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On Normal K3 Surfaces

Ichiro Shimada

1. Introduction

In this paper, by a K3 surface we mean, unless otherwise stated, an algebraic K3
surface defined over an algebraically closed field.

A K3 surface X is said to be supersingular (in the sense of Shioda [23]) if the
rank of the Picard lattice SX of X is 22. Supersingular K3 surfaces exist only
when the characteristic of the base field is positive. Artin [3] showed that, if X is
a supersingular K3 surface in characteristic p > 0, then the discriminant of SX
can be written as −p2σX , where σX is an integer with 0 < σX ≤ 10. This integer
σX is called the Artin invariant of X.

Let	0 be an even unimodular Z-lattice of rank 22 with signature (3,19). By the
structure theorem for unimodular Z-lattices (see e.g. [16, Chap. V]), the Z-lattice
	0 is unique up to isomorphisms. If X is a complex K3 surface, then H 2(X, Z)
regarded as a Z-lattice by the cup product is isomorphic to 	0. For an odd prime
integerp and an integer σ with 0 < σ ≤ 10, we denote by	p,σ an even Z-lattice of
rank 22 with signature (1, 21) such that the discriminant group Hom(	p,σ , Z)/	p,σ

is isomorphic to (Z/pZ)⊕2σ. Rudakov and Shafarevich [14, Sec. 1, Thm.] showed
that the Z-lattice 	p,σ is unique up to isomorphisms. If X is a supersingular K3
surface in characteristic p with Artin invariant σ, then SX is p-elementary by [14,
Sec. 8, Thm.] and of signature (1, 21) by the Hodge index theorem; hence SX is
isomorphic to 	p,σ .

The primitive closure of a sublattice M of a Z-lattice L is (M⊗Z Q)∩L, where
the intersection is taken in L⊗Z Q. A sublattice M ⊂ L is said to be primitive if
(M ⊗Z Q) ∩ L = M holds. For Z-lattices L and L′, we consider the following
condition.

Emb(L,L′): There exists a primitive embedding of L into L′.

We denote by P the set of prime integers. For a nonzero integer m, we denote by
D(m) ⊂ P the set of prime divisors of m. We consider the following arithmetic
condition on a nonzero integer d, a prime integer p ∈ P \ D(2d), and a positive
integer σ ≤ 10.

Arth(p, σ, d):

(
(−1)σ+1d

p

)
= −1,

where
(
x
p

)
is the Legendre symbol.
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We make the following observations.

(i) Suppose that d/d ′ ∈ (Q×)2. Then, for any p ∈ P \ D(2dd ′) and any σ, the
conditions Arth(p, σ, d) and Arth(p, σ, d ′) are equivalent.

(ii) For fixed σ and d, there exists a subset Tσ,d of (Z/4dZ)× such that, for p ∈
P \D(2d), the condition Arth(p, σ, d) is true if and only if p mod 4d ∈ Tσ,d .

The set Tσ,d is empty if and only if (−1)σ+1d is a square integer. Otherwise,
we have |Tσ,d | = |(Z/4dZ)×|/2, and hence the set of p ∈ P \ D(2d) for
which Arth(p, σ, d) is true has the natural density 1/2.

The main result of this paper is as follows.

Theorem 1.1. Let M be an even Z-lattice of rank r = t+ + t− with signature
(t+ , t−) and of discriminant dM. Suppose that t+ ≤ 1 and t− ≤ 19. Then, for a
prime integer p ∈P \D(2dM) and a positive integer σ ≤ 10, the following state-
ments hold.

(1) If 2σ > 22 − r, then Emb(M,	p,σ) is false.
(2) If 2σ < 22 − r, then Emb(M,	p,σ) and Emb(M,	0) are equivalent.
(3) If 2σ = 22 − r, then Emb(M,	p,σ) is true if and only if both Emb(M,	0)

and Arth(p, σ, dM) are true.

We shall present a geometric application of Theorem 1.1. A Dynkin type is a fi-
nite formal sum of symbols Al (l ≥ 1), Dm (m ≥ 4), and En (n = 6, 7, 8) with
nonnegative integer coefficients. For a Dynkin type

R =
∑

alAl +
∑

dmDm +
∑

enEn,

we denote by �+
R the positive definite root lattice of type R and define rank(R)

and disc(R) to be the rank and the discriminant of �+
R :

rank(R) :=
∑

al l +
∑

dmm+
∑

enn,

disc(R) :=
∏

(l + 1)al ·
∏

4dm · 3e6 · 2e7.

A normal K3 surface is a normal surface whose minimal resolution is a K3 sur-
face. Artin [1; 2] has shown that a normal K3 surface has only rational double
points as its singularities. We define the Dynkin type RY of a normal K3 surface
Y to be the Dynkin type of the singular points on Y. A normal K3 surface is said
to be supersingular if its minimal resolution is supersingular. The Artin invariant
σY of a normal supersingular K3 surface Y is defined to be the Artin invariant σX
of the minimal resolution X of Y. Note that rank(RY ) is equal to the total Milnor
number of a normal K3 surface Y. In particular, we have that rank(RY ) ≤ 21 for
any Y and that rank(RY ) > 19 holds only when Y is supersingular.

Let R be a Dynkin type, p a prime integer, and σ a positive integer ≤ 10. We
consider the following conditions.

NK(0,R): There exists a complex normal K3 surface Y with RY = R.

NK(p, σ,R): There exists a normal supersingular K3 surface Y in characteristic
p such that σY = σ and RY = R.

NK′(p, σ,R): Every supersingular K3 surface X in characteristic p with σX = σ

is birational to a normal K3 surface Y with RY = R.
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Proposition 1.2. The conditions NK(p, σ,R) and NK′(p, σ,R) are equivalent.

Theorem 1.3. Let R be a Dynkin type with r := rank(R) ≤ 19, and let σ be
a positive integer ≤ 10. We put dR := (−1)r disc(R) and let p be an element of
P \ D(2dR).

(1) If 2σ > 22 − r, then NK(p, σ,R) is false.
(2) If 2σ < 22 − r, then NK(p, σ,R) and NK(0,R) are equivalent.
(3) If 2σ = 22 − r, then NK(p, σ,R) is true if and only if both NK(0,R) and

Arth(p, σ, dR) are true.

For each p ∈ P, a supersingular K3 surface in characteristic p with Artin invari-
ant 1 is unique up to isomorphisms [12; 13]. We denote by X(1)

p the supersingular
K3 surface in characteristic p with Artin invariant 1.

Corollary 1.4. The following conditions on a Dynkin type R with r :=
rank(R) ≤ 19 are equivalent. We put dR := (−1)r disc(R).

(i) There exists a complex normal K3 surface Y with RY = R.

(ii) There exists a prime integer p ∈P \D(2dR) such that X(1)
p is birational to a

normal K3 surface Y with RY = R.

(iii) For every p ∈ P \ D(2dR), the supersingular K3 surface X(1)
p is birational

to a normal K3 surface Y with RY = R.

Let Y be a normal supersingular K3 surface in characteristic p. It is proved in [18]
that, if rank(RY ) = 21, then p ∈D(2 disc(RY )) holds. It is proved in [22] that, if
rank(RY ) = 20, then either σY = 1 or p ∈D(2 disc(RY )) holds. (In [22], we have
also determined all Dynkin types R of rank 20 of rational double points that can
appear on normal supersingular K3 surfaces in characteristic p /∈ D(2 disc(R))
with the Artin invariant 1.) Therefore, if σY > 1, then either rank(RY ) ≤ 19 or
p ∈ D(2 disc(RY )). Combining this consideration with Theorem 1.3, we obtain
restrictions on Dynkin types of normal supersingular K3 surfaces with large Artin
invariants.

Corollary 1.5. Let Y be a normal supersingular K3 surface in characteristic
p with σY = 10. Then one of the following statements holds.

(i) rank(RY ) ≤ 1 (i.e., Y is smooth or has only one ordinary node as its singu-
larities);

(ii) RY = A2 and p mod 24∈ {5,11,17, 23};
(iii) RY = 2A1 and p mod 8∈ {3, 7}; or
(iv) p ∈D(2 disc(RY )).

Corollary 1.6. Let Y be a normal supersingular K3 surface in characteristic
p with σY = 9. Then one of the following statements holds.

