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Function Theory on the Neil Parabola

Greg Knese

1. Introduction

Distances on a complex spaceX that are invariant under biholomorphic maps have
played an important role in the geometric approach to complex analysis. One of the
oldest such distances is the the Carathéodory pseudodistance cX (“pseudo” because
the distance between two points can be zero). It was introduced by Carathéodory
in 1926 and is extremely simple to define. The distance between two points x and
y is defined to be the largest distance (using the Poincaré hyperbolic distance) that
can occur between f(x) and f(y) under a holomorphic map f from X to the unit
disk D ⊂ C. The Kobayashi pseudodistance kX, introduced by Kobayashi in 1967,
is defined in the opposite direction: the “distance” between two points x and y is
now the infimum of the (hyperbolic) distance that can occur between two points
a, b ∈ D for which there is a holomorphic map f from the disk to X mapping a

to x and b to y. (Actually, there is a small technicality here; see Section 4 for the
true definition.) A consequence of the Schwarz–Pick lemma on the disk (which
says holomorphic self-maps of the disk are distance decreasing in the hyperbolic
distance) is the fact that cX ≤ kX.

For the purposes of motivating this paper, let us indulge in a short tangent. An
interesting question—because of its geometric implications (including the exis-
tence of 1-dimensional analytic retracts)—is: For which complex spaces do we
have cX = kX? The most important contribution to this question is by Lempert
[11]. Lempert’s theorem proves the Carathéodory and Kobayashi distances agree
on a convex domain. This theorem came as a surprise for a couple of reasons:
first, convexity is not a biholomorphic invariant; and second, which is our main
point here, there were not many explicit examples available at the time. (The plot
thickens on this problem: There is a domain—namely, the symmetrized bidisc—
in C

2 for which the two distances agree, yet this domain is not biholomorphi-
cally equivalent to a convex domain; see [9] for a summary of these results.)
Although we cannot remedy the problem of a lack of examples in the past, we
can attempt to add to the current selection of explicit examples. Many theorems
about invariant metrics can be proved in the generality of complex spaces (see
e.g. [10]) yet curiously there do not seem to be any nontrivial, explicit examples
of the Carathéodory distance for a complex space with a singularity. Perhaps the
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simplest complex space with a singularity is the variety contained in the bidisk
given by

N = {(z,w)∈ D
2 : z2 = w3}.

Following [9], we shall call this the Neil parabola. (The real curve y2 = x3 and
its variations are referred to as Neil’s semi-cubical parabola; named after William
Neil, a student of John Wallis, it was the first algebraic curve to have its arc length
computed via proto-calculus techniques [15].) In their recent follow-up [9] to their
monograph [8], Jarnicki and Pflug pose the following problem:

Find an effective formula for the Carathéodory distance on the Neil
parabola N.

In this paper, we give an answer to this problem (see Theorem 2.3). In addition,
we compute the infinitesimal Carathéodory pseudodistance for the Neil parabola
(Theorem 2.4). As applications, we prove a mixed Carathéodory–Pick interpola-
tion result for which known interpolation theorems do not apply (Theorem 2.7) as
well as a result on extending bounded holomorphic functions on the Neil parabola
to the entire bidisk (Theorem 2.9).

The general layout of the rest of the paper is as follows. Motivation and back-
ground for the two previously mentioned applications are presented in the balance
of Section 1. In Section 2, precise statements of definitions and results are given
along with a subsection on preliminary facts about complex analysis on the Neil
parabola. The rest of the paper is devoted to proofs. (The locations of specific
proofs are given near the corresponding theorem statements in Section 2.)

1.1. A Mixed Carathéodory–Pick Problem

Given n points in the unit disk zi and n target values wi also in the unit disk, the
well-known theorem of Pick [13] states exactly when there exists a holomorphic
F : D → D satisfying F(zi) = wi (this problem was studied independently by
Nevanlinna [12]). In fact, the Schwarz–Pick lemma is just the version of this for
two points: z1, z2 can be interpolated to w1,w2 if and only if∣∣∣∣ w1 − w2

1 − w̄1w2

∣∣∣∣ ≤
∣∣∣∣ z1 − z2

1 − z̄1z2

∣∣∣∣.
Similarly, given n complex numbers a0, a1, . . . , an−1, a well-known theorem of
Carathéodory and Fejér [3] states when there exists a holomorphic function F :
D → D̄ with a0, a1, . . . , an−1 as the first n Taylor coefficients of F. (Using D̄ in-
stead of D is just a trick used to include the constant unimodular-valued functions,
because we are really talking about functions in the closed unit ball of H∞(D);
the same idea applies later on to O(D, D̄) (though this notation has not yet been
introduced).) For n = 2, this is given again by the (infinitesimal) Schwarz–Pick
lemma: a0 and a1 can be the first two Taylor coefficients exactly when

|a0|2 + |a1| ≤ 1.

