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On Normal K3 Surfaces

ICHIRO SHIMADA

1. Introduction

In this paper, by a K3 surface we mean, unless otherwise stated, an algebraic K3
surface defined over an algebraically closed field.

A K3 surface X is said to be supersingular (in the sense of Shioda [23]) if the
rank of the Picard lattice Sy of X is 22. Supersingular K3 surfaces exist only
when the characteristic of the base field is positive. Artin [3] showed that, if X is
a supersingular K3 surface in characteristic p > 0, then the discriminant of Sy
can be written as — pzax , where oy is an integer with 0 < ox < 10. This integer
oy is called the Artin invariant of X.

Let Ay be an even unimodular Z-lattice of rank 22 with signature (3, 19). By the
structure theorem for unimodular Z-lattices (see e.g. [16, Chap. V]), the Z-lattice
Ay is unique up to isomorphisms. If X is a complex K3 surface, then H?(X,Z)
regarded as a Z-lattice by the cup product is isomorphic to Agy. For an odd prime
integer p and aninteger o with0 < o < 10, we denote by A, , an even Z-lattice of
rank 22 with signature (1, 21) such that the discriminant group Hom(A o, Z)/Ap »
is isomorphic to (Z/ pZ)@Z". Rudakov and Shafarevich [14, Sec. 1, Thm.] showed
that the Z-lattice A, , is unique up to isomorphisms. If X is a supersingular K3
surface in characteristic p with Artin invariant o, then Sy is p-elementary by [14,
Sec. 8, Thm.] and of signature (1, 21) by the Hodge index theorem; hence Sy is
isomorphic to A ;.

The primitive closure of a sublattice M of a Z-lattice L is (M ®7 Q) N L, where
the intersection is taken in L ®7 Q. A sublattice M C L is said to be primitive if
(M ®7z Q)N L = M holds. For Z-lattices L and L', we consider the following
condition.

Emb(L, L"): There exists a primitive embedding of L into L.

We denote by P the set of prime integers. For a nonzero integer m, we denote by
D(m) C P the set of prime divisors of m. We consider the following arithmetic
condition on a nonzero integer d, a prime integer p € P \ D(2d), and a positive

integer o < 10.
(_1)a+1d
Arth(p,o,d): [ —— ) = -1,
p

where (7)) is the Legendre symbol.
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We make the following observations.

(i) Suppose that d/d’ € (Q*)% Then, for any p € P \ D(2dd’) and any o, the
conditions Arth(p, o,d) and Arth(p, o,d’) are equivalent.

(i1) For fixed o and d, there exists a subset 75, ; of (Z/4dZ)* such that, for p €
P\ D(2d), the condition Arth(p, o,d) is true if and only if p mod4d € T;; 4.
The set T, 4 is empty if and only if (—1)°*!d is a square integer. Otherwise,
we have |T; 4| = [(Z/4dZ)*|/2, and hence the set of p € P \ D(2d) for
which Arth(p, o, d) is true has the natural density 1/2.

The main result of this paper is as follows.

THEOREM 1.1. Let M be an even Z-lattice of rank r = t + t_ with signature

(t4,t_) and of discriminant dy;. Suppose that t, < 1 and t_ < 19. Then, for a

prime integer p € P \ D(2dy) and a positive integer o < 10, the following state-

ments hold.

(1) If 20 > 22 — r, then Emb(M, A, ;) is false.

(2) If 20 <22 —r, then Emb(M, A, o) and Emb(M, Ag) are equivalent.

(3) If 20 = 22 — r, then Emb(M, A, o) is true if and only if both Emb(M, Ag)
and Arth(p, o,dy) are true.

We shall present a geometric application of Theorem 1.1. A Dynkin type is a fi-
nite formal sum of symbols A; (I > 1), D,, (m > 4), and E, (n = 6,7,8) with
nonnegative integer coefficients. For a Dynkin type

R = Za]Al + deDm + ZgnEnv

we denote by E}’ the positive definite root lattice of type R and define rank (R)
and disc(R) to be the rank and the discriminant of E,ﬁ:

rank(R) := Za,l + dem + Ze,,n,
disc(R) := [ [+ D - [ 4™ - 3% -2¢.

A normal K3 surface is a normal surface whose minimal resolution is a K3 sur-
face. Artin [1; 2] has shown that a normal K3 surface has only rational double
points as its singularities. We define the Dynkin type Ry of a normal K3 surface
Y to be the Dynkin type of the singular points on Y. A normal K3 surface is said
to be supersingular if its minimal resolution is supersingular. The Artin invariant
oy of a normal supersingular K3 surface Y is defined to be the Artin invariant oy
of the minimal resolution X of Y. Note that rank (Ry) is equal to the total Milnor
number of a normal K3 surface Y. In particular, we have that rank(Ry) < 21 for
any Y and that rank (Ry) > 19 holds only when Y is supersingular.

Let R be a Dynkin type, p a prime integer, and o a positive integer < 10. We
consider the following conditions.

NK(0, R): There exists a complex normal K3 surface ¥ with Ry = R.
NK(p,o, R): There exists a normal supersingular K3 surface Y in characteristic
p such that oy = o and Ry = R.
NK'(p, o, R): Every supersingular K3 surface X in characteristic p with oy = o
is birational to a normal K3 surface Y with Ry = R.
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PROPOSITION 1.2.  The conditions NK(p, o, R) and NK'(p, o, R) are equivalent.

THEOREM 1.3. Let R be a Dynkin type with r := rank(R) < 19, and let o be

a positive integer < 10. We put dg := (—1)" disc(R) and let p be an element of

P\ DQ2dg).

(1) If 20 > 22 —r, then NK(p, 0, R) is false.

2) If 20 < 22 —r, then NK(p, 0, R) and NK(0, R) are equivalent.

3) If 20 = 22 — r, then NK(p, 0, R) is true if and only if both NK(0, R) and
Arth(p,o,dg) are true.

For each p € P, a supersingular K3 surface in characteristic p with Artin invari-
ant 1 is unique up to isomorphisms [12; 13]. We denote by X ,9) the supersingular
K3 surface in characteristic p with Artin invariant 1.

COROLLARY 1.4. The following conditions on a Dynkin type R with r =
rank (R) < 19 are equivalent. We put dg := (—1)" disc(R).
(1) There exists a complex normal K3 surface Y with Ry = R.
(ii) There exists a prime integer p € P \ D(2dy) such that X’fl) is birational to a
normal K3 surface Y with Ry = R.
(iii) For every p € P\ D(2dR), the supersingular K3 surface X[SD is birational
to a normal K3 surface Y with Ry = R.

Let Y be a normal supersingular K3 surface in characteristic p. It is proved in [18]
that, if rank (Ry) = 21, then p € D(2disc(Ry)) holds. It is proved in [22] that, if
rank (Ry) = 20, then either oy = 1 or p € D(2 disc(Ry)) holds. (In [22], we have
also determined all Dynkin types R of rank 20 of rational double points that can
appear on normal supersingular K3 surfaces in characteristic p ¢ D(2disc(R))
with the Artin invariant 1.) Therefore, if oy > 1, then either rank(Ry) < 19 or
p € D(2disc(Ry)). Combining this consideration with Theorem 1.3, we obtain
restrictions on Dynkin types of normal supersingular K3 surfaces with large Artin
invariants.

COROLLARY 1.5. Let Y be a normal supersingular K3 surface in characteristic
p with oy = 10. Then one of the following statements holds.

