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1. Introduction

Let Morβ(P1,Y ) denote the moduli space of morphisms f from a complex projec-
tive line P1 to a smooth complex projective variety Y such that f∗[P1] = β, where
β is a given second homology class of Y. We study the irreducibility and the ra-
tional connectedness of the moduli space when Y is a successive blowing-up of a
product of projective spaces with a suitable condition on β.

Before stating the Main Theorem proven in this paper, we introduce some no-
tation. Let X = ∏m

k=1 P nk, X0 = X, and let πi : Xi → Xi−1 (i = 1, . . . , r) be a
blowing-up of Xi−1 along a smooth irreducible subvariety Zi. Let Et

i ⊂ Xr be
the total transform (πi � · · · � πr)−1Zi of the exceptional divisor associated to Zi,
and let Hk be the divisor class coming from the hyperplane class of the kth pro-
jective space P nk. Let mi = #{Zj | j < i, (πj � · · · �πr)−1(Zj ) ⊃ Et

i }. So general
points of Zi are the (mi)th infinitesimal points of X. Denote by Morβ(P1,Xr)

�

the open sublocus of Morβ(P1,Xr) consisting of those f whose images do not lie
on exceptional divisors: f(P1) � Et

i for all i.

Main Theorem. Assume that β · (
π∗Hk − ∑r

i=1(mi + 1)Et
i

) ≥ 0 for all k and
that β · Et

i ≥ 0 for all i, where π = π1 � · · · � πr.
(1) The moduli space Morβ(P1,Xr)

� consists of free morphisms and is an irre-
ducible smooth variety of expected dimension.

(2) If Zi are rationally connected for all i, then a projective and birational model
of Morβ(P1,Xr)

� is also rationally connected.
(3) The moduli space Morβ(P1,Xr) is smooth, and Morβ(P1,Xr)

� is dense in
Morβ(P1,Xr), if one of the following conditions hold:
(a) all π(Et

i ) are points in X;
(b) all centers Zi are convex (i.e., H1(P1, g∗TZi

) = 0 for any morphism
g : P1 → Zi), and π(Et

i ) are disjoint to π(Et
j ) for any i �= j.

Note that the irreducibility (respectively, the rational connectedness of a projective,
birational model) of the morphism space Morβ(P1,Xr) implies the irreducibility
of the moduli space of rational curves C with numerical condition [C] = β.
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Our paper is motivated by the following two questions.

(1) If Y is rationally connected, is Morβ(P1,Y ) also irreducible and rationally
connected? If this does not always hold, does it hold for special values of β?

(2) For surfaces fibered over P1 with genus-2 fibers (or, more generally, hyper-
elliptic fibers) and fixed numerical invariants, is the moduli space of such sur-
faces connected? If this does not always hold, does it hold for special values
of the numerical invariants?

Several authors have studied the first question. The case of homogeneous spaces
was treated by Kim and Pandharipande [7] and Thomsen [10]. The case of small,
degree-d general hypersurfaces Y = Xd ⊂ P n was handled by Harris, Roth, and
Starr [4]. The case when Y is the moduli space of rank-2 stable vector bundles,
with fixed determinant of degree 1 on a smooth projective curve of genus g ≥ 2,
was investigated by Castravet [1], who found all irreducible components and de-
scribed the maximal rationally connected fibration of them.

Let M̄0,n be the moduli space of stable n-pointed rational curve. As a corollary
of the Main Theorem, the space Morβ(P1, M̄0,n) is connected for certain values
of β because the space M̄0,n is a successive blowing-up of (P1)n−3 along smooth
codimension-2 subvarieties [6] or a successive blowing-up of P n−3 [5]. This gives
a step toward proving connectedness of the moduli space of hyperelliptic fibra-
tions over P1 (presumably by replacing the hyperelliptic fibration by the fibration
of quotient by the hyperelliptic involution as marked by the images of the Weier-
strass points).