The first kind of interpolation problem is called Nevanlinna–Pick interpolation
and the second is called Carathéodory–Fejér interpolation. More modern proofs
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of these theorems, using ideas from operator theory like the commutant lifting
theorem of Sz.-Nagy and Foiaş and reproducing kernel Hilbert spaces (see [4]
and [1]), make it possible to study mixed Carathéodory–Pick problems wherein
the idea is to specify several Taylor coefficients at several points in the disk and
determine whether there exists a holomorphic function from the disk to the disk
with those properties. However, a restriction imposed in all of the usual mixed
Carathéodory–Pick problems is that the Taylor coefficients must be specified se-
quentially (i.e., one cannot ask to specify the first and third Taylor coefficients at a
point without specifying the second as well). For example, these problems do not
address an interpolation problem of the following form: given z1, z2 , z3,w1,w2 ∈
D, when is there a holomorphic function F : D → D satisfying the equalities (1.1)?

F(z1) = w1,

F(z2) = w2 , (1.1)

F ′(z3) = 0.

In fact, as we shall see, solving (1.1) amounts to computing the Carathéodory
distance for the Neil parabola. See Theorem 2.7 for the exact statement of our
result.

1.2. Extension of Bounded Holomorphic Functions
on the Neil Parabola

The following result is a special case of the work of Cartan on Stein varieties; see
[6, p. 99]. (In fact, we are stating it in almost as little generality as possible.)

Theorem 1.2 (Cartan). Every holomorphic function on a subvariety V of D
2 is

the restriction of a holomorphic function on all of D
2.

A vast improvement on this theorem (again stated in simple terms) was given
by Polyakov and Khenkin [14]. They used the methods of integral formulas to
prove that any subvarietyV of D

2 satisfying a certain transversality condition has
the property that any bounded holomorphic function on V can be extended to a
bounded holomorphic function on all of D

2. In fact, there is a bounded linear op-
erator T : H∞(V ) → H∞(D2) with Tf |V = f ; in other words, there is some
constant C such that, for any f ∈H∞(V ),

‖Tf ‖∞ ≤ C‖f ‖∞. (1.3)

The previously mentioned “transversality condition” applies to the Neil parabola,
so any bounded holomorphic function on N can be extended to a bounded holo-
morphic function on the bidisk.

Related to these ideas is a paper of Agler and McCarthy [2], which gives a de-
scription of varieties in the bidisk with the property that bounded holomorphic
functions can be extended to the bidisk without increasing their H∞ norm. The
Neil parabola is not such a variety, as their results show. This can be seen rela-
tively easily from the fact that the Carathéodory pseudodistance on the Neil pa-
rabola is not the restriction of the Carathéodory pseudodistance on the bidisk. In
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other words, there is some holomorphic function from N to D that separates two
points of N farther than a function from the bidisk to the disk could. Hence, such
a function could not be extended to the bidisk without increasing its norm.

This suggests that extremal functions on the Neil parabola for the Carathéodory
pseudodistance might be good candidates for functions that extend “badly” to the
bidisk. Indeed, this allows us to give a lower bound of 5/4 on the constant C in
(1.3) for the Neil parabola. In addition to this we present a simple proof using
Agler’s Nevanlinna–Pick interpolation theorem for the bidisk that any bounded
holomorphic function on the Neil parabola can be extended to a bounded holo-
morphic function on the bidisk with norm increasing by at most a factor of

√
2

if the function vanishes at the origin and by a factor of 2
√

2 + 1 otherwise. This
does not exactly reprove Polyakov and Khenkin’s result in our context, since we
are not claiming that the extension can be given by a linear operator. Neverthe-
less, it is certainly relevant to their result, is much easier to prove, and provides an
explicit bound (see Theorem 2.9).

2. Definitions and Statements of Results

Let us define several important notions for this paper. We shall use O(X,Y ) to
denote the set of holomorphic maps from X to Y and O(X) to denote the set of
holomorphic functions from X to C, where X and Y are complex spaces possibly
containing singularities (this holds for X hereafter).

• Frequent use will be made of the family of holomorphic automorphisms φα of
the unit disk D ⊂ C given by

φα(z) = α − z

1 − ᾱz
, (2.1)

where α ∈ D. Note that φα is its own inverse function. Sometimes we allow α

to be in ∂D, but keep in mind that the resulting φα is no longer an automorphism
of the disk and is instead the constant function α.

• The pseudo-hyperbolic distance on D is defined to be

m(a, b) =
∣∣∣∣ a − b

1 − āb

∣∣∣∣.
The Poincaré distance on D is given by ρ = tanh−1m.

• The Poincaré metric on the disk, which we shall also denote by ρ, is defined
to be

ρ(z; v) = |v|
1 − |z|2

for z∈ D and v ∈ C.

• The Carathéodory pseudodistance on X is denoted by cX and is defined by

cX(x, y) := sup{ρ(f(x), f(y)) : f ∈ O(X, D)}.
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Replacing ρ with m in this expression yields what Jarnicki and Pflug call the
Möbius pseudodistance:

c∗
X(x, y) := sup{m(f(x), f(y)) : f ∈ O(X, D)}.

Because of the simple formula for m and the relation cX = tanh−1 c∗
X, the

Möbius pseudodistance is more computationally useful for our purposes and
hence will be used exclusively in all proofs.

• The Carathéodory pseudometric CX is defined to be

CX(x; v) = sup{ρ(f(x); dfx(v)) : f ∈ O(X, D)}
for x ∈X and v ∈ TxX, the tangent space of X at x. The Carathéodory pseudo-
metric is often referred to as the infinitesimal Carathéodory pseudodistance.