(i) rank(RY ) ≤ 3;
(ii) RY = A4 and p mod 40∈ {3, 7,13,17, 23, 27, 33, 37};

(iii) RY = A1 + A3 and p mod 8∈ {3, 5};
(iv) RY = 2A1 + A2 and p mod 24∈ {5, 7,17,19}; or
(v) p ∈D(2 disc(RY )).
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Table 1 Minimal Dynkin types R for which NK(0,R) is false

rank15 A4 + 11A1, 2A2 + 11A1, A2 + 13A1

rank16 3D4 + 2A2, A6 + A2 + 8A1, A4 + 2A2 + 8A1

rank17 E8 +D4 + 5A1, E6 + 2D4 + 3A1, E6 +D4 + A2 + 5A1, D7 + 5A2,
D5 + 5A2 + 2A1, 3D4 + A4 + A1, 2D4 + A6 + A3, 2D4 + A6 + 3A1,
2D4 + A4 + A3 + A2, 2D4 + A4 + A2 + 3A1, 2D4 + 3A2 + 3A1,
D4 + A8 + 5A1, D4 + 2A4 + 5A1, D4 + A3 + 5A2, D4 + 4A2 + 5A1,
A10 + 7A1, A4 + 5A2 + 3A1, A3 + 5A2 + 4A1, 7A2 + 3A1, 5A2 + 7A1, 17A1

rank18 E8 +D4 + 2A3, E6 +D4 + 2A3 + A2, E6 + 4A3, D5 +D4 + 3A3,
D4 + A8 + 2A3, D4 + 2A4 + 2A3, A7 + 5A2 + A1, 2A4 + 5A2, A4 + 7A2,
4A3 + 3A2, 4A3 + A2 + 4A1

rank19 E7 + 3A4, E7 + 3A3 + A2 + A1, D12 + A7, D9 + 3A3 + A1,
D7 +D5 + 2A3 + A1, D6 + 2D5 + A3, D6 +D5 + 2A3 + A2,
D6 + 3A4 + A1, D6 + 4A3 + A1, 3D5 + A3 + A1, D5 + A5 + 3A3,
D5 + 3A4 + A2, D4 + 4A3 + 3A1, A7 + 3A4, A6 + 4A3 + A1,
A5 + 3A4 + A2, A5 + 4A3 + 2A1, A5 + 3A3 + 2A2 + A1, 3A4 + 2A3 + A1,
3A4 + A3 + A2 + 2A1, 3A4 + 2A2 + 3A1, A4 + 4A3 + A2 + A1

Observe that, if p ∈ D(2 disc(R)) with rank(R) ≤ 21, then p ≤ 19. We thus ob-
tain the following corollary.

Corollary 1.7. The total Milnor number of a normal supersingular K3 surface
Y in characteristic p > 19 with Artin invariant σY is at most 22 − 2σY .

Let R and R ′ be Dynkin types. We write R ′ < R if the Dynkin diagram of R ′
can be obtained from the Dynkin diagram of R by deleting some vertexes and
the edges emitting from them. For a Dynkin type R, we denote by S(R) the set
of Dynkin types R ′ with R ′ = R or R ′ < R. A K3 surface X is birational to a
normal K3 surface Y with RY = R if and only if there exists a configuration of
(−2)-curves of type R on X. Hence, if R ′ ∈ S(R), then

NK(0,R) �⇒ NK(0,R ′), NK(p, σ,R) �⇒ NK(p, σ,R ′).

We have determined the Boolean value of NK(0,R) for each Dynkin type R with
rank(R) ≤ 19, as described in the following theorem.

Theorem 1.8. Let R be a Dynkin type of rank ≤ 19. Then NK(0,R) is true if
and only if S(R) does not contain any Dynkin type that appears in Table 1.

Corollary 1.9. Let R be a Dynkin type of rank ≤ 14. Then there exists a com-
plex normal K3 surface Y with RY = R.

Because p ∈D(2 disc(R)) with rank(R) ≤ 21 implies that p ≤ 19, Theorems 1.3
and 1.8 (when combined with the results of our previous papers, [18] and [22])
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determine all possible configurations of rational double points on normal super-
singular K3 surfaces in characteristic p > 19.

Since 17A1 appears in Table 1, we obtain the following result, which was proved
by Nikulin [9] for the complex case. See also Section 5.1.

Corollary 1.10

(1) There cannot exist seventeen disjoint (−2)-curves on a complex K3 surface.
(2) There exist seventeen disjoint (−2)-curves on a supersingularK3 surface only

in characteristic 2.

We remark that, in characteristic 2, there exist twenty-one disjoint (−2)-curves
on every supersingular K3 surface [18; 19].

The proof of Theorems 1.1 and 1.8 is based on the theory of discriminant forms
due to Nikulin [10] and the theory of l-excess due to Conway and Sloane [6,
Chap. 15]. The same method was used in [17] to determine the list of Dynkin types
Rf of reducible fibers of complex elliptic K3 surfaces f : X → P1 with a section
and the torsion parts MWf of their Mordell–Weil groups.

Remark 1.11. Lemma 5.2 in [17] is wrong; it should be replaced with (III) and
(IV) in Section 3 of this paper. However, in the actual calculation of the list of all
the pairs (Rf ,MWf) of complex elliptic K3 surfaces f : X → P1 with a section,
we used the correct version of [17, Lemma 5.2] and so the list presented in [17] is
valid. See Remark 4.3.

The plan of this paper is as follows. In Section 2, we prove Proposition 1.2 and de-
duce Theorem1.3 from Theorem1.1. In Section 3, we review the theory of l-excess
and discriminant forms. In Section 4, we prove Theorems 1.1 and 1.8. We con-
clude the paper with two remarks in Section 5: we give a simple proof of a theorem
of Ogus [12, Thm. 7.10] on supersingular Kummer surfaces; and we investigate,
from our point of view, the reduction modulo p of a singular K3 surface (in the
sense of Shioda and Inose [24]) defined over a number field.

Conventions 1.12

(1) Let D be a finite abelian group. The length of D, denoted by leng(D), is the
minimal number of generators of D.

(2) For l ∈ P and x ∈ Q
×
l , we denote by ordl(x) the largest integer such that

l−ordl (x)x ∈Zl . We put Z∞ = Q∞ = R.

(3) For a divisor D on a K3 surface X, let [D]∈ SX denote the class of D.

2. Geometric Application

We prove Proposition 1.2 and deduce Theorem 1.3 from Theorem 1.1.
Let X be a K3 surface. A divisor H on X is called a polarization if H is nef,

H 2 > 0, and the complete linear system |H | has no fixed components. If H is
a polarization of X, then |H | is base-point free by Saint-Donat [15, Cor. 3.2] and
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hence |H | defines a morphism "|H | from X to a projective space of dimension
N := dim|H | = H 2/2 + 1 (see [11, Prop. 0.1]). Let

X −→ Y|H | −→ PN

be the Stein factorization of "|H |. Then X → Y|H | is the minimal resolution of
the normal K3 surface Y|H |. Conversely, let X → Y be the minimal resolution
of a normal K3 surface Y. Let H ′ be a hyperplane section of Y, and let H be the
pullback of H ′ to X. Then H is a polarization of X, and Y is isomorphic to Y|H |.

Proposition 2.1. An element v of SX is the class of a polarization if and only if
(v, v) > 0, v is nef, and the set {e ∈ SX | (v, e) = 1, (e, e) = 0} is empty.

Proof. See Nikulin [11, Prop. 0.1] and the argument in the proof of (4) ⇒ (1) in
Urabe [25, Prop. 1.7].

We put

%X := {v ∈ SX | (v, v) = −2}, &X := {x ∈ SX ⊗Z R | (x, x) > 0}.
For d ∈%X, we define the wall d⊥ associated with d by

d⊥ := {x ∈ SX ⊗Z R | (x, d) = 0}.
Note that the family of walls d⊥ are locally finite in &X. We denote by

0&X := {x ∈&X | (x, d) �= 0 for any d ∈%X}
the complement of these walls in &X. Let WX be the subgroup of the orthogonal
group O(SX) of SX generated by the reflections x �→ x + (x, d)d into the walls
d⊥ associated with the vectors d ∈%X. Then the subgroup of O(SX) generated by
WX and {±1} acts on the set of connected components of 0&X transitively. Let A
denote the connected component of 0&X containing the class of a very ample line
bundle on X. Then a vector v ∈ SX is nef if and only if v is contained in the clo-
sure of A in SX ⊗Z R. Combining these considerations with Proposition 2.1, we
obtain the following corollary. See also [14, Sec. 3, Prop. 3].

