohomeomorphisms of a sur-
face T acting on T freely (i.e., with trivial stabilizers), then the factorization map
π : T → T/G = S is a Galois covering with Galois group G.

Thus, instead of considering finite abelian coverings of surfaces one can con-
sider pairs (T,G), where T is a surface and G is a finite abelian group of auto-
homeomorphisms of G acting on T freely. The foregoing equivalence relation for
coverings corresponds to the following notion of isomorphism of pairs: two pairs
(T1,G1) and (T2,G2) are isomorphic if there exist a homeomorphismψ : T1 → T2

and an isomorphism f : G1 → G2 such that the diagram

T1
ψ

��

g

��

T2

f(g)

��

T1 ψ
�� T2

commutes for any g ∈G1.

Given a finite abelian group G0, one can consider the problem of classification
of free G0-actions on surfaces. This is not the same as classifying pairs (T,G)

with G � G0. To each such pair there corresponds a set of isomorphism classes
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of free G0-actions on surfaces of genus h = gen T that is in a bijection with
AutG/AutT G, where AutT G denotes the group of automorphisms of G realized
by homeomorphisms of T.

Edmonds [E] (see also [Zim]) defined a canonical injection from the set of iso-
morphism classes of free G0-actions on a surface T into H2(G0, Z) = ∧2

G0 and
proved that it becomes a bijection as soon as g � gen T/G0 ≥ rkG0.

Some authors [E; CN1] define weak equivalence of G0-actions by allowing the
twist of an action by an automorphism of G0. Classification of free G0-actions
on surfaces up to weak equivalence is exactly the same as classification of pairs
(T,G) with G � G0.

The latter problem was solved by Nielsen [Nie] for G0 cyclic and by Costa and
Natanzon [CN1] for G0 = (Cp)

m with p prime. Recently it was independently
solved by Costa and Natanzon [CN2] and by George Michael [G] forG0 = (Cpk )m.

In this paper we suggest a new approach to the problem, which permits us to
easily recover the known results and to obtain new ones. We give a complete so-
lution in the following three cases:

(1) G � (Cpk )m (Theorem 5.3);
(2) G � (Cp)

m1 × (Cp2)m2 (Theorem 6.1);
(3) g = 2 (Section 9, especially Theorem 9.1).

Acknowledgments. The work was partly done during my stay at the Max
Planck Institute in Bonn in February 2004 and completed during my stay at Biele-
feld University, supported by the SFB 701, in the summer of 2006. I thank these
institutions for their hospitality. I am indebted to S. Natanzon for bringing the
problem to my attention and for numerous discussions.

Notation.

Cn: the (multiplicative) cyclic group of order n
Qp: the field of p-adic numbers
Zp: the ring of integer p-adic numbers
Z∗

p: the group of invertible (= not divisible by p) elements of Zp

1. Reduction to an Algebraic Problem

For a pair (T,G) of the type described previously, set S = T/G, h = gen T, and
g = gen S. Then

h = |G|(g − 1) + 1.

The fundamental group π1(T ) is embedded into π1(S) as a normal subgroup, so

π1(S)/π1(T ) � G.

The pair (S,π1(T )) (where π1(T ) is considered as a normal subgroup of π1(S))

determines the pair (T,G) up to isomorphism according to the uniformization
diagram
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X
q

����
��

�

p

��

T

π ��
��

��
�

S

,

where X is the simply connected covering of S (homeomorphic to R2 unless T is
the sphere and G is trivial) and where p, q,π are the factorization maps defined
(respectively) by the actions of π1(S),π1(T ),G.

Moreover, since (by the Dehn–Nielsen theorem) any isomorphism of the fun-
damental groups of two surfaces is induced by a homeomorphism of the surfaces
(see e.g. [ZVC, Thm. 5.6.2]), the pair (T,G) is determined up to isomorphism by
the group–subgroup pair (π1(S),π1(T )).

Since G � π1(S)/π1(T ) is abelian, it follows that π1(T ) ⊃ (π1(S),π1(S)). Set

L = H1(S, Z) = π1(S)/(π1(S),π1(S)),

M = π1(T )/(π1(S),π1(S)) ⊂ L.

The group L is free abelian of rank 2g, and M is a subgroup of finite index such
that L/M � G. Let ω be the intersection form on L. It is known that ω is a uni-
modular integral 2-form. By a theorem of Poincaré ([P]; see also [MKS, Chap. 3,
Thm. N13]), any symplectic automorphism of L is induced by an automorphism
of π1(S). Hence the pair (π1(S),π1(T )) is determined up to isomorphism by the
triple (L,ω,M).

Our classification problem therefore reduces to the classification problem for
triples (L,ω,M), where L is a free abelian group of a given (even) rank n, ω is
a unimodular integral 2-form on L, and M is a subgroup of finite index such that
L/M is isomorphic to a given finite abelian group G.

2. Symplectic Modules

Let A be a principal ideal domain and let L be a free A-module of finite rank. The
following description of 2-forms on L (with values in A) can be found, for exam-
ple, in [B, Chap. IX, Sec. 5, Thm. 1].