• Finally, the Lempert function for X is denoted k̃X and is defined by

k̃X(x, y) = inf{ρ(a, b) : ∃f ∈ O(D,X) with f(a) = x, f(b) = y},
where k̃X is defined to equal ∞ if the set over which the infimum is taken is
empty. The Kobayashi pseudodistance kX is then defined to be largest pseudo-
distance bounded by k̃X.

For more information on and examples of these definitions see [7; 8; 9; 10].
Recall from Section 1 that the Neil parabola is the set

N = {(z,w)∈ D
2 : z2 = w3}.

The set N is a 1-dimensional connected analytic variety in D
2 with a singularity

at (0, 0). Furthermore, N has a bijective holomorphic parameterization p : D →
N given by

p(λ) := (λ3, λ2). (2.2)

The function q := p−1 is continuous on N and holomorphic on N \{(0, 0)}, and it
can be given by q(z,w) = z/w when (z,w) �= (0, 0) (and q(0, 0) = 0). For the
benefit of those readers unfamiliar with holomorphic functions on a variety with
a singularity, we include a discussion of these ideas in the concrete context of the
Neil parabola in Section 2.1. It is known that the Kobayashi pseudodistance kN
and the Lempert function k̃N for N are as simple as possible (see [9]):

kN((a, b), (z,w)) = k̃N ((a, b), (z,w)) = ρ(q(a, b), q(z,w)).

On the other hand (and to reiterate our goal in this paper), in [9] the authors lament
that, despite the simplicity ofN, an effective formula for the Carathéodory pseudo-
distance cN is not known. We propose the following as an effective formula for cN .

Theorem 2.3 (Carathéodory pseudodistance formula). Given nonzero λ, δ ∈ D,
let

α0 = 1

2

(
1

λ̄
+ λ + 1

δ̄
+ δ

)
.
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Then

cN(p(λ),p(δ)) =
{
ρ(λ2, δ2) if |α0| ≥ 1,

ρ(λ2φα0(λ), δ
2φα0(δ)) if |α0| < 1.

Also, cN(p(0),p(λ)) = ρ(0, λ2) = tanh−1|λ|2.
In particular it should be noted that, if λ and δ have an acute angle between them
(i.e., if Re(λδ̄) > 0), then |α0| > 1 and so the first formula gives the distance be-
tween p(λ) and p(δ). Also, the theorem shows that kN �= cN as one might suspect.

In Section 3 we shall reduce this problem to a maximization problem on the
closed unit disk, and in Section 4 we solve the maximization problem to yield
Theorem 2.3. In addition, a slightly nicer form of the preceding formula will be
presented as Proposition 4.14.

As will be explained in Section 2.1, the tangent spaces of N can be identified
with subspaces of the tangent spaces of D

2. In particular, for x = (a, b) �= (0, 0),
TxN is simply the span of the vector (3a, 2b); the tangent space at the origin of N
is 2-dimensional and thus equal to all of C

2 = T(0,0)D
2. We can now present our

formula for the Carathéodory pseudometric of N (this is proved in Section 5).

Theorem 2.4 (Carathéodory pseudometric formula). For v = (v1, v2) ∈ C
2

we have

CN((0, 0); v) =
{ |v2| if |v2| ≥ 2|v1|,

4|v1|2+|v2|2
4|v1| if |v2| < 2|v1|,

(2.5)

and for (a, b)∈N nonzero and z∈ C we have

CN((a, b); z(3a, 2b)) = 2|b|
1 − |b|2 |z|. (2.6)

As mentioned in Section 1.1, a direct consequence of Theorem 2.3 is the follow-
ing atypical mixed Carathéodory–Pick interpolation result (see Section 6 for the
proof ).

Theorem 2.7 (Mixed interpolation problem). Given distinct z1, z2 , z3 ∈ D and
w1,w2 ∈ D, there exists an F ∈ O(D, D) with

F(zi) = wi (i = 1, 2) and

F ′(z3) = 0

if and only if
ρ(w1,w2) ≤ cN(p(φz3(z1)),p(φz3(z2))). (2.8)

Moreover, if the problem is extremal (i.e., if there is equality in (2.8)) then the
solution is unique and is a Blaschke product of order 2 or 3.

The significance of the theorem (which, as now worded, practically follows from
definitions) is of course that cN is directly computable by Theorem 2.3. (So, in-
equality (2.8) is easy to check.)

Finally, in Section 7 we prove the following result on extending bounded holo-
morphic functions from the Neil parabola to the bidisk.
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Theorem 2.9 (Bounded analytic extension). For anyf ∈O(N, D)withf(0, 0) =
0, there exists an extension of f to a function in O(D2,

√
2D). If f(0, 0) �= 0, then

f can be extended to O(D2, (2
√

2 + 1)D). In addition, there exists a function in
O(N, D) that cannot be extended to a function in O(D2, rD) for r < 5/4.

Here rD simply denotes the disk of radius r.

2.1. Complex Analysis on the Neil Parabola

In this section we discuss how to perform complex analysis on a variety with a
singularity in the concrete setting of the Neil parabola. This is adapted from [9]
and [5, pp. 18–20, Chap. B], and nothing in this section is by any means new. The
most important facts of this section are summarized in the two “observations” 2.10
and 2.11.