Corollary 2.2. Let v ∈ SX be a vector such that (v, v) > 0. Then there exists
an isometry φ ∈O(SX) such that φ(mv) is the class of a polarization of X for any
integer m ≥ 2.

We introduce a notion from lattice theory. Let L be a negative definite even Z-
lattice. A vector v ∈L is called a root if (v, v) = −2. We denote by Roots(L) the
set of roots in L. A subset F of Roots(L) is called a fundamental system of roots
in L if (a) F is a basis of the sublattice 〈Roots(L)〉 ⊂ L generated by Roots(L)
and (b) each root v ∈Roots(L) is written as a linear combination v = ∑

d∈F kdd
of elements d of F whose coefficients kd are either all nonpositive integers or all
nonnegative integers. Let t : L → R be a linear form such that t(d ) �= 0 for any
d ∈Roots(L). We put

(Roots(L))+t := {d ∈Roots(L) | t(d ) > 0}.
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An element d ∈ (Roots(L))+t is said to be decomposable if there exist vectors
d1, d2 ∈ (Roots(L))+t such that d = d1 + d2; otherwise, we call d indecompos-
able. The following proposition is proved, for example, in Ebeling [7, Prop. 1.4].

Proposition 2.3. The set Ft of indecomposable elements in (Roots(L))+t is a
fundamental system of roots in L.

We call Ft the fundamental system of roots associated with t : L → R.

LetH be a polarization of aK3 surfaceX. The orthogonal complement 〈[H ]〉⊥
of 〈[H ]〉 in SX is a negative definite even lattice. We put

%(X,H ) := Roots(〈[H ]〉⊥) = 〈[H ]〉⊥ ∩%X.

We denote by F(X,H ) the set of classes of (−2)-curves that are contracted by the
birational morphism X → Y|H |. It is obvious that F(X,H ) ⊂ %(X,H ).

Proposition 2.4. The set F(X,H ) is equal to the fundamental system of roots Fα

in 〈[H ]〉⊥ associated with the linear form 〈[H ]〉⊥ → R given by v �→ (v,α),
where α is a vector in the connected component A of 0&X.

Proof. We denote by (%(X,H ))
+
α the set of d ∈ %(X,H ) such that (d,α) > 0. By

the Riemann–Roch theorem, an element d ∈%(X,H ) is contained in (%(X,H ))
+
α if

and only if d is effective. Hence F(X,H ) ⊂ (%(X,H ))
+
α . Suppose that [E ]∈F(X,H )

were decomposable in (%(X,H ))
+
α , where E is a (−2)-curve contracted by X →

Y|H |. Then there would exist [D1], [D2 ]∈ (%(X,H ))
+
α with D1 and D2 being effec-

tive such that [E ] = [D1] + [D2 ]. Then we would have D1 +D2 ∈ |E|, which is
absurd. Therefore, [E ] is indecomposable in (%(X,H ))

+
α and hence F(X,H ) ⊂ Fα

is proved.
Conversely, let [D1], . . . , [Dm] be the elements ofFα. BecauseFα ⊂ (%(X,H ))

+
α ,

we can assume that D1, . . . ,Dm are effective. We will show that each Di is a (−2)-
curve contracted by X → Y|H |. Let Di = Fi +Mi be the decomposition of Di

into the sum of the fixed part Fi and the movable part Mi. Since H is nef and
DiH = 0, it follows that FiH = 0 and MiH = 0. In particular, [Mi] is con-
tained in the negative definite Z-lattice 〈[H ]〉⊥. Therefore, Mi �= 0 would im-
ply M 2

i < 0, which contradicts the movability of Mi. Hence we have Di = Fi.

Consequently, the integral componentsE1, . . . ,El ofDi are (−2)-curves. We have
Di = a1E1+· · ·+alEl , where a1, . . . , al are positive integers. Since H is nef and
DiH = 0, it follows that E1H = · · · = ElH = 0 and hence E1, . . . ,El are con-
tracted by "|H |. As a result, [E1], . . . , [El] are elements of F(X,H ) ⊂ Fα. Thus,
for each k = 1, . . . , l, there exists a jk such that [Ek] = [Djk ]. Then we have
[Di] = a1[Dj1 ] + · · · + al[Djl ]. Since [D1], . . . , [Dm] form a basis of the sublat-
tice 〈%(X,H )〉 of 〈[H ]〉⊥ and since a1, . . . , al are positive integers, we must have
l = 1, a1 = 1, and j1 = i; that is, Di = E1. Hence [Di] ∈ F(X,H ) holds and so
Fα ⊂ F(X,H ) is proved.

Corollary 2.5. The Dynkin type of the rational double points on Y|H | is equal
to the Dynkin type of Roots(〈[H ]〉⊥).
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Let L be a Z-lattice. We denote by L∨ the dual lattice Hom(L, Z) of L. Then
L is embedded in L∨ as a submodule of finite index, and there exists a natural
Q-valued symmetric bilinear form on L∨ that extends the Z-valued symmetric bi-
linear form on L. An overlattice of L is a submodule L′ of L∨ containing L such
that the Q-valued symmetric bilinear form on L∨ takes values in Z on L′. If L is
embedded in a Z-lattice L′′ of the same rank, then L′′ is naturally embedded in L∨
as an overlattice of L. Let L be a negative definite even Z-lattice. If L′ is an even
overlattice of L, then Roots(L′) ⊇ Roots(L). We put

E(L) := {L′ | L′ is an even overlattice of L such that Roots(L′) = Roots(L)}.
For a Dynkin type R, we denote by �−

R the negative definite root lattice of type R.

Proposition 2.6. A K3 surface X is birational to a normal K3 surface Y with
RY = R if and only if there exists an M ∈ E(�−

R ) such that Emb(M, SX) is true.

Proof. Combining Corollaries 2.2 and 2.5, we see that aK3 surfaceX is birational
to a normal K3 surface Y with RY = R if and only if there exists a vector v ∈ SX
with (v, v) > 0 such that Roots(〈v〉⊥) is of type R, where 〈v〉⊥ is the orthogonal
complement of 〈v〉 in SX.

Suppose that such a vector v ∈ SX exists. Let M0 ⊂ SX be the sublattice of SX
generated by Roots(〈v〉⊥). Then we have an isometry ϕ : �−

R
∼−→M0. Let M be

the overlattice of �−
R corresponding by ϕ to the primitive closure of M0 in SX.

Then M ∈ E(�−
R ) and Emb(M, SX) is true.

Conversely, suppose there exists an M ∈ E(�−
R ) that admits a primitive embed-

ding M ↪→ SX. Let N be the orthogonal complement of M in SX. Since M is
primitive in SX, the orthogonal complement of N in SX coincides with M. Hence
a wall d⊥ associated with d ∈%X contains N ⊗Z R if and only if d ∈%X ∩M =
Roots(M) = Roots(�−

R ). We put

&N := &X ∩ (N ⊗Z R),

which is a nonempty open subset of N ⊗Z R. The family of real hyperplanes

{d⊥ ∩ (N ⊗Z R) | d ∈%X \ Roots(�−
R )}

in N ⊗Z R is locally finite in &N , and hence there exists v ∈&N ∩N such that v /∈
d⊥ for any d ∈%X \ Roots(�−

R ). Then Roots(〈v〉⊥) = Roots(�−
R ).

Proposition 2.7. The condition NK(0,R) is true if and only if there exists an
M ∈ E(�−

R ) such that Emb(M,	0) is true.

Proof. Suppose there exists a complex normal K3 surface Y with RY = R. Let
X be the minimal resolution of Y. Then, by Proposition 2.6, there exists an M ∈
E(�−

R ) such that Emb(M, SX) is true. Since SX is primitive in H 2(X, Z) and since
H 2(X, Z) is Z-isometric to 	0, we see that Emb(M,	0) is true.