(1) rank(Ry) <1 (i.e., Y is smooth or has only one ordinary node as its singu-
larities);
(ii) Ry = A; and pmod 24 € {5,11,17,23};
(iii) Ry =2A; and pmodS8 € {3,7}; or
(iv) p € D(2disc(Ry)).

COROLLARY 1.6. Let Y be a normal supersingular K3 surface in characteristic
p with oy = 9. Then one of the following statements holds.
(i) rank(Ry) < 3;
(i) Ry = Agand pmod40 € (3,7,13,17,23,27,33,37};
(iii) Ry = A1+ Az and pmod 8 € {3, 5};
(iv) Ry =2A;+ A and pmod?24 €{5,7,17,19}; or
(v) peD2disc(Ry)).
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Table 1 Minimal Dynkin types R for which NK(0, R) is false

rank15 A4+ 114, 2A, + 11A;, A, + 134
rank 16 3D4 + 2A2, AG + A2 + 8A], A4 =+ 2A2 + SA]

rank 17 Eg =+ D4 =+ SA], E(, + 2D4 + 3A1, E(, + D4 =+ Az + 5A1, D7 =+ 5A2,
Ds+5A,+2A1,3Ds + Ay + Ay, 2Dy + Ag + A3, 2Dy + Ag + 344,
2Dy +As+ A3+ Ay, 2Dy + As + Ay +3A,,2Ds + 3A, + 34,
Dy + Ag+5A,, Dy +2A4 4+ 5A,, Dy + A3 +5A;5, Dy + 4A, + 54,
Al() + 7A1, A4 + 5A2 + 3A1, A3 + 5A2 + 4A1, 7A2 + 3A1, 5A2 + 7A1, 17A1

rank 18 Eg —+ D4 =+ 2A:;, E6 + D4 + 2A3 —+ Az, E6 + 4A3, D5 + D4 =+ 3A3,
Dy+ Ag+2A3, Dy +2A4+2A5, A7 +5A, 4+ A, 2A4 4+ 5A,, Ay +TA,,
445+ 3As, 445 + As + 44,

rank 19 E7 + 3A4, E7 + 3A3 + Az + Ala D]z + A7, Dg + 3A3 + Ala
D7+ Ds+2As + Ay, Dg +2Ds + As, Dg + Ds +2As + As,
D¢ +3A4+ Ay, Ds +4A3 + Ay, 3Ds + A3 + Ay, Ds + As + 343,
Ds+3A4+ Ay, Dy+4As +34,, A7+ 344, Ag + 445 + Ay,
As+3A4+ Ay, As +4A3 +2A,, As +3A3 +2A, + Ay, 3A4 +2A3 + Ay,
3A4+ A3+ Ay +2A1,3A4 +2A5 +3A,, Ay +4A3 + Ay + Ay

Observe that, if p € D(2disc(R)) with rank(R) < 21, then p < 19. We thus ob-
tain the following corollary.

COROLLARY 1.7.  The total Milnor number of a normal supersingular K3 surface
Y in characteristic p > 19 with Artin invariant oy is at most 22 — 2oy.

Let R and R’ be Dynkin types. We write R’ < R if the Dynkin diagram of R’
can be obtained from the Dynkin diagram of R by deleting some vertexes and
the edges emitting from them. For a Dynkin type R, we denote by S(R) the set
of Dynkin types R’ with R” = R or R’ < R. A K3 surface X is birational to a
normal K3 surface ¥ with Ry = R if and only if there exists a configuration of
(—2)-curves of type R on X. Hence, if R’ € S(R), then

NK(0, R) = NK(0, R"), NK(p,o0,R) = NK(p,o,R").

We have determined the Boolean value of NK(0, R) for each Dynkin type R with
rank (R) < 19, as described in the following theorem.

THEOREM 1.8. Let R be a Dynkin type of rank < 19. Then NK(0, R) is true if
and only if S(R) does not contain any Dynkin type that appears in Table 1.

COROLLARY 1.9. Let R be a Dynkin type of rank < 14. Then there exists a com-
plex normal K3 surface Y with Ry = R.

Because p € D(2disc(R)) with rank(R) < 21 implies that p < 19, Theorems 1.3
and 1.8 (when combined with the results of our previous papers, [18] and [22])
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determine all possible configurations of rational double points on normal super-
singular K3 surfaces in characteristic p > 19.

Since 17A; appears in Table 1, we obtain the following result, which was proved
by Nikulin [9] for the complex case. See also Section 5.1.

COROLLARY 1.10

(1) There cannot exist seventeen disjoint (—2)-curves on a complex K3 surface.
(2) There exist seventeen disjoint (—2)-curves on a supersingular K 3 surface only
in characteristic 2.

We remark that, in characteristic 2, there exist twenty-one disjoint (—2)-curves
on every supersingular K3 surface [18; 19].

The proof of Theorems 1.1 and 1.8 is based on the theory of discriminant forms
due to Nikulin [10] and the theory of /-excess due to Conway and Sloane [6,
Chap. 15]. The same method was used in [17] to determine the list of Dynkin types
R; of reducible fibers of complex elliptic K3 surfaces f: X — P! with a section
and the torsion parts M Wy of their Mordell-Weil groups.

REMARK 1.11. Lemma 5.2 in [17] is wrong; it should be replaced with (III) and
(IV) in Section 3 of this paper. However, in the actual calculation of the list of all
the pairs (Ry, MWy) of complex elliptic K3 surfaces f : X — P! with a section,
we used the correct version of [17, Lemma 5.2] and so the list presented in [17] is
valid. See Remark 4.3.

The plan of this paper is as follows. In Section 2, we prove Proposition 1.2 and de-
duce Theorem 1.3 from Theorem 1.1. In Section 3, we review the theory of /-excess
and discriminant forms. In Section 4, we prove Theorems 1.1 and 1.8. We con-
clude the paper with two remarks in Section 5: we give a simple proof of a theorem
of Ogus [12, Thm. 7.10] on supersingular Kummer surfaces; and we investigate,
from our point of view, the reduction modulo p of a singular K3 surface (in the
sense of Shioda and Inose [24]) defined over a number field.

CONVENTIONS 1.12

(1) Let D be a finite abelian group. The length of D, denoted by leng(D), is the
minimal number of generators of D.

(2) Forl € P and x € Q;, we denote by ord,(x) the largest integer such that
7o x e 7, We put Zgo = Qoo = R.

(3) For adivisor D on a K3 surface X, let [D] € Sy denote the class of D.

2. Geometric Application

We prove Proposition 1.2 and deduce Theorem 1.3 from Theorem 1.1.

Let X be a K3 surface. A divisor H on X is called a polarization if H is nef,
H? > 0, and the complete linear system |H| has no fixed components. If H is
a polarization of X, then |H| is base-point free by Saint-Donat [15, Cor. 3.2] and
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hence |H| defines a morphism @y, from X to a projective space of dimension
N :=dim|H| = H?/2 + 1 (see [11, Prop. 0.1]). Let

X — Yy — PV

be the Stein factorization of ®p|. Then X — Yp is the minimal resolution of
the normal K3 surface Y|y|. Conversely, let X — Y be the minimal resolution
of a normal K3 surface Y. Let H' be a hyperplane section of Y, and let H be the
pullback of H' to X. Then H is a polarization of X, and Y is isomorphic to ¥|g.

PROPOSITION 2.1.  An element v of Sx is the class of a polarization if and only if
(v,v) > 0, v is nef, and the set {e € Sx | (v,e) =1, (e, e) = 0} is empty.