A function f on N is defined to be holomorphic if at each point x ∈ N there
is a holomorphic function F on a neighborhood U of x in the bidisk that agrees
with f on U ∩N. Fortunately, we can give a more concrete description of the set
of holomorphic functions on N. Given f ∈ O(N ), the function h := f � p (recall
p from (2.2)) is an element of O(D) satisfying h′(0) = 0. The reason is that, if
an extension F of f is holomorphic on a neighborhood of (0, 0) in D

2, then h =
F � p is holomorphic on a neighborhood of 0 in D. Hence, the derivative h′(λ) =
dFp(λ)(3λ2, 2λ) and so h′(0) = 0.

Conversely, suppose h ∈ O(D) satisfies h′(0) = 0. Then, f := h � q (recall
q := p−1) is holomorphic on N \ {(0, 0)} because F(z,w) = h(z/w) is holo-
morphic on the set {(z,w) ∈ D

2 : |z| < |w|}, which is an open neighborhood of
N \ {(0, 0)}. To prove f is holomorphic at (0, 0), observe first of all that h can be
written as an absolutely convergent power series h(λ) = a0 + a2λ

2 + a3λ
3 + · · ·

in some (or any) closed disk centered at the origin of radius, say, r < 1. Then, for
(z,w) with |z| < 1 and |w| < r 3,

F(z,w) := a0 + a2w + a3z + a4w
2 + a5zw + a6w

3 + · · ·
converges absolutely and extends f. (Here we are choosing to extend (z/w)k to a
monomial of the form zwm or wm—that is, we want the power of w to be as large
as possible.)

Let us emphasize the correspondence just proved as follows.

Observation 2.10. The map given by f �→ f � p is a bijection from O(N ) to
{h ∈ O(D) : h′(0) = 0} with inverse given by h �→ h � q, where p ∈ O(D,N) is
p(λ) = (λ3, λ2) and q = p−1.

Next, we discuss the complex tangent spaces of N. We can define TxN as a sub-
set of TxD

2 ∼= C
2 in the following way. If v ∈ C

2, then v ∈ TxN if and only if
dGxv = 0 for every holomorphic function G defined in a neighborhood U (in D

2)

of x with G identically zero restricted to U ∩ M. Notice that this formulation is
designed to make it easy to define the differential of a function g ∈ O(N ).

If x = p(λ) = (a, b) �= (0, 0), then TxN is the span of the vector (3a, 2b) be-
cause, given G as in the previous paragraph, the function g := G �p is identically
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zero and so 0 = g ′(λ) = dGx(3λ2, 2λ). Hence, dGx(3a, 2b) = 0. On the other
hand, h(z,w) = z2 −w3 vanishes onN and dhxv = 0 if and only if v is a multiple
of (3a, 2b).

At the origin x = (0, 0), we have TxN = C
2 because, given G as before, we

have dG(0,0) = (0, 0). This is because the partial derivatives of G at (0, 0) are the
coefficients of λ3 and λ2 in the identically zero power series for G(λ3, λ2). Let us
emphasize these facts as follows.

Observation 2.11. The tangent space T(a,b)N at the point (a, b) ∈ N with
(a, b) �= (0, 0) can be identified with {ζ(3a, 2b) : ζ ∈ C} ⊂ C

2. The tangent
space T(0,0)N can be identified with C

2.

3. Reduction of Theorem 2.3 to a max Problem on D̄

As mentioned previously, we shall compute a formula for c∗
N (which of course

gives a formula for cN).
By Observation 2.10, we immediately have

c∗
N(p(λ),p(δ)) = sup{m(h(λ),h(δ)) : h∈ O(D, D), h′(0) = 0}. (3.1)

Because m is invariant under automorphisms of the disk, we may assume that
h(0) = 0 by applying appropriate automorphisms of the disk, since the condition
h′(0) = 0 is preserved by (post) composition. Then, by the Schwarz lemma, h
may be written as h(ζ) = ζ2g(ζ) for some g ∈ O(D, D̄). At this stage it is clear
that c∗

M(p(0),p(λ)) = |λ|2. Since g varies over all of O(D, D̄), the set of pairs
(g(λ), g(δ)) is just the set of all (A,B) satisfying m(A,B) ≤ m(λ, δ). Hence

c∗
N(p(λ),p(δ)) = sup{m(λ2A, δ2B) : A,B ∈ D with m(A,B) ≤ m(λ, δ)}.

Because m(λ2A, δ2B) is the modulus of a holomorphic function in A, the maxi-
mum principle allows us to take this supremum over all (A,B) with m(A,B) =
m(λ, δ). We may safely multiply bothA andB by a unimodular constant and leave
m(λ2A, δ2B) unchanged. Thus, we can assume there is some α ∈ D such that A =
φα(λ) and B = φα(δ) (recall φα from (2.1)).

This discussion yields the following formula for c∗
N , which gives the desired

reduction to a maximization problem.

Proposition 3.2.

c∗
N(p(λ),p(δ)) = max

α∈D̄

m(λ2φα(λ), δ
2φα(δ)).