Conversely, suppose there exists an M ∈ E(�−
R ) that admits a primitive embed-

ding M ↪→ 	0. We choose a vector h ∈ 	0 such that (h,h) > 0 and denote by
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S the primitive closure of the sublattice of 	0 generated by M and h. Since M is
primitive in 	0, the embedding M ↪→ S is also primitive. Let T be the orthogonal
complement of S in 	0. We put

1T := {[ω]∈ P∗(T ⊗Z C) | (ω,ω) = 0, (ω, ω̄) > 0},
where [ω] ⊂ T ⊗Z C is the 1-dimensional linear subspace generated by ω ∈
T ⊗Z C. Then there exists [ω0 ] ∈ 1T such that {v ∈ T | (ω0, v) = 0} = {0}
and so

{v ∈	0 | (ω0, v) = 0} = S. (2.1)

By the surjectivity of the period mapping for complex analytic K3 surfaces (see
e.g. [4, Chap. VIII]), there exist an analytic K3 surface X and an isometry

φ : H 2(X, Z) ∼−→	0

of Z-lattices such that φ ⊗ C maps the 1-dimensional subspace H 2,0(X) ⊂
H 2(X, C) to [ω0 ]. By (2.1), we have φ(SX) = S. Let hX ∈ SX be the vector
such that φ(hX) = h. Then (hX,hX) > 0 and hence X is algebraic. Because S

and SX are Z-isometric, we see that Emb(M, SX) is true. Thus X is birational to a
normal K3 surface Y with RY = R by Proposition 2.6.

Proof of Proposition 1.2 and Theorem 1.3. By [14, Sec. 8, Thm.] and [14, Sec. 1,
Thm.] (with [14, Sec. 5, Prop.] for the case of characteristic 2), the Picard lattice of
a supersingular K3 surface is determined, up to isomorphisms, by the character-
istic of the base field and the Artin invariant. Hence Proposition 1.2 follows from
Proposition 2.6.

Note that dR = (−1)r disc(R) is the discriminant of �−
R . If M is an element of

E(�−
R )with discriminant dM then D(2dM) ⊂ D(2dR) and, for anyp ∈P\D(2dR),

the conditions Arth(p, σ, dM) and Arth(p, σ, dR) are equivalent because dR/dM =
|M/�−

R |2 is a square integer. Hence Theorem 1.3 follows from Propositions 2.6
and 2.7 and Theorem 1.1.

3. The Theory of l-excess and Discriminant Forms

See Cassels [5], Conway and Sloane [6, Chap. 15], and Nikulin [10] for the details
of the results reviewed in this section.

Let R be Z , Q, Zl , or Q l , where l ∈P ∪ {∞}. An R-lattice is a free R-module
L of finite rank equipped with a nondegenerate symmetric bilinear form

(·, ·) : L× L → R.

We say that R-lattices L and L′ are R-isometric and write L ∼= L′ if there exists an
isomorphism of R-modules L ∼−→L′ that preserves the symmetric bilinear form.
We sometimes express an R-lattice L of rank n by an n×n symmetric matrix with
components in R by choosing a basis of L. For example, for a ∈ R with a �= 0,
we denote by [a] the R-lattice of rank 1 generated by a vector g such that (g, g) =
a. For R-lattices L and L′, we denote by L⊕ L′ the orthogonal direct sum of L
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and L′. For s ∈R \ {0}, we denote by sL the R-lattice obtained from an R-lattice
L by multiplying the symmetric bilinear form with s. Suppose that an R-lattice L
is expressed by a symmetric matrix M with respect to a certain basis of L. Then

disc(L) := det(M) mod (R×)2 in R/(R×)2

does not depend on the choice of the basis of L. We say that L is unimodular if
disc(L)∈R×/(R×)2.

The following is proved as [5, Chap. 9, Thm. 1.2].

Theorem 3.1. Let n be a positive integer and d a nonzero integer. Suppose that,
for each l ∈ P ∪ {∞}, we are given a Zl-lattice Ll of rank n such that disc(Ll)

is equal to d in Zl/(Z
×
l )

2. If there exists a Q-lattice W such that W ⊗Q Q l is
Q l-isometric to Ll ⊗Zl

Q l for each l ∈ P ∪ {∞}, then there exists a Z-lattice L
such that L⊗Z Zl is Zl-isometric to Ll for each l ∈P ∪ {∞}.
Let L be an R-lattice, where R = Z or Zl with l ∈P, and let k be the quotient field
of R. We put

L∨ := HomR(L,R).

We have a natural embedding L ↪→ L∨ of R-modules as well as a natural k-valued
symmetric bilinear form on L∨ that extends the R-valued symmetric bilinear form
on L. We define the discriminant group DL of L by

DL := L∨/L.

If L is a Z-lattice, then disc(L) = (−1)s−|DL| in Z/(Z×)2 = Z.

Suppose that L is a Zl-lattice. We then have an orthogonal direct sum decom-
position,

L = ⊕
ν≥0 l

νLν , (3.1)

where each Lν is a unimodular Zl-lattice. The decomposition (3.1) is called the
Jordan decomposition of L. The discriminant group DL of L is then isomorphic
to the direct product

∏
ν≥1(Z/l

νZ)rank(Lν). In particular, we have

|DL| = l
∑

ν rank(Lν) and leng(DL) = rank(L)− rank(L0).

We define the reduced discriminant of L by

reddisc(L) := ∏
ν≥0 disc(Lν) = disc(L)/|DL| in Z

×
l /(Z

×
l )

2.

Suppose that l �= 2. Then we have an orthogonal direct sum decomposition,

L ∼= ⊕
lνi [ai] (ai ∈Z

×
l ). (3.2)

For a ∈Z
×
l , we define

l-excess(lν[a]) :=
{
(lν − 1) mod 8 if ν is even or a ∈ (Z×

l )
2,

(lν + 3) mod 8 if ν is odd and a /∈ (Z×
l )

2,

and define l-excess(L) ∈Z/8Z to be the sum of the l-excesses of the direct sum-
mands in (3.2). It has been proved that l-excess(L) does not depend on the choice
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of the orthogonal direct sum decomposition (3.2). Note that, if L is unimodular,
then l-excess(L) = 0.

Suppose that l = 2. Every unimodular Z2-lattice is Z2-isometric to an orthog-
onal direct sum of copies of the following Z2-lattices:

[a] (a ∈Z
×
2 ), U :=

[
0 1
1 0

]
or V :=

[
2 1
1 2

]
.

Hence L has an orthogonal direct sum decomposition,

L ∼= ⊕
2νi [ai] ⊕ ⊕

2νjU ⊕ ⊕
2νkV, (3.3)

where ai ∈Z
×
2 . We put

2-excess(2ν[a]) :=
{
(1− a) mod 8 if ν is even or a ≡ ±1 mod 8,

(5 − a) mod 8 if ν is odd and a ≡ ±3 mod 8,

2-excess(2νU) := 2 mod 8, 2-excess(2νV ) := (4 − (−1)ν2) mod 8

and define 2-excess(L)∈Z/8Z to be the sum of the 2-excesses of the direct sum-
mands in (3.3). It has been proved that 2-excess(L) does not depend on the choice
of the orthogonal direct sum decomposition (3.3). The 2-excess of a unimodular
Z2-lattice need not be 0.

For a proof of the following theorem, see Conway and Sloane [6, Chap. 15,
Thm. 8].

Theorem 3.2. Let n be a positive integer and d a nonzero integer. Suppose that,
for each l ∈P ∪ {∞}, we are given a Zl-lattice Ll of rank n such that

disc(Ll) = d mod (Z×
l )

2 in Zl/(Z
×
l )

2. (3.4)

Then there exists a Q-lattice W such that W ⊗Q Q l is Q l-isometric to Ll ⊗Zl
Q l

for each l ∈P ∪ {∞} if and only if

s+ − s− + ∑
l∈P l-excess(Ll) ≡ n mod 8, (3.5)

where (s+ , s−) is the signature of the R-lattice L∞.

Remark 3.3. If l /∈D(2d) and l �= ∞, then condition (3.4) implies that the Zl-
lattice Ll is unimodular. Hence the summation in (3.5) is in fact finite.

Definition 3.4. A finite quadratic form is a finite abelian groupD together with
a map q : D → Q/2Z such that: (i) q(nx) = n2q(x) for n ∈ Z and x ∈D; and
(ii) the map b : D×D → Q/Z defined by b(x, y) := (q(x+y)−q(x)−q(y))/2
is bilinear. A finite quadratic form (D, q) is said to be nondegenerate if the sym-
metric bilinear form b is nondegenerate.