When Y is a blowing-up of a product of projective spaces along smooth closed
(not necessarily irreducible) subvarieties, we prove a slightly stronger result: The-
orem 1 in Section 2. In Section 3, we prove the Main Theorem. The key idea
of both proofs is to express the moduli space as a fibration—a fiber consists of
the morphisms f that pass through given points of

∐
i Zi at given points of the

domain P1—and then to show that the general fiber is rationally connected and
has the expected dimension under the condition on β as in the Main Theorem
(and also as in Theorem 1). When Y is a successive blowing-up, we will need
to utilize jet spaces and jet conditions in order to show the rational connected-
ness of the general fiber. We shall also apply a result of Graber, Harris, and
Starr [3].

Throughout the paper, we will employ the well-known results of the deforma-
tion theory of morphisms of curves as well as the established notation used in [8].
The complex number field C will be the base field.

Acknowledgments. Y.L. and K.O. thank the staff of the Korea Institute for
Advanced Study for hospitality during their visit. The authors are grateful to Igor
Dolgachev for bringing the second problem to our attention. B.K. thanks Jun-Muk
Hwang for a useful comment on free morphisms. Y.L. also thanksA.-M. Castravet
for explaining her result. The authors heartily thank the referee for valuable sug-
gestions and insightful comments.
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2. Blowing-ups along a Smooth Subvariety

2.1. Setup and a Morphism σ

Letπ : X̃ → X be the blowing-up of a smooth projective varietyX along a smooth
closed subvariety Z with the exceptional divisor E.

For a curve class β ∈H2(X̃, Z), consider the evaluation morphism

ev: P1 × Morβ(P
1, X̃) → X̃,

(p, f̃ ) �→ f̃ (p).

Assume that β · Ei ≥ 0 for all i = 1, . . . , r, where the Ei are exceptional irre-
ducible divisors over the irreducible components Zi of Z = ∐r

i=1Zi. In general,
f̃ (P1) ⊂ Ei does not imply f̃ (P1) · Ei < 0, as the following example shows.

Example 1. Consider the blowing-up X̃ of X = P3 along a curve Z ∼= P1 with
a normal bundle NZ/X = O(1) ⊕ O(2). Then E = P(OZ(1) ⊕ OZ(2)). If C is a
positive section (resp. the negative section) then, by the construction of the sec-
tions and the universal property of the projectivization E of OZ(1) ⊕ OZ(2), we
see that C · E = 1 (resp. C · E = 2).

This observation forces us to consider an open subvariety Morβ(P1, X̃)� of
Morβ(P1, X̃) consisting of f̃ such that f̃ (P1) � E. Now the scheme-theoretic
intersection �π�ev ∩ (P1 × Morβ(P1, X̃)� × Z) ∼= ev−1(E), where �π�ev is the
graph of the morphism π � ev, can be regarded as a closed subscheme of P1 ×
Morβ(P1, X̃)� × Z, which is proper and flat over Morβ(P1, X̃)�. Thus that inter-
section induces a natural morphism

σ : Morβ(P
1, X̃)� → ∏r

i=1 Hilbei(P1 × Zi),

f̃ �→ (�f ∩ (P1 × Z1), . . . ,�f ∩ (P1 × Zr)),

where f := π � f̃ and ei := β · Ei. Here Hilb0 Y of a variety Y is defined to be
Spec C.

2.2. An Exact Sequence

The following lemma shows a sufficient condition for the generic smoothness of σ.

Lemma 1. Let π : X̃ → X be as before and suppose that f̃ (P1) � E.

(1) There is a natural injective morphism of sheaves

f̃ ∗π∗TX(−E) → f̃ ∗TX̃.

(2) If f̃ : P1 → X̃ is transversal to E, then the injective morphism in part (1) in-
duces a short exact sequence

0 → f̃ ∗π∗TX(−E) → f̃ ∗TX̃ → (idP1 × f )∗TP1×Z → 0;
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furthermore, the associated morphism

H 0(P1, f̃ ∗TX̃) → (idP1 × f )∗TP1×Z

is the derivative of σ.
(3) For every f̃ satisfying h1(P1, f̃ ∗π∗TX(−E)) = 0, the morphism σ is smooth

at [f̃ ].