In particular, the supremum in (3.1) is attained by some function of the formh(ζ) =
ζ2φα(ζ), where α ∈ D̄. Moreover, if h attains the supremum in (3.1) and if h(0) =
0, then h is of the same form (i.e., h = ζ2φα) up to multiplication by a unimodu-
lar constant. As we shall see, the supremum will be obtained either with a unique
α ∈ D or with any α ∈ ∂D.

4. Proof of Theorem 2.3

To begin, we shall keep λ and δ fixed throughout the section and define a contin-
uous function F : D̄ → [0,1), smooth except possibly where it is zero, by
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F(α) := m(λ2φα(λ), δ
2φα(δ)). (4.1)

Note that

F(α) < m(λ, δ) for all α ∈ D̄

and
F(α) = m(λ2, δ2) for all α ∈ ∂D. (4.2)

As in the statement of Theorem 2.3, we let

α0 := 1

2

(
1

λ̄
+ λ + 1

δ̄
+ δ

)
.

By Proposition 3.2, the following two claims (to be given as Lemmas 4.6 and
4.11) yield Theorem 2.3. First, F has no local maximum in D except possibly α0.

Second, if |α0| < 1 then F(α) ≤ F(α0) for all α with |α| = 1. Before we prove
these facts, let us mention a couple of useful formulas forF whose proofs we defer
to the end of the section.

Claim 4.3.

F(α) = m(λ, δ)

∣∣∣∣ (λ + δ)(α + λδᾱ − λ − δ) + λδ(1 − |α|2)
(1 + λδ̄)(1 + λδ̄ − ᾱλ − αδ̄) − λδ̄(1 − |α|2)

∣∣∣∣ (4.4)

= m(λ, δ)

∣∣∣∣1 − (ᾱ − ᾱ0 − β̄2)(α − α0 + β2)

1 − (ᾱ − ᾱ0 − β̄1)(α − α0 + β1)

∣∣∣∣, (4.5)

where

β1 := 1

2

(
1

λ̄
− λ − 1

δ̄
+ δ

)
and

β2 := 1

2

(
1

λ̄
− λ + 1

δ̄
− δ

)
.

Lemma 4.6. The function F has no local maximum in D except possibly at α0.

Proof. Using formula (4.5), it suffices to prove that the function given by

G(z) =
(
F(z + α0)

m(λ, δ)

)2

=
∣∣∣∣1 − (z̄ − β̄2)(z + β2)

1 − (z̄ − β̄1)(z + β1)

∣∣∣∣
2

(4.7)

has no local maximum for |z + α0| < 1 except possibly at z = 0. Some omitted
computations show that G can be written as G2/G1, where

Gk(z) = 1 + 2|βk|2 − 2|z|2 + |z2 − β2
k |2 (4.8)

for k = 1, 2.
Throughout the following, suppose that z is a local maximum satisfying 0 <

|z + α0| < 1. This implies several statements:

• 0 < G(z) < 1;
• z is a critical point for G;
• / logG(z) ≤ 0; and
• det Hess(logG) ≥ 0 at z.
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Here Hess denotes the matrix of second partial derivatives. We will prove that all
of these conditions cannot be satisfied.

First, compute all of the derivatives of G1 and G2 up to second order. (Luckily
we can examine G1 and G2 simultaneously.) Writing z = x + iy then yields

∂zGk = −2z̄ + 2z(z̄2 − β̄2
k ),

∂xGk = −4x + 4 Re[z(z̄2 − β̄2
k )],

∂yGk = −4y − 4 Im[z(z̄2 − β̄2
k )],

∂ 2
xxGk = −4 + 4|z|2 + 8x 2 − 4 Reβ2

k ,

∂ 2
yyGk = −4 + 4|z|2 + 8y2 + 4 Reβ2

k ,

∂ 2
xyGk = 8xy − 4 Imβ2

k .

Because z is a critical point for G, we have G1∂zG2 − G2∂zG1 = 0 at z. Neither
G1 nor G2 vanish at z, so if ∂zG1 = 0 then ∂zG2 = 0. But that ∂zG1 and ∂zG2

vanish simultaneously only at 0—

∂zGk = −2z̄ + 2z(z̄2 − β̄2
k ) = 0

for k = 1, 2—implies z̄(β2
1 − β2

2) = 0, which can happen only if z = 0 (because
β2

1 − β2
2 = −(1 − |λ|2)(1 − |δ|2)/(λ̄δ̄) �= 0). Therefore, at z we have

G2

G1
= ∂zG2

∂zG1
,

∂xG1

G1
= ∂xG2

G2
,

∂yG1

G1
= ∂yG2

G2
. (4.9)

A fact derived from the first of these equations is that(
β̄2

1

G1
− β̄2

2

G2

)
z2 = |z|2(1 − |z|2)

(
1

G2
− 1

G1

)
; (4.10)

in particular, the expression on the left is real.
Next, the last two equations in (4.9) show that, at the critical point z, the fol-

lowing equations hold:

∂ 2
xx logG = ∂ 2

xxG2

G2
− ∂ 2

xxG1

G1

= (−4 + 4|z|2 + 8x 2)

(
1

G2
− 1

G1

)
+ 4 Re

(
β̄2

1

G1
− β̄2

2

G2

)

= −4

[
(1 − |z|2)

(
1 − Re

(
z2

|z|2
))

− 2x 2

](
1

G2
− 1

G1

)
,

where the last equality follows from (4.10). Similarly,

∂ 2
yy logG = −4

[
(1 − |z|2)

(
1 + Re

(
z2

|z|2
))

− 2y2

](
1

G2
− 1

G1

)
,

∂ 2
xy logG = 4

[
2xy + (1 − |z|2) Im

(
z2

|z|2
)](

1

G2
− 1

G1

)
.