Remark 3.5. Let (D, q) be a finite quadratic form. Suppose thatD is an l-group,
where l ∈P. Then the image of q is contained in the subgroup

(Q/2Z)l := {t ∈Q/2Z | lνt = 0 for a sufficiently large ν} = 2Z[1/l]/2Z

of Q/2Z. On the other hand, the canonical homomorphism
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Q/2Z → (Q/2Z)⊗Z Zl = Q l/2Zl

induces an isomorphism (Q/2Z)l
∼−→Q l/2Zl . Hence we can consider q as a map

to Q l/2Zl .

Definition 3.6. For a nondegenerate finite quadratic form (D, q) and l ∈P, let

Dl := {t ∈D | lνt = 0 for a sufficiently large ν}
denote the l-part ofD, and let ql denote the restriction of q toDl. We call (D, q)l :=
(Dl , ql) the l-part of (D, q). If l /∈ D(|D|), then (Dl , ql) = (0, 0). We have a
decomposition

(D, q) = ⊕
l∈D(|D|)(Dl , ql)

that is orthogonal with respect to the symmetric bilinear form b.

Let R be Z or Zl with l ∈ P, and let k be the quotient field of R. An R-lattice
L is said to be even if (v, v) ∈ 2R holds for every v ∈ L. Note that, if l is odd,
then any Zl-lattice is even. Note also that (i) a Z-lattice L is even if and only if
the Z2-lattice L ⊗Z Z2 is even and (ii) a Z2-lattice L is even if and only if the
component L0 of the Jordan decomposition L = ⊕

2νLν is Z2-isometric to an
orthogonal direct sum of copies of U and V.

Definition 3.7. For an even R-lattice L, we can define a map

qL : DL → k/2R

by qL(x̄) := (x, x) mod 2R, where x ∈ L∨ and x̄ := x modL. When R = Zl ,
we consider qL as a map to Q/2Z by the isomorphism Q l/2Zl

∼= (Q/2Z)l ⊂
Q/2Z in Remark 3.5. It is easy to see that the finite quadratic form (DL, qL) is
nondegenerate. We call (DL, qL) the discriminant form of L.

We have leng(DL) ≤ rank(L). If L is unimodular, then (DL, qL) = (0, 0) holds.
If bL(x̄, ȳ) := (qL(x̄ + ȳ)− qL(x̄)− qL(ȳ))/2 is the symmetric bilinear form of
(DL, qL), then bL(x̄, ȳ) = (x, y) mod Z. The following proposition is obvious.

Proposition 3.8. Let L be an even Z-lattice and l a prime integer. Then the
homomorphism DL → DL⊗ZZl

induced from the natural homomorphism L∨ →
L∨ ⊗Z Zl = (L ⊗Z Zl)

∨ yields an isomorphism from the l-part (DL, qL)l of
(DL, qL) to (DL⊗ZZl

, qL⊗ZZl
).

Let (D(l), q(l)) be a nondegenerate quadratic form on a finite abelian l-group D(l),
and let n be a positive integer. We denote by L(l )(n,D(l), q(l)) the set of even
Zl-lattices L of rank n such that (DL, qL) is isomorphic to (D(l), q(l)). We then
denote by L(l )(n,D(l), q(l)) ⊂ Z/8Z × Z

×
l /(Z

×
l )

2 the image of the map

L(l )(n,D(l), q(l)) → Z/8Z × Z
×
l /(Z

×
l )

2,

L �→ τ (l)(L) := [l-excess(L), reddisc(L)].

Let (D, q) be a nondegenerate finite quadratic form, and let

LZ(n,D, q) := ∏
l∈D(2|D|) L(l )(n,Dl , ql)
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be the Cartesian product of the sets L(l )(n,Dl , ql), where (Dl , ql) is the l-part of
(D, q) and l runs through the prime divisors of 2|D|. Let (s+ , s−) be a pair of non-
negative integers such that s+ + s− = n. We denote by LZ((s+ , s−),D, q) the set
of even Z-lattices L of rank n with signature (s+ , s−) such that (DL, qL) is iso-
morphic to (D, q). By Proposition 3.8, we can define a map

LZ((s+ , s−),D, q) → LZ(n,D, q),

L �→ τ Z(L) := (τ (l)(L⊗Z Zl) | l ∈D(2|D|)).
Theorem 3.9. Put d := (−1)s−|D|. Then the image of τ Z coincides with the set
of elements ([σl , ρl] | l ∈D(2d)) of LZ(n,D, q) that satisfy

(i) ρl = d/lordl (d ) mod (Z×
l )

2 for each l ∈D(2d) and
(ii) s+ − s− + ∑

l∈D(2d ) σl ≡ n mod 8.

In particular, the set LZ((s+ , s−),D, q) is nonempty if and only if there exists an
element ([σl , ρl] | l ∈D(2|D|))∈LZ(n,D, q) that satisfies (i) and (ii).

Let l ∈P be an odd prime. We choose a nonsquare element vl ∈Z
×
l and put v̄l :=

vl mod (Z×
l )

2, so that Z
×
l /(Z

×
l )

2 = {1, v̄l}. We then define Zl-lattices S(l)
n and N(l)

n

of rank n by
S(l)
n := [1] ⊕ · · · ⊕ [1] ⊕ [1],

N(l)
n := [1] ⊕ · · · ⊕ [1] ⊕ [vl].

It is easy to see that [vl] ⊕ [vl] is Zl-isometric to [1] ⊕ [1]. Therefore, if T is a
unimodular Zl-lattice of rank n, then

T ∼=
{
S(l)
n if disc(T ) = 1,

N(l)
n if disc(T ) = v̄l .

Proof of Theorem 3.9. We denote by (Dl , ql) the l-part of (D, q). Suppose thatL∈
LZ((s+ , s−),D, q). Then disc(L) = d holds. Since disc(L⊗ZZl) = d mod (Z×

l )
2

and |DL⊗ZZl
| = |Dl| = lordl (d ) by Proposition 3.8, it follows that

reddisc(L⊗Z Zl) = d/lordl (d ) mod (Z×
l )

2

for each l ∈D(2d). Because l-excess(L⊗Z Zl) = 0 for every l /∈D(2d), we have

s+ − s− + ∑
l∈D(2d ) l-excess(L⊗Z Zl) ≡ n mod 8

by Theorem 3.2. Hence τ Z(L) satisfies (i) and (ii).
Conversely, suppose that ([σl , ρl] | l ∈ D(2d)) ∈ LZ(n,D, q) satisfies (i) and

(ii). Then, for each l ∈ D(2d), there is an even Zl-lattice L(l) ∈ L(l )(n,Dl , ql)
such that l-excess(L(l)) = σl and reddisc(L(l)) = ρl. Therefore,

disc(L(l)) = reddisc(L(l)) · |Dl| = d mod (Z×
l )

2

by condition (i) and |Dl| = lordl (d ). For l ∈P \ D(2d), we put

L(l) :=
{
S(l)
n if d ∈ (Z×

l )
2,

N(l)
n if d /∈ (Z×

l )
2.

ThenL(l) ∈L(l )(n,Dl , ql) = L(l )(n, 0, 0) and disc(L(l)) = d mod (Z×
l )

2. LetL(∞)

be an R-lattice of rank n with signature (s+ , s−); then disc(L(∞)) = d mod (R×)2.
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Since l-excess(L(l)) = 0 for l ∈ P \ D(2d), condition (ii) and Theorem 3.2 im-
ply that there exists a Q-lattice W of rank n such that W ⊗Q Q l is Q l-isometric
to L(l) ⊗Zl

Q l for any l ∈P ∪ {∞}. By Theorem 3.1, there exists a Z-lattice L of
rank n such that L ⊗Z Zl is Zl-isometric to L(l) for any l ∈ P ∪ {∞}. Looking
at the places l = 2 and l = ∞, we see that L is even and of signature (s+ , s−).
For each l ∈ P, the l-part of (DL, qL) is isomorphic to (DL(l) , qL(l) ) ∼= (Dl , ql) by
Proposition 3.8. Therefore, (DL, qL) is isomorphic to (D, q).

Fix l ∈ P. We now explain how to calculate the set L(l )(n,D, q) for a nondegen-
erate quadratic form (D, q) on a finite abelian l-group D.