Proof. See Nikulin [11, Prop. 0.1] and the argument in the proof of (4) = (1) in
Urabe [25, Prop. 1.7]. [

We put
Ex :={veSx | (v,v) = -2}, Iy ={xeSxy®zR | (x,x) > 0}.
For d € Ey, we define the wall d+ associated with d by
dt ={xeSy®zR| (x,d) =0}.
Note that the family of walls d* are locally finite in I'y. We denote by
Oy :={xeTly | (x,d) # 0 forany d € Ex}

the complement of these walls in I'y. Let Wx be the subgroup of the orthogonal
group O(Sx) of Sx generated by the reflections x +— x + (x,d)d into the walls
d* associated with the vectors d € Ey. Then the subgroup of O(Sx) generated by
Wy and {1} acts on the set of connected components of °T'y transitively. Let A
denote the connected component of °T'x containing the class of a very ample line
bundle on X. Then a vector v € Sy is nef if and only if v is contained in the clo-
sure of A in Sy ®z R. Combining these considerations with Proposition 2.1, we
obtain the following corollary. See also [14, Sec. 3, Prop. 3].

COROLLARY 2.2. Let v € Sx be a vector such that (v,v) > 0. Then there exists
an isometry ¢ € O(Sx) such that ¢ (mv) is the class of a polarization of X for any
integer m > 2.

We introduce a notion from lattice theory. Let L be a negative definite even Z-
lattice. A vector v € L is called a root if (v, v) = —2. We denote by Roots(L) the
set of roots in L. A subset F of Roots(L) is called a fundamental system of roots
in L if (a) F is a basis of the sublattice (Roots(L)) C L generated by Roots(L)
and (b) each root v € Roots(L) is written as a linear combination v = Y der kad
of elements d of F whose coefficients k, are either all nonpositive integers or all
nonnegative integers. Let #: L — R be a linear form such that #(d) # 0 for any
d € Roots(L). We put

(Roots(L));" := {d e Roots(L) | 1(d) > 0}.
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An element d € (Roots(L));" is said to be decomposable if there exist vectors
dy,dy € (Roots(L))jr such that d = d; + d»; otherwise, we call d indecompos-
able. The following proposition is proved, for example, in Ebeling [7, Prop. 1.4].

PROPOSITION 2.3. The set F; of indecomposable elements in (Roots(L))} is a
fundamental system of roots in L.

We call F; the fundamental system of roots associated witht: L — R.
Let H be a polarization of a K 3 surface X. The orthogonal complement ([ H])~*
of ([H]) in Sx is a negative definite even lattice. We put

E(X,H) = ROO'[S(([H])L) = ([I-I])l N Ey.

We denote by F(x ) the set of classes of (—2)-curves that are contracted by the
birational morphism X — Y|y,. Itis obvious that Fix x) C E(x, i)

PROPOSITION 2.4.  The set Fix, m) is equal to the fundamental system of roots F,
in ([H1)* associated with the linear form ([H])J‘ — R given by v — (v, ),
where « is a vector in the connected component A of °Tx.

Proof. We denote by (Ex, u)); the set of d € E(x, u) such that (d,«) > 0. By
the Riemann—Roch theorem, an element d € Ex, ) is contained in (Ex, p))] if
and only if d is effective. Hence F(x, iy C (E(x,u))] . Suppose that [E] € Fx, n)
were decomposable in (Ex, g));, where E is a (—2)-curve contracted by X —
Y |- Then there would exist [D1], [D2] € (E(x, #))} with D; and D, being effec-
tive such that [E] = [D;] + [D»,]. Then we would have D, + D, € |E|, which is
absurd. Therefore, [E] is indecomposable in (E(X,H));f and hence F(x p) C F,
is proved.

Conversely, let [D1], ..., [D,] be the elements of F,,. Because F, C (Ex,m))],
we can assume that Dy, ..., D,, are effective. We will show that each D; is a (—2)-
curve contracted by X — Y|g|. Let D; = F; + M; be the decomposition of D;
into the sum of the fixed part F; and the movable part M;. Since H is nef and
D;H = 0, it follows that F;H = 0 and M;H = 0. In particular, [M;] is con-
tained in the negative definite Z-lattice ([H])*. Therefore, M; # 0 would im-
ply Mi2 < 0, which contradicts the movability of M;. Hence we have D; = F;.

Consequently, the integral components E|, ..., E; of D; are (—2)-curves. We have
D; =aE|+---+aE;,whereay,...,a; are positive integers. Since H is nef and
D;H = 0, it follows that E1H = --- = E;H = 0 and hence E|, ..., E; are con-

tracted by ®g|. As a result, [E{],...,[E,] are elements of F(x yy C F,. Thus,
for each k = 1,...,1, there exists a j; such that [E;] = [D;,]. Then we have
[Di]l = ai[Dj,]1+ -+ a;[Dy]. Since [Dy],...,[D,,] form a basis of the sublat-

tice (E(x, i) of (IH1)* and since ay, ..., a; are positive integers, we must have
I =1,a =1,and j; = i; thatis, D; = E;. Hence [D;] € Fx, u) holds and so
Fy C F(x, n) is proved. ]

COROLLARY 2.5. The Dynkin type of the rational double points on Y|y is equal
to the Dynkin type of Roots(([H])1).
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Let L be a Z-lattice. We denote by LY the dual lattice Hom(L,Z) of L. Then
L is embedded in LY as a submodule of finite index, and there exists a natural
Q-valued symmetric bilinear form on LY that extends the Z-valued symmetric bi-
linear form on L. An overlattice of L is a submodule L’ of LY containing L such
that the Q-valued symmetric bilinear form on LY takes values in Z on L. If L is
embedded in a Z-lattice L” of the same rank, then L” is naturally embedded in L
as an overlattice of L. Let L be a negative definite even Z-lattice. If L’ is an even
overlattice of L, then Roots(L’) 2 Roots(L). We put

E(L) :={L’ | L' is an even overlattice of L such that Roots(L’) = Roots(L)}.

For a Dynkin type R, we denote by X, the negative definite root lattice of type R.

PROPOSITION 2.6. A K3 surface X is birational to a normal K3 surface Y with
Ry = R if and only if there exists an M € E(X ) such that Emb(M, Sx) is true.

Proof. Combining Corollaries 2.2 and 2.5, we see that a K3 surface X is birational
to a normal K3 surface Y with Ry = R if and only if there exists a vector v € Sx
with (v,v) > 0 such that Roots({(v)1) is of type R, where (v)~ is the orthogonal
complement of (v) in Sy.

Suppose that such a vector v € Sy exists. Let My C Sx be the sublattice of Sy
generated by Roots({(v)*). Then we have an isometry ¢: Yp = My. Let M be
the overlattice of X, corresponding by ¢ to the primitive closure of My in Sx.
Then M € £(X) and Emb(M, Sx) is true.

Conversely, suppose there exists an M € £(Xy ) that admits a primitive embed-
ding M — Sx. Let N be the orthogonal complement of M in Sx. Since M is
primitive in Sy, the orthogonal complement of N in Sx coincides with M. Hence
a wall d* associated with d € Ex contains N ® R if and onlyifde Ex N M =
Roots(M) = Roots(X ). We put

FN = FX N (N ®Z R),
which is a nonempty open subset of N ®7 R. The family of real hyperplanes
{dtN (N ®zR) |de By \ Roots(Xz)}

in N ®z R is locally finite in I'y, and hence there exists v € I'y N N such that v ¢
d* for any d € Ey \ Roots(Z ). Then Roots({(v)*) = Roots(Zy). O

PROPOSITION 2.7.  The condition NK(0, R) is true if and only if there exists an
M € E(Xy) such that Emb(M, Ao) is true.