Proof. The first morphism is defined by the pull-back of the extension of the iso-
morphism TX ∼= TX̃ away from E. To check for the existence of the extension,
consider the blowing-up X̃ → X locally as (t, x, y) �→ (z1 = t, z2 = tx, z3 = y),
where t, x, y (resp. z1, z2 , z3) is a system of local parameters of X̃ (resp. X) and
where the bold letters denote multivariables. Then the natural morphism of sheaves

π∗TX(−E) → TX̃

defined by(
t
∂

∂z1
�→ t

∂

∂t
−

∑
xi

∂

∂xi

)
,

(
t
∂

∂z2
�→ ∂

∂x

)
, and

(
t
∂

∂z3
�→ t

∂

∂y

)

is the extension. At p with f(p)∈Z, the second morphism is defined by

(f∗|p)−1 ⊕ π∗|f̃ (p) : TX̃|f̃ (p) = f∗TP1|p ⊕ TE|f̃ (p) → TP1|p ⊕ TZ|f(p),
where TY |y denotes the tangent space of a variety Y at a point y. Now the rest of
the proof is straightforward.

Remark 1. In fact, this proof shows that there is an exact sequence

0 → (ev)∗(π∗TX(−E)) → ev∗TX̃ → (idP1 × π � ev)∗TP1×Z → 0

over P1 × Morβ(P1, X̃)◦, where Morβ(P1, X̃)◦ is the locus of all morphisms in
Morβ(P1, X̃) that are transversal to E.

Remark 2. In Example 1, the one-to-one morphism whose image is the negative
section is not free: the exact sequence

0 → NC/E = O(−1) → NC/X̃ → NE/X̃|C = O(2) → 0

splits because C is a section. Therefore, Lemma 1(1) is not true in general without
the condition f̃ (P1) � E.

When f̃ (P1) ⊆ E, instead of Lemma 1 we have the following lemma.

Lemma 2. Assume that k ≤ e + 1, e = E · f̃∗[P1] ≥ 0, and f̃ (P1) ⊆ E.

Then, if H1(P1, f ∗TX(−e − k)) = 0 and H1(P1, f ∗TZ(−k)) = 0, we obtain
H1(P1, f̃ ∗TX̃(−k)) = 0.

Proof. (i) Note that H1(P1, f ∗NZ/X(−e − k)) = 0 by H1(P1, f ∗TX(−e − k)) =
0 and

0 → TZ → TX|Z → NZ/X → 0.
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(ii) Observe that H1(P1, f̃ ∗Tπ(−k)) = 0 and H1(P1, f̃ ∗TE(−k)) = 0 by (i),
H1(P1, f ∗TZ(−k)) = 0, and the exact sequences

0 → O → π∗(NZ/X)⊗ OE(1) → Tπ → 0,

0 → Tπ → TE → π∗TZ → 0,

where Tπ denotes the relative tangent bundle of π.
(iii) Finally, H1(P1, f̃ ∗TX̃(−k)) = 0 by

0 → TE → TX̃|E → OX̃(E)|E → 0.

Here we use the condition that −k + e ≥ −1.

2.3. The Fiber of σ When X = P n

Let X = P n and set
cH (β) = β · (π∗H − E),

where H is the hyperplane class of P n. If cH (β) ≥ −1, then Lemma 1 implies the
vanishing of the obstruction H1(P1, f̃ ∗TX̃) = 0 provided f̃ (P1) � E, and so the
space Morβ(P1, X̃)� is smooth. In addition, the general fiber of a morphism σ is
smooth and has the expected dimension as a result of Lemma 1. Here the expected
dimension of the fiber is, by definition,

expected dim Morβ(P
1, X̃)− dim

∏r
i=1 Hilbei(P1 × Zi)

= dim PH 0(OP1(d )⊗ Cn+1)− ne = dim Morπ∗β(P
1,X)− ne.

In the next lemma we investigate the irreducibility of the fiber of the morphism
σ for X = P n.

Lemma 3. Suppose that π∗β �= 0 in H2(X, Z). Then the following statements
hold.