Definition 3.10. An orthogonal direct sum decomposition

(D, q) = (D ′, q ′)⊕ (D ′′, q ′′)

is said to be liftable if, for any even Zl-lattice L with an isomorphism

ϕ : (DL, qL) ∼−→ (D, q),

there exists an orthogonal direct sum decomposition L = L′ ⊕ L′′ such that
rank(L′) is equal to leng(D ′) and ϕ maps DL′ ⊂ DL to D ′. If this is the case,
then ϕ induces isomorphisms (DL′ , qL′) ∼−→ (D ′, q ′) and (DL′′ , qL′′) ∼−→ (D ′′, q ′′).
Hence τ (l)(L′)∈L(l )(leng(D ′),D ′, q ′) and τ (l)(L′′)∈L(l )(n−leng(D ′),D ′′, q ′′).

For elements τ := [σ, ρ] and τ ′ := [σ ′, ρ ′ ] of Z/8Z × Z
×
l /(Z

×
l )

2, we put

τ ∗ τ ′ := [σ + σ ′, ρρ ′ ].

The following lemma is obvious from τ (l)(L′ ⊕ L′′) = τ (l)(L′) ∗ τ (l)(L′′).

Lemma 3.11. If an orthogonal direct sum decomposition (D, q) = (D ′, q ′) ⊕
(D ′′, q ′′) is liftable, then L(l )(n,D, q) is equal to

{τ ∗ τ ′ | τ ∈L(l )(leng(D ′),D ′, q ′), τ ′ ∈L(l )(n− leng(D ′),D ′′, q ′′)}.
Lemma 3.12. The decomposition (D, q) = (D, q)⊕ (0, 0) is liftable.

Proof. Let L be an even Zl-lattice with an isomorphism (DL, qL) ∼−→ (D, q), and
let L = ⊕

ν≥0 l
νLν be the Jordan decomposition of L. We put

L≥1 := ⊕
ν≥1 l

νLν.

Then rank(L≥1) = leng(D) and (DL, qL) = (DL≥1, qL≥1). Therefore, the orthog-
onal direct sum decomposition L = L≥1 ⊕ L0 has the required property.

Lemma 3.13. An orthogonal direct sum decomposition (D, q) = (D ′, q ′) ⊕
(D ′′, q ′′), where D ′ is cyclic, is liftable.

Proof. Let lν be the order ofD ′, and let γ be a generator ofD ′. Since (D, q) is non-
degenerate, so is (D ′, q ′); hence the order of b ′(γ, γ ) in Q/Z is lν, where b ′ is the
symmetric bilinear form of (D ′, q ′). Let L be an even Zl-lattice with an isomor-
phism ϕ : (DL, qL) ∼−→ (D, q). We choose an element x ∈ L∨ such that ϕ(x̄) =
γ, where x̄ := x modL, and put v := lνx ∈L. Because (x, x)mod Zl is of order
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lν in Q l/Zl , we see that (v, x) = lν(x, x) is in Z
×
l . We put a := (v, x)−1 ∈ Z

×
l .

Since (w, x) is in Zl and w− a(w, x)v is orthogonal to v for any w ∈L, it follows
that there is an orthogonal direct sum decomposition L = 〈v〉 ⊕ 〈v〉⊥ that induces
(D, q) = (D ′, q ′)⊕ (D ′′, q ′′) via ϕ.

Definition 3.14. Suppose that l = 2. A nondegenerate finite quadratic form
(D, q) is said to be of even type if D is isomorphic to Z/2νZ × Z/2νZ and if the
order of b(γ, γ ) in Q/Z is strictly smaller than 2ν for any γ ∈D.

Remark 3.15. LetL be an even Z2-lattice of rank 2 withDL
∼= Z/2νZ×Z/2νZ.

Then (DL, qL) is of even type if and only if L is Z2-isometric to 2νU or to 2νV.

Lemma 3.16. Suppose that l = 2. Then an orthogonal direct sum decomposition
(D, q) = (D ′, q ′)⊕ (D ′′, q ′′), where (D ′, q ′) is of even type, is liftable.

Proof. Suppose that D ′ is isomorphic to Z/2νZ × Z/2νZ , and let γ1, γ2 be ele-
ments of D ′ of order 2ν such that D ′ = 〈γ1〉× 〈γ2〉. Since (D ′, q ′) is of even type,
the orders of b ′(γ1, γ1) and b ′(γ2, γ2) in Q/Z are less than 2ν. Since (D ′, q ′) is
nondegenerate, the order of b ′(γ1, γ2) in Q/Z must be equal to 2ν. Let L be an
even Z2-lattice with an isomorphism ϕ : (DL, qL) ∼−→ (D, q). We choose vectors
x1, x2 ∈ L∨ such that ϕ(x̄i) = γi for i = 1, 2, where x̄i := xi modL, and put
vi := 2νxi ∈L. Then there exist S, T,U ∈Z2 with T ∈Z

×
2 such that[

(v1, v1) (v1, v2)

(v2, v1) (v2, v2)

]
= 2ν

[
2S T

T 2U

]
.

Since 4SU − T 2 ∈Z
×
2 , it follows that the components ξ1, ξ2 of the vector[

ξ1

ξ2

]
:=

[
2S T

T 2U

]−1[
(w, x1)

(w, x2)

]
are elements of Z2 for any w ∈L. Moreover, w− ξ1v1− ξ2v2 is orthogonal to the
sublattice 〈v1, v2〉 of L. Thus we obtain an orthogonal direct sum decomposition
L = 〈v1, v2〉 ⊕ 〈v1, v2〉⊥ that induces (D, q) = (D ′, q ′)⊕ (D ′′, q ′′) via ϕ.

Lemma 3.17. If l is odd then (D, q) is an orthogonal direct sum of finite qua-
dratic forms on cyclic groups. If l = 2 then (D, q) is an orthogonal direct sum
of finite quadratic forms (Di, qi); here, for each i, Di is cyclic or (Di, qi) is of
even type.

Proof. We proceed by induction on r := leng(D). The case where r = 1 is trivial,
so suppose that r > 1 and thatD is isomorphic to Z/lν1Z×· · ·×Z/lνrZ with ν1 ≥
· · · ≥ νr . If there exists an element γ ∈D such that the order of b(γ, γ ) in Q/Z is
lν1, then 〈γ〉 is of order lν1 and we have an orthogonal direct sum decomposition

(D, q) = (〈γ〉, q|〈γ〉)⊕ (〈γ〉⊥, q|〈γ〉⊥)
with leng(〈γ〉⊥) = r − 1. Suppose that the order of b(γ, γ ) in Q/Z is strictly
smaller than lν1 for any γ ∈ D. Since (D, q) is nondegenerate, there exist ele-
ments γ1, γ2 ∈D such that b(γ1, γ2)∈Q/Z is of order lν1. If l �= 2, then the order
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of b(γ1 + γ2, γ1 + γ2) in Q/Z would be lν1; thus we have l = 2. We put D ′ :=
〈γ1〉 × 〈γ2〉, in which case (D ′, q|D ′) is nondegenerate. We then put D ′′ := D ′⊥,
which yields an orthogonal direct sum decomposition

(D, q) = (D ′, q|D ′)⊕ (D ′′, q|D ′′),

where (D ′, q|D ′) is of even type and leng(D ′′) = r − 2.

Combining all our results so far, we can calculate the set L(l )(n,D, q) for a posi-
tive integer n and a nondegenerate quadratic form (D, q) on a finite abelian l-group
D from (I)–(IV) as follows.

(I) We have
L(l )(n,D, q) = ∅ if n < leng(D).