Proof. Suppose there exists a complex normal K3 surface ¥ with Ry = R. Let
X be the minimal resolution of Y. Then, by Proposition 2.6, there exists an M €
E(Xg ) such that Emb(M, Sx) is true. Since Sy is primitive in H?*(X,7) and since
H?*(X,Z) is Z-isometric to Ag, we see that Emb(M, Ao) is true.

Conversely, suppose there exists an M € £(Xy ) that admits a primitive embed-
ding M — Ay. We choose a vector h € Ag such that (k,h) > 0 and denote by
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S the primitive closure of the sublattice of A generated by M and k. Since M is
primitive in A, the embedding M — § is also primitive. Let T be the orthogonal
complement of S in Ag. We put

Qr :={[w] eP.(T ®2C) | (w,0) =0, (»,w) > 0},

where [w] C T ®z C is the 1-dimensional linear subspace generated by w €
T ®z C. Then there exists [wg] € Q7 such that {v e T | (wg,v) = 0} = {0}
and so

fve Ay | (wo,v) =0} =S. 2.1

By the surjectivity of the period mapping for complex analytic K3 surfaces (see
e.g. [4, Chap. VIII]), there exist an analytic K3 surface X and an isometry

¢ H*(X,Z) => Ay

of Z-lattices such that ¢ ® C maps the 1-dimensional subspace H>°(X) C
H*(X,C) to [wo]. By (2.1), we have ¢(Sx) = S. Let hy € Sx be the vector
such that ¢ (hx) = h. Then (hy,hx) > 0 and hence X is algebraic. Because S
and Sy are Z-isometric, we see that Emb(M, Sy) is true. Thus X is birational to a
normal K3 surface Y with Ry = R by Proposition 2.6. O

Proof of Proposition 1.2 and Theorem 1.3. By [14, Sec. 8, Thm.] and [14, Sec. 1,
Thm.] (with [14, Sec. 5, Prop.] for the case of characteristic 2), the Picard lattice of
a supersingular K3 surface is determined, up to isomorphisms, by the character-
istic of the base field and the Artin invariant. Hence Proposition 1.2 follows from
Proposition 2.6.

Note that dg = (—1)" disc(R) is the discriminant of X . If M is an element of
E(Xy) withdiscriminant dy, then D(2dy;) C D(2dg) and, forany p € P\D(2dg),
the conditions Arth( p, o, dy,) and Arth( p, o, dg) are equivalent because dg /dy =
|M/Zg|? is a square integer. Hence Theorem 1.3 follows from Propositions 2.6
and 2.7 and Theorem 1.1. O

3. The Theory of /-excess and Discriminant Forms

See Cassels [5], Conway and Sloane [6, Chap. 15], and Nikulin [10] for the details
of the results reviewed in this section.

Let Rbe Z,Q, Z;, or Q;, where [ € P U {o0}. An R-lattice is a free R-module
L of finite rank equipped with a nondegenerate symmetric bilinear form

(.):LxL—R.

We say that R-lattices L and L’ are R-isometric and write L = L’ if there exists an
isomorphism of R-modules L => L’ that preserves the symmetric bilinear form.
We sometimes express an R-lattice L of rank n by an n x n symmetric matrix with
components in R by choosing a basis of L. For example, for a € R with a # 0,
we denote by [a] the R-lattice of rank 1 generated by a vector g such that (g, g) =
a. For R-lattices L and L', we denote by L @ L' the orthogonal direct sum of L
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and L'. For s € R \ {0}, we denote by sL the R-lattice obtained from an R-lattice
L by multiplying the symmetric bilinear form with s. Suppose that an R-lattice L
is expressed by a symmetric matrix M with respect to a certain basis of L. Then

disc(L) := det(M) mod (R*)? in R/(R*)?
does not depend on the choice of the basis of L. We say that L is unimodular if

disc(L) € R*/(R*)~
The following is proved as [5, Chap. 9, Thm. 1.2].

THEOREM 3.1.  Let n be a positive integer and d a nonzero integer. Suppose that,
for each | € P U {oo}, we are given a Z;-lattice L; of rank n such that disc(L;)
is equal to d in Z,/(Z] )2, If there exists a Q-lattice W such that W ®q Q is
Qq-isometric to L ®z, Q; for each | € P U {oo}, then there exists a Z-lattice L
such that L Q7 Z; is Z;-isometric to L; for each |l € P U {oo}.

Let L be an R-lattice, where R = Z or Z; with [ € P, and let k be the quotient field
of R. We put
LY := Homg(L, R).

We have a natural embedding L < L of R-modules as well as a natural k-valued
symmetric bilinear form on LY that extends the R-valued symmetric bilinear form
on L. We define the discriminant group Dy of L by

D, := LYL.

If L is a Z-lattice, then disc(L) = (—1)*~|D.| in Z/(Z*)* = Z.
Suppose that L is a Z;-lattice. We then have an orthogonal direct sum decom-

position,
L= @uzo I"L,, 3.1

where each L, is a unimodular Z;-lattice. The decomposition (3.1) is called the
Jordan decomposition of L. The discriminant group Dy, of L is then isomorphic
to the direct product [, ,(Z/1"Z)™* "), In particular, we have

|Dy| = 12vank@y) and  leng(Dy) = rank(L) — rank(Lo).
We define the reduced discriminant of L by
reddisc(L) := [],. o disc(L,) = disc(L)/|Dr| in Z]/(Z]))>.

v>0
Suppose that [ # 2. Then we have an orthogonal direct sum decomposition,
L=@lMa;l (a; €Z]). (3.2)
For a € Z], we define
(I —1)mod8 if visevenorae(Z)?%
(I +3)mod8 ifvisoddanda ¢ (Z))?

and define [-excess(L) € Z/8Z to be the sum of the /-excesses of the direct sum-
mands in (3.2). It has been proved that /-excess(L) does not depend on the choice

l-excess(I[a]) = {
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of the orthogonal direct sum decomposition (3.2). Note that, if L is unimodular,
then /-excess(L) = 0.

Suppose that [ = 2. Every unimodular Z,-lattice is Z,-isometric to an orthog-
onal direct sum of copies of the following Z,-lattices:

[a]l (a€Z3), U:= |:O 1i| or V:= |:2 1].
1 0 1 2
Hence L has an orthogonal direct sum decomposition,
L=E@P2%[a;]® P2U & P2V, (3.3)
where a; € Z3 . We put

(I1—a)mod8 ifvisevenora = +1mod8,
(5 —a)mod8 ifvisoddanda = +£3 mod8,

2-excess(2"U) := 2 mod 8, 2-excess(2"V) := (4 — (—1)"2) mod 8

2-excess(2'[a]) := {

and define 2-excess(L) € Z/8Z to be the sum of the 2-excesses of the direct sum-
mands in (3.3). It has been proved that 2-excess(L) does not depend on the choice
of the orthogonal direct sum decomposition (3.3). The 2-excess of a unimodular
7Z.»-1attice need not be 0.

For a proof of the following theorem, see Conway and Sloane [6, Chap. 15,
Thm. §8].