(1) Every nonempty fiber of σ is isomorphic to an open subset of a projective
space.

(2) If cH (β) ≥ −1, then σ is a smooth morphism at general points.
(3) If cH (β) ≥ 0, then the general fiber of σ is nonempty.
(4) If cH (β) ≥ 0 and dimZi = 0 for all i, then σ is surjective.

Proof. First note that Morπ∗β(P
1,X) contains Morβ(P1, X̃)� as a quasi-projective

subvariety over which the scheme ev−1(Zi) has the relative Hilbert polynomial ei
for all i = 1, . . . , r. We will describe a fiber of σ as a subscheme in

Morπ∗β(P
1,X) ⊂ P(H 0(P1, OP1(d )⊗ Cn+1)),

where d = (π∗β) ·H. Let

P := ∏
Pi ∈ ∏

Hilbei P1 × Zi, Pi = ∑
a e

(i)
a (p(i)

a , q(i,a)),

and
Supp(Pi) = {(p(i)

a , q(i,a))}a ,
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where p(i)
a �= p

(i′ )
a ′ if (i, a) �= (i ′, a ′), q(i,a)0 �= 0 for all (i, a), and e(i)a = 1 for all

a if dimZi′ �= 0 for some i ′. Then σ−1(P ) is a subvariety of PH 0(P1,KP), where
KP is the kernel of the morphism of sheaves

OP1(d )⊗ Cn+1 → (⊕
i,a O

p
(i)
a ,P1/m

e
(i)
a

p
(i)
a

) ⊗ OP1(d )⊗ Cn,

f �→ ∑n
j=1

(⊕
i,a[q(i,a)0 fj − q

(i,a)
j f0 ]

) ⊗ 1j ,

where 1j = (0, . . . ,1︸ ︷︷ ︸
j

, 0, . . . , 0)∈ Cn. Speaking more precisely: σ−1(P )red coin-
cides with

PH 0(P1,KP) ∩ Morπ∗β(P
1,X) \ ⋃

P ′∈Hilbe+1(P1×Z) : P ′⊃P PH 0(P1,KP ′); (∗)
here, if P ′ is not simple at (p, q) and dimZi �= 0 for some i, then KP ′ is defined
as the kernel of

KP → mp/m
2
p ⊗ OP1(d )⊗NZ/X|q ,

f �→ ∑
j(q0fj − qjf0)⊗ [

∂
∂zj

]
,

where NZ/X|q := TX|q/TZ|q (normal space) and where {zj := xj/x0 : j =
1, . . . , n} are the coordinates of Cn = {x0 �= 0} ⊂ P n.

Since OP1
(
d − ∑

i,a e
(i)
a p(i)

a ) ⊗ Cn+1 ⊂ KP ⊂ OP1(d ) ⊗ Cn+1, it follows
that the sheaf KP is isomorphic to

⊕n
j=0 OP1(kj ) for some kj , where d ≥ kj ≥

d − ∑r
i=1 ei for all j. Now, if dimZi = 0 for all i and kj ≥ −1 for all j, then

dim PH 0(P1,KP) = dim PH 0(P1, OP1(d ) ⊗ Cn+1) − ne. If dimZi > 0 for some
i and kj ≥ 0, then dim PH 0(P1,KP ′) = dim PH 0(P1, OP1(d )⊗ Cn+1)− n(e + 1)
for P ′ ⊃ P. These facts applied to (∗) complete the proof.

Remark 3. Note that Lemma 3 holds for a product X = ∏
k P nk of projective

spaces if we let cH (β) := min{β · (π∗Hk − E)}k , where Hk is the hyperplane
class of the kth component of the product space X.

2.4. Some Elementary Facts

The following results are standard facts.

Proposition 1 (cf. [2; 8, Prop. II.3.7]). LetX be a smooth variety and let Y be a
subvariety. Then any free morphism f : P1 → X can be deformed to a morphism
fε : P1 → X that is transversal to Y.