Proposition 2.1. For any 2-form ω on L, there exists a basis of L in which the
matrix of ω has the form

diag
(( 0 a1−a1 0

)
, . . . ,

( 0 as−as 0

)
, 0, . . . , 0

)
, (2.1)

where a1, . . . , as = 0 and ai |ai+1 for i = 1, . . . , s −1. The ideals (a1), . . . , (as) are
uniquely determined.

A 2-form ω on L is called unimodular if its discriminant (in any basis of L) is an
invertible element of A. In this case there exists a basis of L in which the matrix
of ω has the form

diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)); (2.2)

such a basis is called symplectic.
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A free A-module of finite rank supplied with a unimodular 2-form is called a
unimodular symplectic A-module. A unimodular symplectic Z-module is called a
unimodular symplectic lattice. The existence of a symplectic basis implies that all
unimodular symplectic A-modules of the same rank are isomorphic.

For a prime number p, let Zp denote the ring of p-adic integers. If L is a free
abelian group (= a free Z-module) of finite rank, then Lp = Zp ⊗ L is a free
Zp-module (of the same rank) called the p-adic completion of L. Any 2-form ω

on L uniquely extends to a 2-form ωp on Lp.

If M is a subgroup of finite index in L with L/M = G, then Mp = Zp ⊗ M

is a subgroup of finite index (and a Zp-submodule) in Lp with Lp/Mp � Torp G,
the p-primary component of G. In particular, Mp = Lp for all but finitely many
p. Conversely, the strong approximation theorem for the unimodular group [Kne]
implies the following.

Proposition 2.2. Let a submodule Mp of finite index in Lp be given for each p

in such a way that Mp = Lp for all but finitely many p. Then there exists a unique
subgroup M ⊂ L such that Zp ⊗ M = Mp for any p.

Let (L,ω) be a unimodular symplectic lattice and let M,M ′ ⊂ L be two subgroups
of finite index.

Proposition 2.3. If for any prime p there exists a symplectic automorphism ϕp

of Lp such that ϕp(Mp) = M ′
p, then there exists a symplectic automorphism ϕ of

L such that ϕ(M) = M ′.

Proof. Let S be the (finite) set of prime numbers p for which Mp = Lp. For any
p ∈ S there exists a natural number ν(p) such that Mp ⊃ pν(p)Lp. By the strong
approximation theorem for the symplectic group [Kne], there exists a symplectic
automorphism ϕ of L such that

ϕ ≡ ϕp (modpν(p)) ∀p ∈ S.

Then ϕ(M)p = M ′
p for all p and hence ϕ(M) = M ′.

Thus, a triple (L,ω,M) is determined up to isomorphism by its p-adic comple-
tions (Lp,ωp,Mp), and the latter may be arbitrary provided Mp = Lp for all but
finitely many p. Our classification problem thus reduces to the classification of
submodules of finite index in unimodular symplectic Zp-modules.

3. Changing the Point of View

LetL be a free Zp-module of rankn and letM be a submodule of finite index inL. It
is known (see e.g. [B, Chap.VII, Sec. 4, Thm.1]) that there exist a basis {e1, . . . , en}
of L and nonnegative integers k1 ≤ · · · ≤ kn such that {pk1e1, . . . ,pknen} is a basis
of M. Such a basis of L is called compatible with M, and pk1, . . . ,pkn are called
the invariant factors of the submodule M ⊂ L. If 0 = k1 = · · · = ks < ks+1, then
pks+1, . . . ,pkn are the invariant factors of the group G = L/M; that is,

G � Cpks+1 × · · · × Cpkn ,
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where Cq denotes the (multiplicative) cyclic group of order q. It follows that M is
determined by the group G up to automorphism of L.

This permits us to look at the problem from another point of view. Namely, we
can fix M and classify unimodular 2-forms ω on L up to the action of the group
Aut(L,M) of automorphisms of L preserving M.

The group Aut(L,M) is described as follows. As before, let {e1, . . . , en} be a
basis of L that is compatible with M. An automorphism ϕ of L is given by a ma-
trix A = (aij )

n
i,j=1 with entries in Zp such that

ϕ(ej ) =
n∑

i=1

aij ei .

Clearly, ϕ(M) = M if and only if

pki−kj |aij for i > j. (3.1)

In particular, the following “elementary” automorphisms belong to Aut(L,M):

(1) ϕ(ej ) = ej + aei, where i < j or i > j and pki−kj |a; and ϕ(ek) = ek for
k = j ;

(2) ϕ(ej ) = cej , where c ∈ Z∗
p; and ϕ(ek) = ek for k = j.

One can show that the group Aut(L,M) is generated by the elementary automor-
phisms, but we do not need this fact.

Under these elementary automorphisms, the matrix # = (ωij )
n
i,j=1 of the form

ω is transformed as follows:

(1) the ith column multiplied by a is subtracted from the j th column and, simul-
taneously, the ith row multiplied by a is subtracted from the j th row;

(2) the j th column and the j th row are divided by c.