THEOREM 3.2.  Let n be a positive integer and d a nonzero integer. Suppose that,
for eachl € P U {oo}, we are given a Z,;-lattice L; of rank n such that
disc(L;) = d mod (Z))? in Z,/(Z))>. (3.4)

Then there exists a Q-lattice W such that W ®q Q is Q;-isometric to L; @7, Q;
for each | € P U {oo} if and only if

sy —S_+ ) ,.pl-excess(L;) = n modS8, 3.5)

where (s, s_) is the signature of the R-lattice L .

REMARK 3.3. If/ ¢ D(2d) and [ # oo, then condition (3.4) implies that the Z;-
lattice L; is unimodular. Hence the summation in (3.5) is in fact finite.

DEFINITION 3.4. A finite quadratic form is a finite abelian group D together with
amap q: D — Q/2Z such that: (i) g(nx) = nzq(x) forn € Z and x € D; and
(ii)themapb: D x D — Q/Zdefined by b(x,y) := (g(x+y)—q(x)—q(¥))/2
is bilinear. A finite quadratic form (D, q) is said to be nondegenerate if the sym-
metric bilinear form b is nondegenerate.

REMARK 3.5. Let (D, q) be a finite quadratic form. Suppose that D is an /-group,
where [ € P. Then the image of ¢ is contained in the subgroup

(Q/27), :={t € Q/27Z | I"t = 0 for a sufficiently large v} = 2Z[1/1]1/27Z

of Q/27Z. On the other hand, the canonical homomorphism
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Q/2Z — (Q/2Z) ®z Zy = Qi/2Z,

induces an isomorphism (Q/27Z); = Q,;/2Z,;. Hence we can consider g as a map
to QI/ZZZ .

DEerINITION 3.6.  For a nondegenerate finite quadratic form (D, q) and [/ € P, let
D; :={t € D | I"t = 0 for a sufficiently large v}

denote the [-part of D, and let g; denote the restriction of g to D;. Wecall (D, g); :=
(Dy, q) the l-part of (D,q). If I ¢ D(|D|), then (D;,q;) = (0,0). We have a
decomposition

(D.q) = Bcpqpy(Di-q1)

that is orthogonal with respect to the symmetric bilinear form b.

Let R be Z or Z; with [ € P, and let k be the quotient field of R. An R-lattice
L is said to be even if (v,v) € 2R holds for every v € L. Note that, if [ is odd,
then any Z,-lattice is even. Note also that (i) a Z-lattice L is even if and only if
the Z,-lattice L ®y Z, is even and (ii) a Z,-lattice L is even if and only if the
component L of the Jordan decomposition L = @ 2"L, is Z,-isometric to an
orthogonal direct sum of copies of U and V.

DEerINITION 3.7.  For an even R-lattice L, we can define a map
qL: DL — k/2R

by gr(X) := (x,x) mod2R, where x € LY and X := x mod L. When R = Z,,
we consider ¢g; as a map to Q/2Z by the isomorphism Q,;/27Z; = (Q/2Z); C
Q/27Z in Remark 3.5. It is easy to see that the finite quadratic form (D, q;) is
nondegenerate. We call (Dy, q;) the discriminant form of L.

We have leng(D;) < rank(L). If L is unimodular, then (D, q;) = (0,0) holds.
Ifbr(x,y) = (qe(x +y) — qr(x) — qr(¥))/2 is the symmetric bilinear form of
(Dr,qr), then by (x,y) = (x,y) mod Z. The following proposition is obvious.

PropoSITION 3.8. Let L be an even Z-lattice and | a prime integer. Then the
homomorphism Dy, — Dy g, 7z, induced from the natural homomorphism LY —
LY ®z Z; = (L ®z Z;)Y yields an isomorphism from the l-part (Dr,qL); of
(DL’ C]L) to (DL®ZZ19 qL®ZZ1)'

Let (D?, ¢V be a nondegenerate quadratic form on a finite abelian /-group D",
and let n be a positive integer. We denote by L (n, D), g") the set of even
Z;-lattices L of rank n such that (Dy,q;) is isomorphic to (D), ¢g")). We then
denote by L (n, DV, gDy C /87 x Z]/(Z])? the image of the map

LO(n, DV, ¢y — 7/8% x ) )(Z]))?,
L — t (L) := [I-excess(L), reddisc(L)].
Let (D, q) be a nondegenerate finite quadratic form, and let

L%(n,D,q) := [Ticneioy £, Di.gn)
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be the Cartesian product of the sets LD (n, Dy, q1), where (Dy, q;) is the [-part of
(D, g) and [ runs through the prime divisors of 2| D|. Let (s, s_) be a pair of non-
negative integers such that s;. + s_ = n. We denote by LZ((s;,s_), D, q) the set
of even Z-lattices L of rank n with signature (sy,s_) such that (D, q;) is iso-
morphic to (D, g). By Proposition 3.8, we can define a map

L7((s4,5-), D, q) = L(n, D, q),
L t5L):= (L ®7 7)) | | € DQ2|DJ)).
THEOREM 3.9. Putd := (—1)*~|D|. Then the image of t% coincides with the set
of elements ([0, pi]1 | 1 € DQ2A)) of L%(n, D, q) that satisfy
(i) pr = d/1° @ mod (Z))?* for each | € D(2d) and
(i) s —s_+ ZleD(2d) 0; = n mod 8.
In particular, the set L2((sy.,s_), D,q) is nonempty if and only if there exists an

element ([0, p;1 | 1 € DQ2|D))) € LZ%(n, D, q) that satisfies (i) and (ii).

Let ! € P be an odd prime. We choose a nonsquare element v; € Z;* and put v; :=
v, mod (Z))?, so that Z)/(Z))* = {1, v;}. We then define Z,-lattices S{" and N
of rank n by

s =1 elelll,

NO =@ @[] [ul.

It is easy to see that [v;] @ [v;] is Z;-isometric to [1] @ [1]. Therefore, if T is a
unimodular Z;-lattice of rank n, then

. { SO if dise(T) =1,
T NDf dise(T) = 1.
Proof of Theorem 3.9. We denote by (Dy, q;) the [-part of (D, g). Suppose that L €
L%((s4,5-), D,q). Thendisc(L) = d holds. Sincedisc(L®7Z;) = d mod (Z))*
and |Dpg,z,| = |D;| = 1°¥) by Proposition 3.8, it follows that
reddisc(L ®z Z;) = d/1°“) mod (Z])*
foreach! € D(2d). Because [-excess(L ®77Z;) = 0 foreveryl ¢ D(2d), we have
54 = S— + D 1epa) l-excess(L ®z Z;) = n mod 8

by Theorem 3.2. Hence t%(L) satisfies (i) and (ii).