Therefore,



Function Theory on the Neil Parabola 149

/ logG = −8(1 − 3|z|2)
(

1

G2
− 1

G1

)
;

since this must be less than or equal to zero at z, we see that |z|2 ≤ 1/3.
Finally, we can show that det Hess(logG) < 0, contradicting our assumption

that z is a local maximum. The determinant of the Hessian of the logarithm of G
(with the positive factor 16(1/G2 − 1/G1)

2 omitted) is

(1 − |z|2)2(1 − (Re(z2/|z|2))2) + 4x 2y2 − 2|z|2(1 − |z|2)
+ 2(y2 − x 2)(1 − |z|2)Re(z2/|z|2)
− 4x 2y2 − 4xy(1 − |z|2) Im(z2/|z|2) − (1 − |z|2)2(Im(z2/|z|2))2.

Canceling the positive factor (1 − |z|2) and simplifying yields −4|z|2, which is
indeed negative as promised.

Lemma 4.11. If |α0| < 1, then F(α) ≤ F(α0) for all α with |α| = 1.

Proof. Recall from (4.2) that, on the boundary of D̄, F is constant and equal to
m(λ2, δ2). By equation (4.4), it suffices to prove the inequality∣∣∣∣ λ + δ

1 + λ̄δ

∣∣∣∣
2

≤
∣∣∣∣ (λ + δ)(α0 + λδᾱ0 − λ − δ) + λδ(1 − |α0|2)
(1 + λδ̄)(1 + λδ̄ − ᾱ0λ − α0 δ̄) − λδ̄(1 − |α0|2)

∣∣∣∣
2

.

Assuming the left-hand side is nonzero (which we can), it suffices to prove∣∣∣∣(α0 + λδᾱ0 − λ − δ) + λδ
(1 − |α0|2)
λ + δ

∣∣∣∣
2

−
∣∣∣∣(1 + λδ̄ − ᾱ0λ − α0 δ̄) − λδ̄

(1 − |α0|2)
1 + λδ̄

∣∣∣∣
2

≥ 0. (4.12)

If we think of the left-hand side as

|A + B|2 − |C + D|2 = |A|2 − |C|2 + 2 Re(AB̄ − CD̄) + |B|2 − |D|2,
then first of all |A|2 − |C|2 equals

|α0 +λδᾱ0 −λ− δ|2 −|1+λδ̄− ᾱ0λ−α0 δ̄|2 = −(1−|α0|2)(1−|λ|2)(1−|δ|2).
Using the identities

α0 + λδᾱ0 − (λ + δ) = λ̄ + δ̄

2λ̄δ̄
(1 + |λδ|2) and

1 + λδ̄ − ᾱ0λ − α0 δ̄ = −1 + λ̄δ

2λ̄δ
(|λ|2 + |δ|2),

we get 2 Re(AB̄ −CD̄) = (1− |α0|2)(1− |λ|2)(1− |δ|2). Also, using the identity

|1 + ab̄|2 − |a + b|2 = (1 − |a|2)(1 − |b|2), (4.13)

we see that |B|2 − |D|2 equals

|λδ|2(1 − |α0|2)2 (1 − |λ|2)(1 − |δ|2)
|λ + δ|2|1 + λδ̄|2 .
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Summing this all up, we see that proving (4.12) amounts to showing

|λδ|2(1 − |α0|2)2 (1 − |λ|2)(1 − |δ|2)
|λ + δ|2|1 + λδ̄|2 ≥ 0,

which is certainly true.

This concludes the proof of Theorem 2.3. As promised, here is a slightly nicer
formula for c∗

N(p(λ),p(δ)).

Proposition 4.14. If λ, δ ∈ D are nonzero, then

c∗
N(p(λ),p(δ)) =

{
m(λ2, δ2) if |α0| ≥ 1,

m(λ, δ)
1+|β2|2
1+|β1|2 if |α0| < 1.

This follows from Proposition 3.2, the definition of F (viz., equation (4.1)), for-
mula (4.5) for F, and Lemmas 4.6 and 4.11.

We conclude this section with the proof of Claim 4.3.