Lemma 4. Let X and Y be varieties and assume that Y is irreducible. Let
f : X → Y be a dominant morphism in any irreducible component of X. If the
general fiber of f is irreducible, then X is irreducible.

Proof. The proof is straightforward.

2.5. A Consequence

Let X be a product
∏

k P nk of projective spaces P nk, and let X̃ be a blowing-up of
X along a smooth closed subvariety Z. Denote by E the exceptional divisor and
denote by Hk the divisor class. We assume that π∗β �= 0 and ei ≥ 0 for all i.
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Theorem 1

(1) If β · (π∗Hk − E) ≥ −1 for all k and if Z consists of finite points, then
Morβ(P1, X̃) is an irreducible smooth variety.

(2) If β · (π∗Hk − E) ≥ 0 for all k, then Morβ(P1, X̃)� is a nonempty and irre-
ducible smooth variety.

(3) If β · (π∗Hk − E) ≥ 0 for all k and if all centers Zi are convex, then
Morβ(P1, X̃) is an irreducible smooth variety.

Proof. We prove this for X = P n. The condition β · (π∗H − E) ≥ −1 implies
that H1(P1, (f ∗TX)(−e)) = 0 by the Euler sequence on P n. By Lemma 1(1) we
have H1(P1, (f̃ ∗TX̃)) = 0, which implies that every irreducible component of
Morβ(P1, X̃)� is smooth with the expected dimension.

(1) The first assertion follows from Lemma 3 and Lemma 4.
(2) To prove the second assertion of the theorem, first note that every element in

Morβ(P1, X̃)� is a free morphism by Lemma 1(1). Therefore, by Proposition 1, it is
enough to show the irreducibility of the sublocus Morβ(P1, X̃)◦ of morphisms that
are transversal to E. By Lemma 2, the general fiber of σ restricted to any compo-
nent of Morβ(P1, X̃)◦ has the expected dimension and is irreducible. Hence the
morphism σ restricted to any component is dominant on the irreducible variety∏

Hilbei(P1 × Zi), so the proof now follows from Lemma 4. The moduli space
is nonempty by Lemma 3.

(3) If a morphism f̃ lies on E, we can use Lemma 2 with k = 0 to deform it to
an element in Morβ(P1, X̃)�: by Lemma 2 we have H1(P1, f̃ ∗TX̃) = 0, which im-
plies that the moduli space Morβ(P1, X̃) is smooth at f̃ . By the exact sequence in
part (iii) of the proof of Lemma 2, we see that there is a deformation of f̃ to an
element in Morβ(P1, X̃)�. Now assertion (2) completes the proof of assertion (3).

By Remark 3, the same proof as for the product of projective spaces works
here.

3. Successive Blowing-up Case

3.1. Setup

Let X0 = X be a smooth projective variety and let πi : Xi → Xi−1 (i = 1, . . . , r)
be a blowing-up of Xi−1 along a smooth irreducible subvariety Zi. In general, the
spaceXr is a successive blowing-up ofX. LetEt

i ⊂ Xr (resp.Es
i ⊂ Xr) be the to-

tal (resp. strict) transform of the exceptional divisor associated to Zi, and let ei =
β ·Es

i . Denote by Morβ(P1,Xr)
◦ the sublocus of Morβ(P1,Xr) of the morphisms

f̃ that are transversal to E = ⋃r
i=1E

s
i and do not intersect with Es

i ∩ Es
j for i �=

j. Then, for ei ≥ 0, for all i we obtain a morphism

σ : Morβ(P
1,Xr)

◦ → ∏r
i=1 Hilbei(P1 × Zi),

f̃ �→ ∏r
i=1(�πi�···�πr�f̃ ∩ P1 × (

Zi \ ⋃
j>i(πi � · · · � πr(Es

j )
)

as the generalization of the σ in Section 2.1.
Inductive application of the exact sequence of Lemma 1 proves the following

corollary.
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Corollary 1. Suppose thatH1(
P1, f ∗(

TX
(−∑

Et
i

))) = 0, where f = π1� · · · �
πr � f̃ . Then the morphism σ is smooth at f̃ .