Conversely, suppose that ([07, p;] | | € D(2d)) € L%(n, D, q) satisfies (i) and

(ii). Then, for each I € D(2d), there is an even Z;-lattice L € LY(n, Dy, q;)
such that I-excess(L")) = o; and reddisc (L") = p;. Therefore,

disc(L?") = reddisc(L") - | D;| = d mod (Z])*
by condition (i) and |D;| = [°"%@)_ For [ € P\ D(2d), we put
noos X2
Lo | S0 i de@)?
NO i d ¢ (2
Then L e L(n, Dy, q;) = L (n,0,0) and disc(L"") = d mod (Z])*. Let L™
be an R-lattice of rank n with signature (s, s_); then disc(L™) = d mod (R*)>.
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Since [-excess(L) = 0 for I € P \ D(2d), condition (ii) and Theorem 3.2 im-
ply that there exists a Q-lattice W of rank # such that W ® g Q; is Q;-isometric
to L) ®y, Q; for any [ € P U {oo}. By Theorem 3.1, there exists a Z-lattice L of
rank n such that L ®y Z,; is Z;-isometric to L) for any / € P U {oo}. Looking
at the places I = 2 and / = oo, we see that L is even and of signature (sy,s_).
For each [ € P, the [-part of (Dy,qy) is isomorphic to (D;w,q;0) = (Dy,q;) by
Proposition 3.8. Therefore, (Dy, g1 ) is isomorphic to (D, g). O

Fix [ € P. We now explain how to calculate the set LD(n, D, q) for a nondegen-
erate quadratic form (D, ¢) on a finite abelian /-group D.

DEFINITION 3.10.  An orthogonal direct sum decomposition
(D,q) =(D',q")® (D",q")

is said to be liftable if, for any even Z,-lattice L with an isomorphism

¢: (Dr,qr) — (D, q),
there exists an orthogonal direct sum decomposition L = L’ @ L” such that
rank (L') is equal to leng(D’) and ¢ maps D;r C Dy to D’. If this is the case,
then ¢ induces isomorphisms (D;/, q;/) = (D’,q’) and (Dy»,qr») = (D",q").
Hence t)(L") € £LP(leng(D"), D', q")and t (L") € LP(n—leng(D’), D", q").
For elements t := [0, p] and T’ := [0”, p'] of Z/8Z x Z)/(Z))?, we put

tx1 :=[0c+0,pp]
The following lemma is obvious from (L' @ L") = tO(L") * tO(L").
LemMA 3.11.  If an orthogonal direct sum decomposition (D,q) = (D',q’) ®
(D",q") is liftable, then L (n, D, q) is equal to

{tx1' | teLPleng(D"), D, q"), v’ € LD(n —leng(D), D", q")}.

LEmMA 3.12.  The decomposition (D, q) = (D, q) ® (0,0) is liftable.

Proof. Let L be an even Z,-lattice with an isomorphism (D;,q;) = (D, q), and
let L =D,., "L, be the Jordan decomposition of L. We put

Lzl = @Uzl IVLV.

Then rank (L) = leng(D) and (Dr,qr) = (Dr.,,q1.,). Therefore, the orthog-
onal direct sum decomposition L = L>; @ L has the required property. O

LEMMA 3.13. An orthogonal direct sum decomposition (D,q) = (D',q’) ®
(D”,q"), where D’ is cyclic, is liftable.

Proof. Letl” be the order of D’, and let y be a generator of D’. Since (D, ¢) is non-
degenerate, so is (D', g¢'); hence the order of b'(y,y) in Q/Z is I”, where b’ is the
symmetric bilinear form of (D’,¢’). Let L be an even Z;-lattice with an isomor-
phism ¢: (Dy,q1) = (D, q). We choose an element x € LY such that ¢(x) =
y, where X := x mod L, and put v := ["x € L. Because (x, x) mod Z; is of order
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1" in Q;/Z, we see that (v,x) = ["(x,x) is in Z. We puta := (v,x)"' € Z].
Since (w, x) isin Z; and w — a(w, x)v is orthogonal to v for any w € L, it follows
that there is an orthogonal direct sum decomposition L = (v) @ (v)* that induces
(D,q) = (D',q") ® (D",q") via . O

DEFINITION 3.14.  Suppose that [ = 2. A nondegenerate finite quadratic form
(D, q) is said to be of even type if D is isomorphic to Z/2"7Z x Z/2"Z and if the
order of b(y, y) in Q/Z is strictly smaller than 2" for any y € D.

REMARK 3.15. Let L be an even Z,-lattice of rank 2 with Dy = Z /2 7 x 7./ 2" Z..
Then (Dy, q1) is of even type if and only if L is Z,-isometric to 2'U or to 2" V.

LEmMMA 3.16.  Suppose thatl = 2. Then an orthogonal direct sum decomposition
(D,q) = (D',q")® (D”,q"), where (D', q’) is of even type, is liftable.

Proof. Suppose that D' is isomorphic to Z/2"Z x 7Z/2"Z, and let y1, y, be ele-
ments of D’ of order 2" such that D’ = () x (y,). Since (D, ¢’) is of even type,
the orders of b'(yy, y1) and b'(y2, y2) in Q/Z are less than 2. Since (D’,q’) is
nondegenerate, the order of b'(y1,y2) in Q/Z must be equal to 2". Let L be an
even Z,-lattice with an isomorphism ¢: (Dr,q1) = (D, g). We choose vectors
X1,x3 € LY such that ¢(x;) = y; fori = 1,2, where X; := x; mod L, and put
v; := 2"x; € L. Then there exist S, T, U € Z, with T € Z such that

[(vl,vl) (vl,vz):|_2U|:ZS T:|
(v2,v1)  (v2,v2) - T 2U ]

Since 4SU — T? € Z3, it follows that the components &, £, of the vector

6128 T 71 'Twax)
[Ez]_[T ZU} |:(w,x2)i|

are elements of Z, for any w € L. Moreover, w — &jv; — £,v; is orthogonal to the
sublattice (v, v,) of L. Thus we obtain an orthogonal direct sum decomposition
L = (v,v2) @ (v1,v2)* that induces (D, q) = (D', q") ® (D",q") via g. O

LemMmA 3.17. Ifl is odd then (D, q) is an orthogonal direct sum of finite qua-
dratic forms on cyclic groups. Ifl = 2 then (D, q) is an orthogonal direct sum
of finite quadratic forms (D;,q;); here, for each i, D; is cyclic or (D;,q;) is of
even type.

Proof. We proceed by induction on 7 := leng(D). The case where r = 11is trivial,
so suppose that 7 > 1 and that D is isomorphicto Z/I"'Z x - - - X Z /1" Z with v| >
--- > v,. If there exists an element y € D such that the order of b(y, y) in Q/Z is
[V, then (y) is of order /"' and we have an orthogonal direct sum decomposition

(D,q) = (). qlp) ® (V)" qlr)

with leng({y)*) = r — 1. Suppose that the order of b(y,y) in Q/Z is strictly
smaller than /™' for any y € D. Since (D, q) is nondegenerate, there exist ele-
ments y1, ¥ € D such that b(yy, y») € Q/Zis of order [V!. If | # 2, then the order
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of b(y; + y2,y1 + y2) in Q/Z would be ['!; thus we have [ = 2. We put D' :=
(y1) x (y2), in which case (D', q|p/) is nondegenerate. We then put D" := D'+,
which yields an orthogonal direct sum decomposition

(qu) = (D/»CI|D/) 7 (DH,Q|D”)»

where (D', q|p’) is of even type and leng(D") = r — 2. O

Combining all our results so far, we can calculate the set £L)(n, D, q) for a posi-
tive integer n and a nondegenerate quadratic form (D, g) on a finite abelian /-group
D from (I)—(IV) as follows.

(I) We have
LYn,D,q) =@ if n <leng(D).

(IT) Recall that Z/(Z])? = {1, 9} for an odd prime /. We also have Z} /(Z5)* =
{1,3,5,7}. Whenn > 0, we have
{[0,1],[0,v;]} iflis odd,

if l = 2 and n is odd,

{[n,1],[n,5]} ifl=2andn =0 mod4,
{[n,3],[n,7]} ifl =2 and n =2 mod4.