Proof of Claim 4.3. We start from equation (4.1). Observe that

F(α) =
∣∣∣∣∣∣
λ2 α−λ

1−ᾱλ
− δ2 α−δ

1−ᾱδ

1 − λ2δ̄2 α−λ

1−ᾱλ

ᾱ−δ̄

1−αδ̄

∣∣∣∣∣∣
=

∣∣∣∣λ2(α − λ)(1 − ᾱδ) − δ2(α − δ)(1 − ᾱλ)

(1 − ᾱλ)(1 − αδ̄) − λ2δ̄2(α − λ)(ᾱ − δ̄)

∣∣∣∣
=

∣∣∣∣ α(λ2 − δ2) − (λ3 − δ3) − |α|2λδ(λ − δ) + λδ(λ2 − δ2)ᾱ

1 − λ3δ̄3 − ᾱλ(1 − λ2δ̄2) − αδ̄(1 − λ2δ̄2) + |α|2λδ̄(1 − λδ̄)

∣∣∣∣
= m(λ, δ)

∣∣∣∣ α(λ + δ) − (λ2 + λδ + δ2) − |α|2λδ + λδ(λ + δ)ᾱ

1 + λδ̄ + λ2δ̄2 − ᾱλ(1 + λδ̄) − αδ̄(1 + λδ̄) + |α|2λδ̄

∣∣∣∣ (4.15)

= m(λ, δ)

∣∣∣∣ α(λ + δ) + λδ(λ + δ)ᾱ − (λ + δ)2 + λδ(1 − |α|2)
(1 + λδ̄)2 − ᾱλ(1 + λδ̄) − αδ̄(1 + λδ̄) − (1 − |α|2)λδ̄

∣∣∣∣;
from here it is easy to derive (4.4).

Second, to prove (4.5) we start from (4.15):

F(α) = m(λ, δ)

∣∣∣∣ λδ − (λδᾱ − (λ + δ))(α − (λ + δ))

λδ̄ − (ᾱλ − (1 + λδ̄))(αδ̄ − (1 + λδ̄))

∣∣∣∣
= m(λ, δ)

∣∣∣∣1 − (ᾱ − (1/δ + 1/λ))(α − (λ + δ))

1 − (ᾱ − (1/λ + δ̄))(α − (1/δ̄ + λ))

∣∣∣∣;
this equals (4.5) as a consequence of the following identities:

ᾱ0 + β̄2 = 1

λ
+ 1

δ
,

α0 − β2 = λ + δ,
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ᾱ0 + β̄1 = 1

λ
+ δ̄,

α0 − β1 = λ + 1

δ̄
.

5. The Infinitesimal Carathéodory Pseudodistance

In this section we prove Theorem 2.4, our formula for the Carathéodory pseudo-
metric.

The Carathéodory pseudometric at the origin with respect to a vector v =
(v1, v2)∈ C

2 is

CN((0, 0); v) = sup{|df(0,0)v| : f ∈ O(N, D) and f(0, 0) = 0}.
Any such f satisfies f(λ3, λ2) = λ2g(λ) for some g ∈ O(D, D̄) (see the beginning
of Section 3). Also, the partial derivative of f with respect to the first variable at
the origin is just g ′(0), and the partial derivative of f with respect to the second
variable at the origin is g(0) (see Section 2.1). Therefore,

CN((0, 0); v) = sup{|v1g
′(0) + v2g(0)| : g ∈ O(D, D̄)}.

The set of pairs (g ′(0), g(0)) as g varies over O(D, D̄) is really just the set of
pairs (A,B) where |A| + |B|2 ≤ 1 (by the Schwarz–Pick lemma). With suitable
choices for the arguments of A and B, we can reduce the problem to maximizing
|v1|s+ |v2|t over all s, t ∈ [0,1] that satisfy s+ t 2 ≤ 1. The function we are maxi-
mizing is linear, so the maximum occurs on the boundary. Therefore, the problem
is just a matter of finding the maximum of |v1|(1 − t 2) + |v2|t for 0 ≤ t ≤ 1. By
calculus, we have

CN((0, 0); v) =
{ |v2| if |v2| ≥ 2|v1|,

4|v1|2+|v2|2
4|v1| if |v2| < 2|v1|,

as desired.
Next, let x = (a, b) ∈N \ {(0, 0)} and define v = (3a, 2b). The Carathéodory

pseudometric at (a, b) is

CN(x; v) = sup

{ |dfxv|
1 − |f(x)|2 : f ∈ O(N, D)

}
.

If we set λ = a/b and h = f � p, then v = λ(3λ2, 2λ) and, since dfx(3λ2, 2λ) =
h′(λ), we see that

CN(x; v) = |λ| sup{ρ(h(λ);h′(λ)) : h∈ O(D, D) and h′(0) = 0}.
By (post) composing h with an automorphism of the unit disk (which is allowed
by invariance properties of ρ), we can assume h(0) = 0 and thus h has the form
h(ζ) = ζ2g(ζ) for some g ∈ O(D, D̄). Hence,

CN(x; v) = |λ| sup

{ |λ2g ′(λ) + 2λg(λ)|
1 − |λ|4|g(λ)|2 : g ∈ O(D, D̄)

}
.

As before, (g ′(λ), g(λ)) varies over all pairs (A,B) that satisfy |A|(1 − |λ|2) ≤
1 − |B|2. This reduces the problem to maximizing
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|λ|2s + 2|λ|t
1 − |λ|4t 2

over the set of nonnegative s, t satisfying t 2 + s(1 − |λ|2) ≤ 1. It is easy to check
that the maximum always occurs when t = 1 and s = 0. Since λ2 = b, we see that

CN(x; v) = 2|b|
1 − |b|2 .