Instead of changing the form ω with the group Aut(L,M) leaving the basis
{e1, . . . , en} invariant, one can change the basis {e1, . . . , en} with the same group
leaving the form ω invariant. We will use one or the other approach as may be
convenient.

Let Lk be the submodule of L generated by the ei with ki = k. Then

L =
⊕
k

Lk , M =
⊕
k

pkLk , (3.2)

and any automorphism of the form

ϕ =
⊕
k

ϕk (ϕk ∈AutLk)

belongs to Aut(L,M).

It is likely that our classification problem can be reasonably settled only in some
particular cases—when there are only few different invariant factors. We consider
three such cases in subsequent sections.

4. Preliminaries

In the sequel, L is a free Zp-module of rank n, ω is a unimodular 2-form on L,
and M is a submodule of finite index in L with invariant factors pk1, . . . ,pkn. The
number n will be called the rank of the triple (L,ω,M).



636 E. B. Vinberg

Let us call such a triple (L,ω,M) decomposable if the module L decomposes
into a direct sum of orthogonal (with respect to ω) nontrivial submodules L′ and
L′′ such that M = M ′ +M ′′, where M ′ ⊂ L′ and M ′′ ⊂ L′′. In this case, the forms
ω ′ = ω|M ′ and ω ′′ = ω|M ′′ are automatically unimodular, and the triple (L,ω,M)

is called the direct sum of the triples (L′,ω ′,M ′) and (L′′,ω ′′,M ′′). Clearly, any
triple can be decomposed into a direct sum of indecomposable triples.

For any submodule N ⊂ L, set N⊥ = {y ∈ L:ω(x, y) = 0 ∀x ∈ N}. A sub-
module N is called unimodular if the form ω|N is unimodular. In this case L =
N ⊕N⊥. Moreover, if N ⊂ M then M = N ⊕ (M ∩N⊥), so the triple (L,ω,M)

decomposes into a direct sum of the triple (N,ω|N ,N) and its orthogonal comple-
ment (N⊥,ω|N⊥ ,M ∩ N⊥).

Consider the symplectic vector spaceV = Qp ⊗Zp
L over the field Qp of p-adic

numbers, and set

M ∗ = {y ∈V : ω(x, y)∈ Zp ∀x ∈M}.
This is a Zp-submodule of V, containing L, that is called the dual submodule of M.

It is generated by the basis {f1, . . . , fn} of V dual (with respect to ω) to the basis
{pk1e1, . . . ,pknen} of M. In particular, M is a submodule of finite index in M ∗.

Proposition 4.1. The invariant factors of M in M ∗ are the invariant factors of
the (skew-symmetric) matrix D#D, where

D = diag(pk1, . . . ,pkn).

Proof. We express the basis {pk1e1, . . . ,pknen} of M in terms of the basis {f1, . . . ,
fn} of M ∗:

pkjej =
n∑

i=1

aijfi .

The invariant factors of M in M ∗ are the invariant factors of the matrix A =
(aij )

n
i,j=1. But

aij = ω(pkiei,p
kjej ) = pki+kjωij ,

whence A = D#D.

It follows from Proposition 2.1 that the invariant factors of any skew-symmetric
matrix have even multiplicities. Consequently, the invariant factors of M in M ∗
have even multiplicities. Taken with halves of their multiplicities, they will be
called the symplectic invariant factors of the triple (L,ω,M).

Obviously, the set of invariant factors (resp., symplectic invariant factors) of a
direct sum of triples is the union of the sets of those of the summands. A triple
(L,ω,M) of rank 2 is determined up to isomorphism by the invariant factors pk1

and pk2. Indeed, take any basis {e1, e2} of L compatible with M. Dividing e1 by
ω12 (which is an invertible element of Zp), we may assume that ω12 = 1. This
determines the triple up to isomorphism.

The triple of rank 2 with invariant factors pk1 and pk2 will be denoted by
T2(k1, k2). For such a triple, we have
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D#D =
(

0 pk1+k2

−pk1+k2 0

)
,

so the symplectic invariant factor is pk1+k2.

If all invariant factors of M are equal to pk, then any basis of L is compatible
with M. It follows that such a triple decomposes into a direct sum of triples of
type T2(k, k).

We also need the following result.

Proposition 4.2. Let A be a matrix with entries in Zp and let [A]p be its reduc-
tion modulo p. Suppose that the rows of [A]p are linearly independent. Then the
matrix A can be put in the form

 1 0
. . .

0 1

∣∣∣∣∣∣ 0


 (4.1)

by elementary transformations of its rows and columns over the ring Zp.

Proof. The matrix [A]p can be put in the form (4.1) by elementary transforma-
tions of its rows and columns over the field Z/pZ. Lifting these transformations
to some elementary transformations of A over Zp, one may assume that [A]p al-
ready has the form (4.1). Then the standard Gauss algorithm applied to the rows
of A (without their permutation) allows us to put A in the form

 1 0
. . .