(IIT) Discriminant forms on cyclic groups. Let (y) be a cyclic group of order
[V > 1generated by y, and let ¢ be a nondegenerate quadratic form on (y). Because

q is nondegenerate, we can write g(y) € Q/27Z as a/l¥ mod 27, where a is an
integer prime to /. Suppose that / is odd. Then

{(r—-113 ifx) =1,
E(l)(l, (y),q) =13 {[I"—1v]} ifvisevenand X;(a) = —1,
{[1¥ +3,v]} ifvisoddand A;(a) = —1,
where A;: F — {%1} is the Legendre symbol. When / = 2, we have

£P(n,0,0) =

{[1—a,al} if v is even,

{[1—a,al} ifvisodd, v > 2, and a = &1 mod 8§,
LP,(y),q) =3 {[5—a,al} ifvisodd, v>2, and a = 43 mod 8,

{[0,1],[0,5]} ifv=1anda =1mod4,

{[2,31,[2,7]} ifv=1anda =3 mod4.

(IV) Discriminant forms of even type. Suppose that/ = 2. Let (y;) and (y») be
cyclic groups of order 2" generated by y; and y,, where v > 0, and let ¢ be a non-
degenerate quadratic form on (y;) X (y») of even type. Then there exist integers
u, v, w such that

g(y) = 22—” mod2Z, q(y,) = 22—’” mod2Z, b(y1.y2) = 21 modZ.
Since g is nondegenerate, it follows that the integer v is odd. Therefore,
{[2,7]} if uw is even,
LPQ2, (y1) x (y2),q) = { {[2,3]}) ifvisevenand uw is odd,
{[6,3]} if visodd and uw is odd.
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4. Proof of Main Theorems

PROPOSITION 4.1.  Let p be an odd prime. Then A, o ®z Z» is Zy-isometric to
UM and A, 5 ®7 7, is Z,-isometric to
S @ pNyP  if p=3mod4 and o =0 mod2,
NP, @ pSP if p=3mod4and o =1mod2,
Nz(zplzd @ pNZ((';) if p =1mod4.
Proof. Note that disc(A, ;) = —p?°. For simplicity, we put AV := A, , ®7 Z;.
Since U @ U and V @ V are Z,-isometric, the even unimodular Z,-lattice A® is
Z-isometric to U®" or to UP @ V. Since p° € (Z5)?, we have disc(A?) = —1
in Z»/(Z}%)? and hence A?) = U®!. We thus obtain 2-excess(A®) = 6. Since
Dy,, = (Z/pZ)®?°, the 7 ,-lattice AP s Z,-isometric to X @ pY, where X is
either S32,_or N, and Y is either S{” or Ni”’. Then
20(p — 1) mod8 it Yy =87,
p-excess(AP) = 2:)
20(p—1) +4mod8§ if ¥ =N

On the other hand, from the congruence
1 — 21 4+ 2-excess(A®) + p-excess(A”)) = 22 mod 8
in Theorem 3.9, we obtain p-excess(A”) = 4. Hence we have
S if 20(p —1) = 4 mod8,
| NP if 20(p — 1) = 0 mod$S.
From the equality
, . . 1 if disc(X) = disc(Y),
—1 = reddisc(A”) = disc(X) disc(Y) = { o )
v, if disc(X) # disc(Y)

inZ; /(Z; )2, we obtain the required result. OJ

PROPOSITION 4.2, Let p be an odd prime, and let (D, 5,qp o) be the discrimi-
nant form of A, . Then

@ ifn < 2o,
4,1 ifn=20ando(p —1) =2 mod4,
LD, Dy o y.g) = {4, 11y f (P =1
{4,v,1} ifn =20 and o(p —1) =0 mod4,

{[4,11,[4,v,1} ifn > 20.

Proof. Let (y) be a cyclic group of order p generated by y, and let g; and g, be
the quadratic forms on (y) with values in Q,/2Z, = Q,/Z, such that g,(y) =
1/p modZ, and ¢q,(y) = v,/p modZ,, respectively. Let v, € Z be an integer
such that v, mod p = v, mod pZ,. As a quadratic form with values in Q/27Z, we
have ¢i(y) = (p +1)/p mod 2Z, and
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Up/p mod 2Z if v, is even,
(Up + p)/p mod2Z if U, is odd.

(See Remark 3.5.) Then ({y), 1) is isomorphic to the discriminant form of the Z ,-
lattice p[1], and ((y), g») is isomorphic to the discriminant form of the Z ,-lattice
plvp]. By Proposition 4.1, we see that (D, 4, ¢gp,o) is isomorphic to

{ (y), q1)®* if o(p—1)=2mod4,
(), gD '@ (y),qv) if o(p —1) =0 mod4.

Hence LP(n, D), 5,qp.0) = @ for n < 20 by (1), and LP(20,D, 5,qp.0) is
equal to

{lp—1,11*2} = {[4,1]} if o(p —1) =2 mod4,
{ {{lp—1L,11*® V% [p+3,9,1} = {[4,0,]} if o(p—1)=0mod4
by Lemmas 3.11 and 3.13 and (III). If n > 20, then L")(n, D, ;. qp,) is equal to
{tx7|1€LPQ20,Dp0.qp0), T €LP(n—20,0,00} = {[4,1],[4,7,]}
by Lemmas 3.11 and 3.12 and (II). Thus we obtain the required result. UJ

Proof of Theorem 1.1. By Nikulin [10, Prop. 1.5.1], the condition Emb(M, A¢) is
true if and only if

L*((3 = 14,19 = 1), Dy, —qum) # 0. (4.1)
Since p ¢ D(2dy), the condition Emb(M, A, ;) is true if and only if
LA((1 = 14,21 = 1), Dy ® Dy o —qu @ qp,o) # 0. “.2)

Observe that
(~DP7 1Dyl = —dy and (=D |Dy @ Dol = —p*dy.
By Theorem 3.9, condition (4.1) is true if and only if there exists

([o1. p1] | 1 € DQ2dy)) € L(22 = r, Dy, —qmr)
satisfying
(c1) pr = —dpy /1o mod (Z])? for each | € D(2dy), and
(€2) =16 —ty +1_+ 3 cppa, 01 =22 —r mod8;
condition (4.2) is true if and only if there exist
(o], p[)) € LZQ22 =1, Dy, —qu) and [0y, pp) € L7 (22 = 1, Dp o qp.0)
satisfying
s p, = —p2%dy; /1974 @m) mod (ZIX)2 for each I € D(2dy) and p, = —dy
mod (Z)?, and
(s2) =20 —t, +1t_+ ZleD(ZdM) o/ + 0, =22 —r mod8.
Note that, for I € D(2dy), the condition p; = —p2°dy/1° @) mod (Z))? is
equivalent to the condition p, = —dj/1°“") mod (Z))? because p*° € (Z,)%

By Proposition 4.2, if [0), p,] € L7 (22 — 1, D, »,q,.,) then o, = 4. Hence the
condition “(sl) and (s2)” is equivalent to the condition
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“(cl) and (c2)” and [4, —dy1€ LP 22 —1r, D) 5,qp.0)-

By Proposition 4.2, [4, —dy] € LP(22 — 1, D, 5,4q,.,) if and only if (i) 20 <
22 —r holds or (ii) 20 = 22 — r and

o(p—1)=2mod4 and A,(—dy) =1 or

o(p—1)=0mod4 and A,(—dy) = —1, @3

where A, : IE‘; — {£1} is the Legendre symbol. Because (4.3) is equivalent to
Arth(p, o,dy), Theorem 1.1 is proved. O

Proof of Theorem 1.8. For each Dynkin type R with r := rank(R) < 19, we per-
form the following calculation.