3.2. Jet Spaces

We want to show that the general fiber of σ is rationally connected under a suitable
condition on β when X = P n or their products. However, it is hard to analyze the
fiber of σ directly as in Section 2.3. Our strategy is to introduce an auxiliary mor-
phism τ by imposing further conditions on jets of the morphism f : P1 → X. It
turns out that the fiber of τ is simple to study. Since the jet conditions on f can be
translated into the vanishing conditions on the blowing-up space, we will be able
to express the general fiber of σ by the fibers of τ (more precisely, its product τm)

that are rationally connected.
To introduce τ, let J k

qX = Mor((Spec C[ε]/(εk+1), 0), (X, q)) be the k-jet space
ofX at q ∈X. Then the morphism f : P1 → X naturally assigns an element [f ]kp ∈
J k
f(p)X for any p ∈ P1. Using this assignment, we define a morphism

τ : ((P1)l \0)× Morβ(P
1,X) → (P1 × J kX)l,

(p, f ) �→ (pi, [f ]kpi )i=1,...,l ,

where 0 is the big diagonal and J kX = ∐
p∈X J k

pX.

Lemma 5. If H1(P1, f ∗TX(−(k + 1)l )) = 0, then τ is smooth at (p, f ).

Proof. The natural exact sequence

0 → f ∗TX(−(k + 1)l )) → f ∗TX → f ∗TX ⊗ (⊕l
i=1 Opi,P1/mk+1

pi

) → 0

induces the map

H 0(P1, f ∗TX) → H 0
(
P1, f ∗TX ⊗ (⊕l

i=1 Opi,P1/mk+1
pi

))
,

which is the tangent map T τ(∏pi,f )|0×H 0(P1,f ∗TX). (Note that exactness holds be-
cause the pi are pairwise distinct for all i.) Indeed,

TJ kX|[f ]kp
= H 0(Spec C[ε]/(ε)k+1, ([f ]kp)

∗TX)) = H 0(P1, f ∗TX ⊗ Op/m
k+1
p )

by base change. This induced morphism is surjective by assumption.

3.3. A General Simple Fact

Let π : X̃ → X be a blowing-up of a smooth variety X along a subvariety Z. Let
Eq := π−1(q), where q is a smooth point ofZ. Observe that there is a natural mor-
phism j kq : (J k

qX)◦ → ⋃
w∈Eq

J k−1
w X̃ defined by lifting, where (J k

qX)◦ consists of

those s ∈ J k
qX that are, as k-jet arcs, transversal to Z at q.

Lemma 6. The morphism j kq is smooth, and every fiber is a rational variety.

Proof. This is a local problem at q, so we may assume that X = Cn, q = 0,
Z = {0} × C l, and π(t, x, y) = (t, tx, y). Consider a k-jet s(t) at t = 0 such that
(ds1/dt)|t=0 �= 0; then
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(
s1(t),

s2(t)

s1(t)
, . . . ,

sn−l(t)

s1(t)
, sn−l+1(t), . . . , sn(t)

)
mod t k

is, by definition, j k(s(t)). This shows that the morphism j k is regular. It is now
straightforward to check the smoothness of j kq and the rationality of the fiber.

3.4. The Morphism τm and Its Fibers When X = ∏m
j=1 P nj

We define a morphism

τm : ((P1)
∑

ei \0)× Morβ(P
1,X) → ∏r

i=1(P
1 × JmiX)ei

that is similar to the τ described in Section 3.2. Here the mi are nonnegative inte-
gers and m = (m1, . . . ,mr).

Lemma 7. If the target space X is a product of projective spaces,
∏m

j=1 P nj,
then the fibers of τm (with their induced reduced scheme structure) are rational
varieties.

Proof. We will prove that whenX = P n and l = 1, every fiber of τ defined in Sec-
tion 3.2 is a linear subvariety of P(H 0(P1, O(d )) ⊗ Cn+1); the general case then
follows in a straightforward fashion. It is easy to check that, if p × f and p × g

are in a same fiber of τ, then p × (µf + λg := (µf0 + λg0, . . . ,µfn + λgn)) is
in the same fiber for all but a finite number of (µ, λ)∈ P1.