0 1

∣∣∣∣∣∣ B


.

Finally, by subtracting suitable linear combinations of the first columns from the
columns of B, we put A in the form (4.1).

5. Case G = Cpk ×· · · ×Cpk

In this case
L = L0 ⊕ Lk and M = L0 ⊕ pkLk.

We set rkL0 = n0 and rkLk = nk (so n = n0 + nk).

Let T4(k; )) denote the triple of rank 4 of this type, for which n0 = nk = 2 and
the matrix of ω is

# =




0 p) 1 0

−p) 0 0 1

−1 0 0 0

0 −1 0 0


. (5.1)

Observe that, if ) = 0, then the submodule L0 is unimodular and so the triple
T4(k; 0) is decomposable. More precisely,

T4(k; 0) � T2(0, 0) ⊕ T2(k, k). (5.2)



638 E. B. Vinberg

If ) ≥ k then we can annul the left upper corner of #, subtracting the third col-
umn multiplied by p) from the second column and doing the same with the rows.
This yields

T4(k; )) � T2(0, k) ⊕ T2(0, k) for ) ≥ k. (5.3)

Proposition 5.1. For 0 < ) < k, the symplectic invariant factors of T4(k; )) are

p) and p2k−).

Proof. By Proposition 4.1, the symplectic invariant factors of T4(k; )) are the in-
variant factors of the matrix

D#D =




0 p) pk 0

−p) 0 0 pk

pk 0 0 0

0 −pk 0 0


,

taken with halves of their multiplicities. Adding the first row multiplied by pk−)

to the fourth row and then subtracting the second row multiplied by pk−) from the
third row, we obtain the matrix



0 p) pk 0

−p) 0 0 pk

0 0 0 −p2k−)

0 0 p2k−) 0


,

whose invariant factors are obviously p), p), p2k−), and p2k−).

Corollary 5.2. The triple T4(k; )) is indecomposable for 0 < ) < k.

Theorem 5.3. Any triple (L,ω,M) with G = L/M � Cpk × · · · × Cpk decom-
poses into a direct sum of triples of types

T2(0, 0), T2(0, k), T2(k, k), T4(k; )) (0 < ) < k). (5.4)

The summands of such decompositions are uniquely determined up to isomorphism.

Proof. Let

# =
(

#0 #1

−#�
1 #2︸︷︷︸

n0

︸︷︷︸
nk

)}
n0}
nk

be the matrix of ω in a basis of L compatible with M, where the superscript �
denotes the transposition of a matrix.

If the (i, j)th entry ωij of #0 is not divisible by p, then the submodule N gen-
erated by ei and ej is unimodular and hence the triple (L,ω,M) decomposes into
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a direct sum of the triple (N,ω|N ,N) (of type T2(0, 0)) and its orthogonal com-
plement. Thus, we may assume that all the entries of #0 are divisible by p.

Since det[#]p = 0 but [#0 ]p = 0, the rows of [#1]p are linearly independent.
Elementary automorphisms of L0 and Lk result in elementary transformations of
rows and columns of #1, respectively. By Proposition 4.2, the matrix #1 can be
put in the form (4.1) with such transformations. Thus, we may assume that

# =




1 0

#0
. . . 0

0 1

−1 0
. . . #2

0 −1

0




.

Furthermore, subtracting suitable linear combinations of the first n0 basis elements
from the last nk ones, we can put the matrix # in the form



1 0

#0
. . . 0

0 1

−1 0
. . . 0 0

0 −1

0 0 #3




.

In particular, if n0 < nk then the triple (L,ω,M) decomposes into a direct sum
of two triples, the second of which has all invariant factors equal to pk and hence
decomposes into a direct sum of triples of type T2(k, k). Thus, we may assume
that n0 = nk and

# =




1 0

#0
. . .

0 1

−1 0
. . . 0

0 −1



. (5.5)

Under this assumption, the modules L0 and Lk are in duality with respect to ω.

Taking any basis in L0 and the dual basis in Lk , we retain the form (5.5) of #.

Therefore, making use of Proposition 2.1, we may assume that
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#0 = diag

((
0 p)1

−p)1 0

)
, . . . ,

(
0 p)s

−p)s 0

)
, 0, . . . , 0

)
,

where 0 < )1 ≤ · · · ≤ )s. But then the triple (L,ω,M) decomposes into a direct
sum of triples of types T4(k; )) () > 0) and T2(0, k). Taking into account (5.3),
we obtain the first assertion of the theorem.

To prove the second assertion, let us look at the following table of symplectic
invariant factors of the triples of types (5.4).

Symplectic
invariant

Type factors

T2(0, 0) 1
T2(0, k) pk

T2(k, k) p2k

T4(k; )) p), p2k−)

We see that they have nothing in common, so the symplectic invariant factors of the
triple (L,ω,M) permit us to determine the number of summands of each type.

Note that summands of type T4(k; )) appear only for k > 1.