(II) Recall that Z
×
l /(Z

×
l )

2 ={1, v̄l} for an odd prime l. We also have Z
×
2 /(Z

×
2 )

2 =
{1, 3, 5, 7}. When n > 0, we have

L(l )(n, 0, 0) =




{[0,1], [0, v̄l]} if l is odd,

∅ if l = 2 and n is odd,

{[n,1], [n, 5]} if l = 2 and n ≡ 0 mod 4,

{[n, 3], [n, 7]} if l = 2 and n ≡ 2 mod 4.
(III) Discriminant forms on cyclic groups. Let 〈γ〉 be a cyclic group of order

lν > 1generated by γ, and let q be a nondegenerate quadratic form on 〈γ〉. Because
q is nondegenerate, we can write q(γ ) ∈ Q/2Z as a/lν mod 2Z , where a is an
integer prime to l. Suppose that l is odd. Then

L(l )(1, 〈γ〉, q) =




{[lν − 1,1]} if λl(a) = 1,

{[lν − 1, v̄l]} if ν is even and λl(a) = −1,

{[lν + 3, v̄l]} if ν is odd and λl(a) = −1,

where λl : F
×
l → {±1} is the Legendre symbol. When l = 2, we have

L(2)(1, 〈γ〉, q) =




{[1− a, a]} if ν is even,

{[1− a, a]} if ν is odd, ν ≥ 2, and a ≡ ±1 mod 8,

{[5 − a, a]} if ν is odd, ν ≥ 2, and a ≡ ±3 mod 8,

{[0,1], [0, 5]} if ν = 1 and a ≡ 1 mod 4,

{[2, 3], [2, 7]} if ν = 1 and a ≡ 3 mod 4.
(IV) Discriminant forms of even type. Suppose that l = 2. Let 〈γ1〉 and 〈γ2〉 be

cyclic groups of order 2ν generated by γ1 and γ2, where ν > 0, and let q be a non-
degenerate quadratic form on 〈γ1〉 × 〈γ2〉 of even type. Then there exist integers
u, v,w such that

q(γ1) = 2u

2ν
mod 2Z , q(γ2) = 2w

2ν
mod 2Z , b(γ1, γ2) = v

2ν
mod Z.

Since q is nondegenerate, it follows that the integer v is odd. Therefore,

L(2)(2, 〈γ1〉 × 〈γ2〉, q) =




{[2, 7]} if uw is even,

{[2, 3]} if ν is even and uw is odd,

{[6, 3]} if ν is odd and uw is odd.
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4. Proof of Main Theorems

Proposition 4.1. Let p be an odd prime. Then 	p,σ ⊗Z Z2 is Z2-isometric to
U⊕11, and 	p,σ ⊗Z Zp is Zp-isometric to


S
(p)

22−2σ ⊕ pN
(p)

2σ if p ≡ 3 mod 4 and σ ≡ 0 mod 2,

N
(p)

22−2σ ⊕ pS
(p)

2σ if p ≡ 3 mod 4 and σ ≡ 1 mod 2,

N
(p)

22−2σ ⊕ pN
(p)

2σ if p ≡ 1 mod 4.

Proof. Note that disc(	p,σ) = −p2σ. For simplicity, we put 	(l) := 	p,σ ⊗Z Zl .

Since U ⊕U and V ⊕ V are Z2-isometric, the even unimodular Z2-lattice 	(2) is
Z2-isometric to U⊕11 or to U⊕10 ⊕V. Since p2σ ∈ (Z×

2 )
2, we have disc(	(2)) = −1

in Z2/(Z
×
2 )

2 and hence 	(2) ∼= U⊕11. We thus obtain 2-excess(	(2)) = 6. Since
D	p,σ

∼= (Z/pZ)⊕2σ, the Zp-lattice 	(p) is Zp-isometric to X ⊕ pY, where X is

either S(p)

22−2σ or N(p)

22−2σ and Y is either S(p)

2σ or N(p)

2σ . Then

p-excess(	(p)) =
{

2σ(p − 1) mod 8 if Y = S
(p)

2σ ,

2σ(p − 1)+ 4 mod 8 if Y = N
(p)

2σ .

On the other hand, from the congruence

1− 21+ 2-excess(	(2))+ p-excess(	(p)) ≡ 22 mod 8

in Theorem 3.9, we obtain p-excess(	(p)) = 4. Hence we have

Y =
{
S
(p)

2σ if 2σ(p − 1) ≡ 4 mod 8,

N
(p)

2σ if 2σ(p − 1) ≡ 0 mod 8.

From the equality

−1 = reddisc(	(p)) = disc(X) disc(Y ) =
{

1 if disc(X) = disc(Y ),

v̄p if disc(X) �= disc(Y )

in Z×
p /(Z

×
p )

2, we obtain the required result.

Proposition 4.2. Let p be an odd prime, and let (Dp,σ , qp,σ) be the discrimi-
nant form of 	p,σ . Then

L(p)(n,Dp,σ , qp,σ) =




∅ if n < 2σ,

{[4,1]} if n = 2σ and σ(p − 1) ≡ 2 mod 4,

{[4, v̄p]} if n = 2σ and σ(p − 1) ≡ 0 mod 4,

{[4,1], [4, v̄p]} if n > 2σ.

Proof. Let 〈γ〉 be a cyclic group of order p generated by γ, and let q1 and qv be
the quadratic forms on 〈γ〉 with values in Qp/2Zp = Qp/Zp such that q1(γ ) =
1/p mod Zp and qv(γ ) = vp/p mod Zp, respectively. Let ṽp ∈ Z be an integer
such that ṽp modp = vp modpZp. As a quadratic form with values in Q/2Z , we
have q1(γ ) = (p + 1)/p mod 2Z , and
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qv(γ ) =
{
ṽp/p mod 2Z if ṽp is even,

(ṽp + p)/p mod 2Z if ṽp is odd.

(See Remark 3.5.) Then (〈γ〉, q1) is isomorphic to the discriminant form of the Zp-
lattice p[1], and (〈γ〉, qv) is isomorphic to the discriminant form of the Zp-lattice
p[vp]. By Proposition 4.1, we see that (Dp,σ , qp,σ) is isomorphic to{

(〈γ〉, q1)
⊕2σ if σ(p − 1) ≡ 2 mod 4,

(〈γ〉, q1)
⊕2σ−1 ⊕ (〈γ〉, qv) if σ(p − 1) ≡ 0 mod 4.

Hence L(p)(n,Dp,σ , qp,σ) = ∅ for n < 2σ by (I), and L(p)(2σ,Dp,σ , qp,σ) is
equal to{ {[p − 1,1]∗2σ } = {[4,1]} if σ(p − 1) ≡ 2 mod 4,

{[p − 1,1]∗(2σ−1) ∗ [p + 3, v̄p]} = {[4, v̄p]} if σ(p − 1) ≡ 0 mod 4

by Lemmas 3.11 and 3.13 and (III). If n > 2σ, then L(p)(n,Dp,σ , qp,σ) is equal to

{τ ∗ τ ′ | τ ∈L(p)(2σ,Dp,σ , qp,σ), τ
′ ∈L(p)(n− 2σ, 0, 0)} = {[4,1], [4, v̄p]}

by Lemmas 3.11 and 3.12 and (II). Thus we obtain the required result.

Proof of Theorem 1.1. By Nikulin [10, Prop. 1.5.1], the condition Emb(M,	0) is
true if and only if

LZ((3 − t+ ,19 − t−),DM ,−qM) �= ∅. (4.1)

Since p /∈D(2dM), the condition Emb(M,	p,σ) is true if and only if

LZ((1− t+ , 21− t−),DM ⊕Dp,σ ,−qM ⊕ qp,σ ) �= ∅. (4.2)

Observe that

(−1)19−t−|DM | = −dM and (−1)21−t−|DM ⊕Dp,σ| = −p2σdM.

By Theorem 3.9, condition (4.1) is true if and only if there exists

([σl , ρl] | l ∈D(2dM))∈LZ(22 − r,DM ,−qM)
satisfying

(c1) ρl = −dM/lordl (dM) mod (Z×
l )

2 for each l ∈D(2dM), and
(c2) −16 − t+ + t− + ∑

l∈D(2dM) σl ≡ 22 − r mod 8;
condition (4.2) is true if and only if there exist

([σ ′
l , ρ

′
l ])∈LZ(22 − r,DM ,−qM) and [σp, ρp]∈L(p)(22 − r,Dp,σ , qp,σ)

satisfying

(s1) ρ ′
l = −p2σdM/l

ordl (dM) mod (Z×
l )

2 for each l ∈ D(2dM) and ρp = −dM
mod (Z×

p )
2, and

(s2) −20 − t+ + t− + ∑
l∈D(2dM) σ

′
l + σp ≡ 22 − r mod 8.

Note that, for l ∈ D(2dM), the condition ρ ′
l = −p2σdM/l

ordl (dM) mod (Z×
l )

2 is
equivalent to the condition ρ ′

l = −dM/lordl (dM) mod (Z×
l )

2 because p2σ ∈ (Z×
l )

2.

By Proposition 4.2, if [σp, ρp] ∈ L(p)(22 − r,Dp,σ , qp,σ) then σp = 4. Hence the
condition “(s1) and (s2)” is equivalent to the condition
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“(c1) and (c2)” and [4,−dM ]∈L(p)(22 − r,Dp,σ , qp,σ).