(1) We denote by (Dg, qg) the discriminant form of X and by I's the image
of the natural homomorphism O(X;) — O(gr). (See [17, Sec. 6] for a descrip-
tion of the group ['z.) We then make a list of all isotropic subgroups of (Dg, gr)
up to the action of I'g. By means of Nikulin [10, Prop. 1.4.1], the list of even over-
lattices of X up to the action of I'g is obtained. Then, by the method described
in [20], we make the list £(X ;) up to the action of I'k.

(2) Foreach M € £(Xg ), we use Theorem 3.9 to establish whether ornot Ly :=
LZ((3,19—r), Dy, —qu) is empty. If we find M € E(y ) such that Ly, # @, then
NK(0, R) is true; if Ly, = ¥ for every M € £(Xy ), then NK(0, R) is false. O

REMARK 4.3. Let R be a Dynkin type with r := rank(R) < 18, and let MW be
a finite abelian group. By [17, Thm. 7.1], the following statements are equivalent.

(i) There exists a complex elliptic K3 surface f: X — P! with a section such
that (a) the Dynkin type R, of reducible fibers of f is equal to R and (b) the
torsion part M W; of the Mordell-Weil group of f is isomorphic to MW.

(ii) There exists an element M € £(Xj) such that

M/Sp =MW and L*((2,18 —r), Dy, —qu) # 9.

Therefore, once we have made the list £(X ) for each Dynkin type R of rank <
19, it is an easy task to verify the list of all possible pairs (Ry, M Wy) given in [17].

REMARK 4.4. Let (h) denote a Z-lattice of rank 1 generated by a vector & with
(h,h) = 2. For a Dynkin type R with r := rank(R) < 19, we denote by Y (R) the
set of even overlattices M of X @ (h) with the following properties:

(D Roots((h),‘i,,) = Roots(X ), where (h)}ﬁ is the orthogonal complement of (/)
in M; and

(2) feeM | (h,e) =1,(e,e) =0} = 0.

By Yang [26], the following statements are equivalent.

(i) There exists a complex reduced plane curve C C P? of degree 6 with only
simple singularities such that the Dynkin type of Sing(C) is equal to R.
(ii) There exists an element M € Y(R) such that LZ((2,19 — r), Dy, —qu) # 9.

In conjunction with the proof of Theorem 1.8, we also calculated the set J(R) for
each R and confirmed the validity of Yang’s list [26] of configurations of singular
points of complex sextic curves with only simple singularities.
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5. Concluding Remarks

5.1. Kummer Surfaces

We work over an algebraically closed field of characteristic p > 0 with p # 2.
Let A be an abelian surface with t: A — A the inversion. Then Y4 := A/(t) is
a normal K3 surface with Ry, = 16A,. The minimal resolution Km(A) of ¥, is
called the Kummer surface. We give a simple proof of the following theorem due
to Ogus [12, Thm. 7.10].

THEOREM 5.1. A supersingular K3 surface is a Kummer surface if and only if
the Artin invariant is 1 or 2.

Proof. Since NK(0,16A,) is true and Arth(p, 3, (—1)19216) is false, Theorem 1.3
implies that NK(p, o, 16A)) is true if and only if o < 2. Thus the “only if” part of
Theorem 5.1 is proved. To show the “if” part, it is enough to prove that the min-
imal resolution of a normal K3 surface Y with Ry = 16A, is a Kummer surface.
For this purpose we use the following lemma, which can be easily checked with
the aid of a computer.

LEMMA 5.2. Let C be a binary linear code of length 16 and dimension > 5 such
that the weight wt(w) of every word w satisfies wt(w) = 0 mod 4 and wt(w) #
4. Then there exists a word of weight 16 in C.

We consider subgroups of the discriminant group Djg4, = Fz@m of X6, as binary
linear codes of length 16.

LEmMmA 5.3. IfM € S(EE,AI) satisfies leng(Dys) < 6, then M/XI@A1 C Diga,
contains a word of weight 16.

Proof. LetC C Diga, be alinear code. Then C is isotropic with respect to gie4, if
and only if wt(w) = 0 mod 4 for every w € C. Suppose that C is isotropic. Then the
corresponding even overlattice M of X4, satisfies Roots(Mc) = Roots(Zg,,)
if and only if wt(w) # 4 for every w € C. Because leng(Dys,) = 16 —2dim C by
Nikulin [10, Prop. 1.4.1], we obtain Lemma 5.3 from Lemma 5.2. O

Suppose that Y is a normal K3 surface with Ry = 16A; and with X — Y the min-
imal resolution. We denote by X x the sublattice of Sy generated by the classes
of the (—2)-curves Ej,..., Ei¢ contracted by X — Y and let My be the primi-
tive closure of Xy in Sy. Then My € £(Xx) by Proposition 2.4. Moreover, we
have leng(Dy,) < 6 because Emb(Mx, A, ;) is true, where o = oy, and hence
LP(22 — rank(My), Duyy, —quy) # 9. By Lemma 5.3, there exists a word of
weight 16 in the code My /X x, so ([E|]+---+[Es])/2 € Mx. Hence there exists
a double covering A — X whose branch locus is E; U - - - U Ejg. Then the con-
traction of (—1)-curves on A’ yields an abelian surface A, and X is isomorphic to
the Kummer surface Km(A). (See [12, Lemma 7.12].) O
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REMARK 5.4. In fact, a linear code C C eram with the properties described in
Lemma 5.2 is unique up to isomorphisms. See Nikulin [9] for the description of
this code in terms of 4-dimensional affine geometry over F.

5.2. Singular K3 Surfaces

A complex K3 surface X is called singular (in the sense of Shioda and Inose [24])
if Sy is of rank 20. Let X be a singular K 3 surface and T the transcendental lattice
of X. Then Tx possesses a canonical orientation ny determined by the holomor-
phic 2-form on X. Shioda and Inose [24] showed that the mapping X — (Tx, nx)
induces a bijection from the set of isomorphism classes of singular K3 surfaces to
the set of SL,(Z)-equivalence classes of positive definite even binary forms.

In [24] it is also shown that every singular K3 surface X can be defined over a
number field F. (See Inose [8] for an explicit defining equation.) For a maximal
ideal p of the integer ring Of of F, let X(p) denote the reduction of X at p.

PROPOSITION 5.5.  Suppose that a singular K3 surface X is defined over a num-
ber field F. Let p be a maximal ideal of O with residue characteristic p. Suppose
that p is prime to 2 disc(Tx) and that X(p) is a supersingular K3 surface. Then
the Artin invariant of X (p) is 1, and

(—disc(TX)) _ 5.1
—p . )

Proof. Since the signature of Sy is (1,19), it follows that disc(Sy) = —disc(Ty).
Let o be the Artin invariant of X(p). The reduction induces an embedding Sy —
Sx(p)- Let M be the primitive closure of Sy in Sx(p). Then Emb(M, A, ;) is true.
Since M is of rank 20 and disc(Sx)/disc(M) is a square integer, it follows from
Theorem 1.1 that o = 1 and that Arth(p, 1, disc(Sx)) is true. We thus obtain (5.1).

O
REMARK 5.6. The converse of Proposition 5.5 is proved in [21].
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