Corollary 5.4. For g ≥ m, the number of equivalence classes of Galois
coverings of a surface of genus g with Galois group G � (Cpk )m is equal to
(m′+1)(m′+2) ···(m′+k)

k! , where m′ = [
m
2

]
.

Proof. Let T be the triple corresponding to a covering of the considered type, and
let x, y, z0, z) (0 < ) < k) denote the numbers of summands of the types (5.4) in
the decomposition of T. Comparing then the invariant factors gives

2x + y + 2
k−1∑
)=1

z) = 2g − m, (5.6)

y + 2
k−1∑
)=0

z) = m (5.7)

or, equivalently,

x = g − m + z0, (5.8)

y ′ +
k−1∑
)=0

z) = m′, (5.9)

where y ′ = [ y

2

]
.

Conversely, let (y ′, z0, z1, . . . , zk−1) be any solution to (5.9). Set y = 2y ′ or y =
2y ′ + 1 so that y ≡ m (mod 2), and set x = g − m + z0. (Note: x ≥ 0 owing to
our assumption that g ≥ m.) Then x, y, z0, z1, . . . , zk−1 satisfy (5.6) and (5.7), so
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the sum of the triples (5.4) taken with these multiplicities has the invariant factors
as needed.

It remains to observe that the number of (nonnegative integer) solutions to (5.9)
is equal to (m′+1)(m′+2) ···(m′+k)

k! .

6. Case G = Cp×· · · ×Cp×Cp2 ×· · · ×Cp2

In this case,

L = L0 ⊕ L1 ⊕ L2 and M = L0 ⊕ pL1 ⊕ p2L2.

We set rkL0 = n0, rkL1 = n1, and rkL2 = n2 (so n = n0 + n1 + n2).

Theorem 6.1. Any triple (L,ω,M) with G = L/M � Cp × · · · × Cp × Cp2 ×
· · · × Cp2 decomposes into a direct sum of triples of types

T2(k1, k2) (0 ≤ k1 ≤ k2 ≤ 2), T4(2;1). (6.1)

The summands of such decompositions are uniquely determined up to isomorphism.

Proof. Let

# =

 #0 #1 #2

−#1 #3 #4

−#�
2 −#�

4 #5︸︷︷︸
n0

︸︷︷︸
n1

︸︷︷︸
n2




}
n0}
n1}
n2

be the matrix of # in a basis of L compatible with M. As in the proof of Theo-
rem 5.3, we may assume that all the entries of #0 are divisible by p.

Suppose now that the (i, j)th entry ωij of #1 (0 < i ≤ n0 < j ≤ n0 + n1) is
not divisible by p. Let N be the submodule generated by ei and ej . Subtracting
suitable linear combinations of ei and ej from the other basis elements of L, we
can annul all the entries of the ith and j th rows and columns of # except ωij and
ωji. (Our assumption that all the entries of #0 are divisible by p means that the
element ej will be subtracted from the first n0 basis elements with coefficients di-
visible by p.) Therefore, the triple (L,ω,M) decomposes into a direct sum of the
triple (N,ω|N ,M ∩ N) (of type T2(0,1)) and its orthogonal complement. Thus,
we may assume that all the entries of #1 are also divisible by p.

Since det[#]p = 0 but [#0 ]p = [#1]p = 0, the rows of [#2 ]p are linearly in-
dependent. Reasoning as in the proof of Theorem 5.3, we can put the matrix #2

in the form (4.1). Furthermore, subtracting suitable linear combinations of the first
n0 basis elements of L2 from the basis elements of L1, we can annul the matrix #1

(by our assumption that all its entries are divisible by p). Finally, subtracting suit-
able linear combinations of the basis elements of L0 from the other basis elements
of L, we can put the matrix # in the form
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1 0

#0 0
. . . 0

0 1

0 #3 0 #6

−1 0
. . . 0 0 0

0 −1

0 −#�
6 0 #7




.

It follows that the triple (L,ω,M) decomposes into a direct sum of two triples
(L′,ω ′,M ′) and (L′′,ω ′′,M ′′) whose invariant factors are 1, . . . ,1,p2, . . . ,p2 and
p, . . . ,p,p2, . . . ,p2, respectively. By Theorem 5.3, the triple (L′,ω ′,M ′) decom-
poses into a direct sum of triples of types

T2(0, 0), T2(0, 2), T2(2, 2), T4(2;1).

In the triple (L′′,ω ′′,M ′′) the submodule M ′′ can be divided by p, which gives
a triple with invariant factors 1, . . . ,1,p, . . . ,p. By Theorem 5.3, the latter decom-
poses into a direct sum of triples of types T2(0, 0), T2(0,1), T2(1,1). Hence the
triple (L′′,ω ′′,M ′′) decomposes into a direct sum of triples of types

T2(1,1), T2(1, 2), T2(2, 2).

This completes the proof of the first assertion of the theorem.
To prove the second assertion, consider the following table of the invariant fac-

tors and the symplectic invariant factors of the triples (6.1).