By Proposition 4.2, [4,−dM ] ∈ L(p)(22 − r,Dp,σ , qp,σ) if and only if (i) 2σ <

22 − r holds or (ii) 2σ = 22 − r and

σ(p − 1) ≡ 2 mod 4 and λp(−dM) = 1 or

σ(p − 1) ≡ 0 mod 4 and λp(−dM) = −1,
(4.3)

where λp : F×
p → {±1} is the Legendre symbol. Because (4.3) is equivalent to

Arth(p, σ, dM), Theorem 1.1 is proved.

Proof of Theorem 1.8. For each Dynkin type R with r := rank(R) ≤ 19, we per-
form the following calculation.

(1) We denote by (DR , qR) the discriminant form of �−
R and by &R the image

of the natural homomorphism O(�−
R ) → O(qR). (See [17, Sec. 6] for a descrip-

tion of the group &R.) We then make a list of all isotropic subgroups of (DR , qR)
up to the action of &R. By means of Nikulin [10, Prop. 1.4.1], the list of even over-
lattices of �−

R up to the action of &R is obtained. Then, by the method described
in [20], we make the list E(�−

R ) up to the action of &R.
(2) For eachM ∈ E(�−

R ), we use Theorem 3.9 to establish whether or not LM :=
LZ((3,19−r),DM ,−qM) is empty. If we findM ∈ E(�−

R ) such that LM �= ∅, then
NK(0,R) is true; if LM = ∅ for every M ∈ E(�−

R ), then NK(0,R) is false.

Remark 4.3. Let R be a Dynkin type with r := rank(R) ≤ 18, and let MW be
a finite abelian group. By [17, Thm. 7.1], the following statements are equivalent.

(i) There exists a complex elliptic K3 surface f : X → P1 with a section such
that (a) the Dynkin type Rf of reducible fibers of f is equal to R and (b) the
torsion part MWf of the Mordell–Weil group of f is isomorphic to MW.

(ii) There exists an element M ∈ E(�−
R ) such that

M/�−
R
∼= MW and LZ((2,18 − r),DM ,−qM) �= ∅.

Therefore, once we have made the list E(�−
R ) for each Dynkin type R of rank ≤

19, it is an easy task to verify the list of all possible pairs (Rf ,MWf) given in [17].

Remark 4.4. Let 〈h〉 denote a Z-lattice of rank 1 generated by a vector h with
(h,h) = 2. For a Dynkin type R with r := rank(R) ≤ 19, we denote by Y(R) the
set of even overlattices M of �−

R ⊕ 〈h〉 with the following properties:

(1) Roots(〈h〉⊥M) = Roots(�−
R ), where 〈h〉⊥M is the orthogonal complement of 〈h〉

in M; and
(2) {e ∈M | (h, e) = 1, (e, e) = 0} = ∅.
By Yang [26], the following statements are equivalent.

(i) There exists a complex reduced plane curve C ⊂ P2 of degree 6 with only
simple singularities such that the Dynkin type of Sing(C) is equal to R.

(ii) There exists an element M ∈Y(R) such that LZ((2,19 − r),DM ,−qM) �= ∅.
In conjunction with the proof of Theorem 1.8, we also calculated the set Y(R) for
each R and confirmed the validity of Yang’s list [26] of configurations of singular
points of complex sextic curves with only simple singularities.



414 Ichiro Shimada

5. Concluding Remarks

5.1. Kummer Surfaces

We work over an algebraically closed field of characteristic p > 0 with p �= 2.
Let A be an abelian surface with ι : A → A the inversion. Then YA := A/〈ι〉 is
a normal K3 surface with RYA = 16A1. The minimal resolution Km(A) of YA is
called the Kummer surface. We give a simple proof of the following theorem due
to Ogus [12, Thm. 7.10].

Theorem 5.1. A supersingular K3 surface is a Kummer surface if and only if
the Artin invariant is 1 or 2.

Proof. Since NK(0,16A1) is true and Arth(p, 3, (−1)16216) is false, Theorem 1.3
implies that NK(p, σ,16A1) is true if and only if σ ≤ 2. Thus the “only if” part of
Theorem 5.1 is proved. To show the “if” part, it is enough to prove that the min-
imal resolution of a normal K3 surface Y with RY = 16A1 is a Kummer surface.
For this purpose we use the following lemma, which can be easily checked with
the aid of a computer.

Lemma 5.2. Let C be a binary linear code of length 16 and dimension ≥ 5 such
that the weight wt(w) of every word w satisfies wt(w) ≡ 0 mod 4 and wt(w) �=
4. Then there exists a word of weight 16 in C.

We consider subgroups of the discriminant group D16A1
∼= F

⊕16
2 of �−

16A1
as binary

linear codes of length 16.

Lemma 5.3. If M ∈ E(�−
16A1

) satisfies leng(DM) ≤ 6, then M/�−
16A1

⊂ D16A1

contains a word of weight 16.

Proof. Let C ⊂ D16A1 be a linear code. Then C is isotropic with respect to q16A1 if
and only if wt(w) ≡ 0 mod 4 for everyw ∈ C. Suppose that C is isotropic. Then the
corresponding even overlattice MC of �−

16A1
satisfies Roots(MC) = Roots(�−

16A1
)

if and only if wt(w) �= 4 for every w ∈ C. Because leng(DMC ) = 16 − 2 dim C by
Nikulin [10, Prop. 1.4.1], we obtain Lemma 5.3 from Lemma 5.2.

Suppose that Y is a normal K3 surface with RY = 16A1 and with X → Y the min-
imal resolution. We denote by �X the sublattice of SX generated by the classes
of the (−2)-curves E1, . . . ,E16 contracted by X → Y and let MX be the primi-
tive closure of �X in SX. Then MX ∈ E(�X) by Proposition 2.4. Moreover, we
have leng(DMX

) ≤ 6 because Emb(MX,	p,σ) is true, where σ = σX, and hence
L(2)(22 − rank(MX),DMX

,−qMX
) �= ∅. By Lemma 5.3, there exists a word of

weight 16 in the code MX/�X, so ([E1]+· · ·+ [E16])/2∈MX. Hence there exists
a double covering A′ → X whose branch locus is E1 ∪ · · · ∪ E16. Then the con-
traction of (−1)-curves on A′ yields an abelian surface A, and X is isomorphic to
the Kummer surface Km(A). (See [12, Lemma 7.12].)
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Remark 5.4. In fact, a linear code C ⊂ F
⊕16
2 with the properties described in

Lemma 5.2 is unique up to isomorphisms. See Nikulin [9] for the description of
this code in terms of 4-dimensional affine geometry over F2.

5.2. Singular K3 Surfaces

A complex K3 surface X is called singular (in the sense of Shioda and Inose [24])
if SX is of rank 20. LetX be a singularK3 surface and TX the transcendental lattice
of X. Then TX possesses a canonical orientation ηX determined by the holomor-
phic 2-form on X. Shioda and Inose [24] showed that the mapping X �→ (TX, ηX)
induces a bijection from the set of isomorphism classes of singular K3 surfaces to
the set of SL2(Z)-equivalence classes of positive definite even binary forms.

In [24] it is also shown that every singular K3 surface X can be defined over a
number field F. (See Inose [8] for an explicit defining equation.) For a maximal
ideal p of the integer ring OF of F, let X(p) denote the reduction of X at p.

Proposition 5.5. Suppose that a singular K3 surface X is defined over a num-
ber field F. Let p be a maximal ideal of OF with residue characteristic p. Suppose
that p is prime to 2 disc(TX) and that X(p) is a supersingular K3 surface. Then
the Artin invariant of X(p) is 1, and(−disc(TX)

p

)
= −1. (5.1)

Proof. Since the signature of SX is (1,19), it follows that disc(SX) = −disc(TX).
Let σ be the Artin invariant of X(p). The reduction induces an embedding SX ↪→
SX(p). Let M be the primitive closure of SX in SX(p). Then Emb(M,	p,σ) is true.
Since M is of rank 20 and disc(SX)/disc(M) is a square integer, it follows from
Theorem 1.1 that σ = 1 and that Arth(p,1, disc(SX)) is true. We thus obtain (5.1).

Remark 5.6. The converse of Proposition 5.5 is proved in [21].
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