3.5. A Proof of the Main Theorem and Example

Let mi = #{Zj | j < i, (πj � · · · �πr)−1(Zj ) ⊃ Et
i }. Then general points of Zi are

the (mi)th infinitesimal points ofX. For each i, we re-indexZj so that π−1(Zik ) ⊃
Ei, where i1 < · · · < imi

.

Proof of parts (1) and (2) of the Main Theorem. By Lemma 1(1) and the as-
sumption on β, the space Morβ(P1,Xr)

� is smooth and has the expected dimen-
sion, and its elements are free morphisms. Hence Morβ(P1,Xr)

◦ is open dense
in Morβ(P1,Xr)

� by Proposition 1. Also note that σ is a smooth morphism by
Corollary 1. Therefore, by Lemma 4 and Theorem 2, to verify parts (1) and (2)
it is enough to show that the general fiber of σ is rationally connected. Let P =∑
(pi, qi) ∈ ∏

Hilbei(P1 × Zi) be such that all points in P are simple. Then we
obtain the inclusion

πβ �σ−1(P ) ⊂ pr2 �(τm)
−1((pi ×(j1

πimi
(qi )

� · · ·�j mi

πi1�···�πimi
(qi )

)−1(qi))
∑

ej
i=1 ), (∗∗)

where πβ : Morβ(P1,Xr)
◦ ⊂ Morπ∗β(P

1,X) is the natural embedding and pr2 is
the projection to the second factor. In (∗∗) the right-hand side (RHS) includes
morphisms f̃ with deg f̃ −1(E) ≥ β · E. This is reason why both sides may not
coincide.

By Lemmas 5 and 7, τm is a dominant morphism with a rationally connected
general fiber; hence the RHS of (∗∗) is also rationally connected by virtue of
Theorem 2. Since the LHS is open subset of the RHS, we conclude that the LHS
is also rationally connected.
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Proof of part (3) of the Main Theorem. (a) If f lies on Es
i for some i, then ei <

0: take a hypersurface Y of X such that Y contains the image of f ; then the strict
transformD ofY underπ does not contain the image of f̃ . Hence 0 = Y ·f∗[P1] =
π∗Y · f̃∗[P1] = (

D + ∑
aiE

s
i

) · f̃∗[P1] shows that Es
i · f̃∗[P1] is negative for

some i.
(b) This is part (3) of Theorem 1.

Theorem 2 [3]. Let f : X → Y be a dominant morphism between irreducible
varieties X and Y. If Y and the general fiber of f is rationally connected, then X
is rationally connected.

Example 2. Let Y be a quadratic line complex in P 5, which is a complete inter-
section of two smooth quadrics in P 5. Then Y is isomorphic to the moduli space
of isomorphism classes of a stable rank-2 vector bundle on a curve of genus g = 2
with fixed determinant of degree 1 [9]. Let X̃ be the blowing-up of Y along a line
and let Q̃ be the inverse image of the line. Then X̃ is a blowing-up of P3 along a
smooth quintic curve C. Let EC be the inverse image of the curve C:

EC ⊂ X̃ ⊃ Q̃′

π

������������
π

�������������

C ⊂ P3 Y ⊃ line.

Then π(Q̃) is a quadric surface Q containing C. Thus Q̃ = 2H −EC , where H is
the proper transform of a hyperplane class in P3. Castravet [1] has shown that there
are at least two components (a nice one and an almost nice one) of Mord(P1,Y )
with the expected dimension. The almost nice component consists of morphisms
P1 → Y that are d-to-one onto lines in Y, where 0 < d ∈ Z ∼= H2(Y, Z) with
respect to the ample generator of PicY. These two components of Mord(P1,Y )
are birational to two components of Mor(d,e)(P1, X̃) with e = 2d, where (d, e) ∈
Z × Z ∼= H2(X̃, Z) with respect to π∗(H ) and EC. In this case we observe that,
at every point in the corresponding component of the almost nice component, σ
is not smooth.
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