Symplectic
Invariant invariant

Type factors factors

T2(0, 0) 1,1 1
T2(0,1) 1, p p

T2(0, 2) 1, p2 p2

T2(1,1) p, p p2

T2(1, 2) p, p2 p3

T2(2, 2) p2, p2 p4

T4(2;1) 1,1, p2, p2 p, p3

Calculating the invariant factors and the symplectic invariant factors of the triple
(L,ω,M) in terms of its decomposition into a direct sum of triples of types (6.1),
we obtain eight linear equations for the seven multiplicities of summands of this
decomposition. It is easy to check that these equations permit us to determine the
multiplicities.
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7. Exchange Numbers

In general, the invariant factors and the symplectic invariant factors are not suffi-
cient for distinguishing nonisomorphic triples. In this section we introduce some
new invariants.

Fix a decomposition of the set ν = {1, . . . , n} into s blocks ν1, . . . , νs of con-
secutive integers of sizes n1, . . . , ns (n1 + · · · + ns = n). Denote by S(n1, . . . , ns)

the subgroup of the symmetric group Sn formed by the permutations that leave
invariant each block νp (p = 1, . . . , s). Clearly, S(n1, . . . , ns) � Sn1 × · · · × Sns

.

For an involution σ ∈ Sn without fixed points, define the exchange numbers

expq(σ) = #{i ∈ νp : σ(i)∈ νq}.
Two involutions without fixed points are conjugate by means of S(n1, . . . , ns) if
and only if their exchange numbers coincide.

According to the foregoing decomposition of ν, every n × n matrix A decom-
poses into s2 blocks Apq (p, q = 1, . . . , s), where Apq is an np × nq matrix.

Let V be a vector space with basis {e1, . . . , en} over a field F. Set Vp = 〈ei :
i ∈ νp〉. Define a parabolic subgroupP(n1, . . . , ns) of the group GL(V ) = GLn(F )

as the group of nondegenerate blockwise upper triangular matrices. Note that it
contains GL(V1) × · · · × GL(Vs).

The following proposition must be known, but I was unable to find a reference
for it. Let Eij denote the matrix unit whose (i, j)th entry is 1 while all other entries
are 0.

Proposition 7.1. By means of the group P(n1, . . . , ns), the matrix of any non-
degenerate skew-symmetric bilinear form ω on V can be put in the form

A(σ) =
∑

σ(i)>i

(Ei,σ(i) − Eσ(i),i ), (7.1)

where σ is an involution without fixed points defined up to conjugation by permu-
tations of S(n1, . . . , ns).

Proof. Let us first prove by induction on n that the matrix of ω can be put in the
form (7.1) using only the usual upper triangular matrices.

Let A be the matrix of ω in the basis {e1, . . . , en}. Because detA = 0, there exist
k such that

a11 = a12 = · · · = a1,k−1 = 0, a1k = 0.

One may suppose that a1k = 1. Subtracting suitable linear combinations of e1 and
ek from the last n − k basis vectors and subtracting suitable multiples of e1 from
e2, . . . , ek−1, one can transform the matrix A into a direct sum of the matrix

(
0 1
−1 0

)
and some matrix A1 of order n − 2 (whose index sets intertwine if k > 2). Then
one can apply the induction hypothesis to the matrix A1.

To prove the second statement of the proposition, consider the rank rpq(A) of the
left upper corner ofA obtained when intersecting the firstp block rows with the first
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q block columns. Clearly, this rank is invariant under the action of P(n1, . . . , ns).

On the other hand, rpq(A(σ)) is the number of ±1 in the corresponding left upper
corner of A(σ), whence

rpq(A(σ)) =
p∑

k=1

q∑
)=1

exk)(σ).

It is easy to see that knowing the latter sums for all p, q = 1, . . . , s allows us to de-
termine the exchange numbers expq(σ) and thereby to determine the involution σ

up to conjugation by means of S(n1, . . . , ns).

It remains to note that if the involutions σ and τ are conjugate by means of
S(n1, . . . , ns), then the matrices A(σ) and A(τ) are transformed into one another
by means of the group GL(V1) × · · · × GL(Vs) ⊂ P(n1, . . . , ns).

8. The Pre-Canonical Form of the Matrix of ω

Let now (L,ω,M) be a Zp-triple with invariant factors pk1, . . . ,pkn as in Sections
4–6, and let ([L]p, [ω]p, [M ]p) denote its reduction modulo p. Define blocks
ν1, . . . , νs ⊂ {1, . . . , n} as follows: numbers i and j belong to the same block if
ki = kj . Then the reduction of the group Aut(L,M) modulo p is just the group
P(n1, . . . , ns) (over the field F = Z/pZ). Let σ be any involution associated to
the form [ω]p according to Proposition 7.1.

Lifting the element of P(n1, . . . , ns) that transforms [ω]p into the form (7.1) to
a suitable element of Aut(L,M), we obtain

ωi,σ(i) = 1 for σ(i) > i, (8.1)

ωij ≡ 0 (modp) for j = σ(i). (8.2)

After that, subtracting suitable multiples of e1 from e2, . . . , en, then suitable mul-
tiples of e2 from e3, . . . , en, and so forth, yields

ωij = 0 for j > σ(i) or i > σ(j). (8.3)

A matrix of the form ω satisfying (8.1)–(8.3) will be called pre-canonical. We
remark that this notion depends on the choice of the involution σ in the class of
S(n1, . . . , ns)-conjugacy associated to [ω]p.

9. Case n = 4

A Zp-triple (L,ω,M) of rank 4 either is indecomposable or decomposes into a
direct sum of two triples of rank 2. In the latter case, comparing the symplectic
invariant factors shows that the summands are uniquely determined up to isomor-
phism. Thus, it remains to classify indecomposable triples of rank 4.

We fix the notation pk1,pk2,pk3,pk4 for the invariant factors of the triple. Now
consider all possiblilities for the involution σ ∈ S4 associated to the triple accord-
ing to Section 7.
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Case 1: σ = (12)(34). In this case, the pre-canonical form of the matrix of ω is

# =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


,

so the triple is decomposable.

Case 2: σ = (13)(24). If k2 = k3 then one can also choose (12)(34) for σ. To
avoid repetitions, we will assume that

k1 ≤ k2 < k3 ≤ k4. (9.1)

Here the pre-canonical form of the matrix of ω is

# =




0 a 1 0

−a 0 0 1

−1 0 0 0

0 −1 0 0


, p|a.

If a = 0 then the triple is decomposable. If a = 0 then, after renormalizing e1 and
e3, one may assume that

# =




0 p) 1 0

−p) 0 0 1

−1 0 0 0

0 −1 0 0


, ) > 0. (9.2)

If ) ≥ k3 − k2 then one can annul the entry p) by subtracting p)e3 from e2; hence
we may assume that

0 < ) < k3 − k2. (9.3)

Let T4(k1, k2, k3, k4; )) denote the triple so defined. We can easily see that its
symplectic invariant factors are

pk1+k2+) and pk3+k4−). (9.4)

Since k1 + k2 + ) cannot be equal to any sum of two of the numbers k1, k2, k3, k4,
it follows that the triple is indecomposable.

Note that the triple T4(k, )) defined in Section 5 is simply T4(0, 0, k, k; )).
Case 3: σ = (14)(23). If k1 = k2 or k3 = k4, then one can choose (13)(24) for

σ. So we will assume that

k1 < k2 ≤ k3 < k4. (9.5)

The pre-canonical form of the matrix of ω is now
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# =




0 a b 1

−a 0 1 0

−b −1 0 0

−1 0 0 0


, p|a, p|b.

If a = b = 0 then the triple is decomposable. If a = 0 and b = 0 then, after
renormalizing e2 and e3, one may assume that

# =




0 0 p) 1

0 0 1 0

−p) −1 0 0

−1 0 0 0


, ) > 0. (9.6)

If ) ≥ k2 − k1 or ) ≥ k4 − k3, then one can annul the entry p) by subtracting p)e2

from e1 or p)e4 from e3. We may therefore assume that

0 < ) < min{k2 − k1, k4 − k3}. (9.7)

Let T ′
4(k1, k2, k3, k4; )) denote the triple defined by (9.6) with restrictions (9.7)

(which imply that each of the differences k2 − k1 and k4 − k3 is greater than 1).
Its symplectic invariant factors are

pk1+k3+) and pk2+k4−). (9.8)

Since k1 + k3 + ) cannot be equal to any sum of two of the numbers k1, k2, k3, k4,
it follows that the triple T ′

4(k1, k2, k3, k4; )) is indecomposable.
If a = 0 and b = 0 then, after renormalizing e2 and e3, we may assume that

# =




0 p) 0 1

−p) 0 1 0

0 −1 0 0

−1 0 0 0


, ) > 0. (9.9)

If ) ≥ k3 − k1 or ) ≥ k4 − k2, then one can annul the entry p) by adding p)e3 to
e1 or subtracting p)e4 from e2. Hence we may assume that

0 < ) < min{k3 − k1, k4 − k2}. (9.10)

Let T ′′
4 (k1, k2, k3, k4; )) denote the triple defined by (9.9) with restrictions (9.5)

and (9.10). Its symplectic invariant factors are

pk1+k2+) and pk3+k4−). (9.11)

If this triple is decomposable, then comparing the associated involutions shows
that it can be isomorphic only to the direct sum of T2(k1, k4) and T2(k2, k3). The
symplectic invariant factors of this sum are, up to permutation,

pk1+k4 and pk2+k3.
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By (9.10), however, k1 + k2 + ) cannot be equal to k1 + k4 or k2 + k3. Hence, the
triple T ′′

4 (k1, k2, k3, k4; )) is indecomposable.
Finally, if a, b = 0 then, after renormalizing e1, e2, e3, e4, we may assume that

# =




0 p)1 εp)2 1

−p)1 0 1 0

−εp)2 −1 0 0

−1 0 0 0


, )1, )2 > 0, (9.12)

where ε is an invertible element of Zp defined up to multiplication by a square.
(There are two possibilities for ε if p = 2 and four possibilities if p = 2.)

If )1−)2 ≥ k3 −k2, then one can annul the entry p)1 by subtracting ε−1p)1−)2e3

from e2. If )2 ≥ k2 − k1 or )2 ≥ k4 − k3 or )2 ≥ )1, then one can annul the entry
εp)2. Thus, we may assume that

0 < )2 < min{k2 − k1, k4 − k3}, (9.13)

0 < )1 − )2 < k3 − k2. (9.14)

(This implies that each of the differences k2 − k1, k3 − k2, and k4 − k3 is greater
than 1.)

Let T4(k1, k2, k3, k4; )1, )2; ε) denote the triple defined by (9.12) with restric-
tions (9.13) and (9.14). Its symplectic invariant factors are

pk1+k2+)1 and pk3+k4−)1. (9.15)

The same reasoning as in the case of T ′′
4 (k1, k2, k3, k4; )) shows that the triple

T4(k1, k2, k3, k4; )1, )2; ε) is indecomposable.

Thus, we have proved the first statement of the following theorem.

Theorem 9.1. The triples T4(k1, k2, k3, k4; )), T ′
4(k1, k2, k3, k4; )), T ′′

4 (k1, k2,
k3, k4; )), and T4(k1, k2, k3, k4; )1, )2; ε) defined previously are all indecompos-
able Zp-triples of rank 4. They are mutually nonisomorphic with the following
exceptions.

1. T ′
4(k1, k2, k3, k4; )) � T ′′

4 (k1, k2, k3, k4; )) if k2 = k3.

2. For p = 2, T4(k1, k2, k3, k4; )1, )2; ε) � T4(k1, k2, k3, k4; )1, )2; ε ′) if (a) one
of the numbers )2, )1 − )2, k2 − k1 − )2, k4 − k3 − )2, and k3 − k2 − )1 + )2

is equal to 2 and ε ≡ ε ′ (mod 4) or (b) one of those numbers is equal to 1.

It remains to prove that the triples T ′
4(k1, k2, k3, k4; )), T ′′

4 (k1, k2, k3, k4; )), and
T4(k1, k2, k3, k4; )1, )2; ε) are mutually nonisomorphic (with the exceptions indi-
cated in the theorem). This will be done in the next section.

10. Stable Matrices

Each nonzero element a ∈ Zp is uniquely represented as a = εpν, where ε ∈ Z∗
p.

The number ν is called the exponent of a, denoted ν(a).
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Let k1, . . . , kn be nonnegative integers such that

k1 < · · · < kn. (10.1)

Set [k]+ = max{k, 0} for k ∈ Z. An n × n matrix # = (ωij ) with entries in Zp

will be called stable with respect to the set (k1, . . . , kn) if, for any different nonzero
entries ωij and ωst ,

ν(ωij ) < ν(ωst ) + [ks − ki]+ + [kt − kj ]+. (10.2)

Obviously, a stable matrix remains stable when some of its entries are replaced
with zeros.

Let now (L,ω,M) be a Zp-triple for which (10.1) holds, and let {e1, . . . , en} and
{e ′

1, . . . , e ′
n} be two bases of L that are compatible with M. Then

e ′
j =

n∑
i=1

aij ei,

where (3.1) holds. Note also that aii ∈ Z∗
p (i = 1, . . . , n) because the matrix A =

(aij ) is invertible over Zp.

Proposition 10.1. Assume that the matrix # = (ωij ) of the form ω in the basis
{e1, . . . , en} is stable. Then the matrix #′ = (ω ′

ij ) of ω in the basis {e ′
1, . . . , e ′

n}
satisfies the congruences

ω ′
ij ≡ aii ajj ωij (modpν(ωij )+1) (10.3)

for any ωij = 0. In particular, if ωij = 0 then ω ′
ij = 0 and ν(ω ′

ij ) = ν(ωij ).

Proof. This can be shown by a straightforward calculation.

The inequalities (9.13) and (9.14) mean exactly that the matrix (9.12) is stable. Fur-
thermore, the matrices (9.6) and (9.9) are stable. Applying the last statement of
Proposition 10.1 then yields the second statement of Theorem 9.1, except for the
possible isomorphisms

T4(k1, k2, k3, k4; )1, )2; ε) � T4(k1, k2, k3, k4; )1, )2; ε ′). (10.4)

If p = 2 then there are two possibilities for ε, depending on whether or not [ε]p
is a square in Z/pZ. In the notation of Proposition 10.1, suppose that # and #′
have the form (9.12) (after replacing ε by ε ′ in the case of #′). Then (10.3) gives

ε ′ ≡ a11a33ε (modp),

a11a22 ≡ 1 (modp), and

a22a33 ≡ 1 (modp),

from which it follows that
ε ′ ≡ a2

11ε (modp).

The case p = 2 is handled similarly by using a refinement of Proposition 10.1.
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