6. Proof of Theorem 2.7

By precomposing all functions with φz3 , we may assume that z3 = 0 in Theo-
rem 2.7. Then, all functions of interest will correspond to functions in O(N, D). It
is therefore clear that, if there is a function h∈ O(D, D) satisfying both h′(0) = 0
and h(zi) = wi for i = 1, 2, then inequality (2.8) holds (by Theorem 2.3 and the
definition of Carathéodory pseudodistance).

On the other hand, if inequality (2.8) holds (again with z3 = 0), then we can
pick a function f ∈ O(N, D) with

ρ(f(p(z1)), f(p(z2))) = cN(p(z1),p(z2))

(we know such a function exists by the formula for cN) and then set h := f � p ∈
O(D, D). The function h satisfies ρ(w1,w2) ≤ ρ(h(z1),h(z2)) and, by compos-
ing h with an appropriate function, we can find a function F ∈ O(D, D) with
F(z1) = w1, F(z2) = w2 , and F ′(0) = 0.

To prove the last part of Theorem 2.7, supposeF satisfies the interpolation prob-
lem and suppose there is equality in (2.8). Then h := φF(0) � F satisfies equality
as well. Hence, if

α0 := 1

2

(
1

z̄1
+ z1 + 1

z̄2
+ z2

)

is in the disk then h(λ) is of the form µλ2φα0(λ), where µ is a unimodular con-
stant, and if α0 /∈ D then h(λ) is of the form µλ2 (again with µ∈ ∂D). But µ and
F(0) are uniquely determined by the fact thatwi = φF(0)(h(zi)) for i = 1, 2, since
h(z1) and h(z2) must be distinct. So there exists a unique automorphism of the
disk ψ such that

F(λ) =
{
ψ(λ2φα0(λ)) if α0 ∈ D,

ψ(λ2) if α0 /∈ D.

In the first case, F is a Blaschke product of order 3 and in the second a Blaschke
product of order 2.

7. Proof of Extension Theorem

In this section we prove Theorem 2.9.
First, we need to define a few basic notions. Let X be a set. A self-adjoint func-

tion F : X×X → C (i.e., F(x, y) = F(y, x)) is positive semidefinite if, for every
positive integer n and every finite subset {x1, x2 , . . . , xn} ⊂ X, the n × n matrix
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with entries F(xi, xj ) is positive semidefinite. For example, by the Pick interpo-
lation theorem the function F : D × D → C given by

F(λ, δ) = 1 − g(λ)g(δ)

1 − λδ̄

is positive semidefinite for any g ∈ O(D, D̄).
The Pick interpolation theorem on the bidisk (see [1, p. 180]) can be stated as

a theorem about extensions of bounded analytic functions in the following way.
Given a subset X of the bidisk and a function ψ : X → D, there exists a 6 ∈
O(D2, D) with 6|X = ψ if and only if there exist positive semidefinite functions
/ and 7 on X × X such that, for each z = (z1, z2)∈X and w = (w1,w2)∈X,

1 − ψ(z)ψ(w) = 7(z,w)(1 − z1w̄1) + /(z,w)(1 − z2w̄2).

We should mention that the portion of this theorem that we shall use (i.e., suffi-
ciency) has a quite simple proof—it is an application of the “lurking isometry”
technique.

To prove Theorem 2.9, suppose f ∈ O(N, D) and f(0, 0) = 0. Then, as in ear-
lier arguments, (f � p)(λ) = f(λ3, λ2) = λ2g(λ) for some g ∈ O(D, D̄). For any
δ, λ∈ D we have

2 − f(p(λ))f(p(δ))

= (1 − λ3δ̄3) +
(

1 + λ2δ̄2 1 − g(λ)g(δ)

1 − λδ̄
+ λ3δ̄3g(λ)g(δ)

1 − λ2δ̄2

)
(1 − λ2δ̄2).

Hence, for z = (z1, z2)∈N and w = (w1,w2)∈N we have

2 − f(z)f(w) = 7(z,w)(1 − z1w̄1) + /(z,w)(1 − z2w̄2), (7.1)

where 7(z,w) = 1 and

/(z,w) = 1 + z1w̄1
1 − g(q(z))g(q(w))

1 − q(z)q(w)
+ z2w̄2g(q(z))g(q(w))

1 − z1w̄1

(recall q(z) = z1/z2 for z �= (0, 0) and q(0, 0) = 0). Now 7 is clearly positive
semidefinite, and / is positive semidefinite because positive semidefinite func-
tions are closed under addition and multiplication (by the Schur product theorem)
and by the Pick interpolation theorem on the disk (applied to g). This proves that
f has an extension to the bidisk with supremum norm at most

√
2 (by dividing

through (7.1) by 2).
In order to prove that any holomorphic function f ∈ O(N, D) (regardless of its

value at the origin) can be extended to the bidisk with supremum norm at most
2
√

2 + 1, simply apply the result just proved to (f − f(0))/2.
Finally, the function

h(λ) = λ2 0.5 − λ

1 − 0.5λ
corresponds to a function f ∈ O(N, D) with f(λ3, λ2) = h(λ). The partial deriva-
tives of f at (0, 0) are just the coefficients of λ3 and λ2 in the power series for h:
−0.75 and 0.5. Suppose F is a bounded holomorphic extension of f to the bidisk
with sup normR. Then, by the Schwarz lemma on the bidisk,
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0.75/R + 0.5/R ≤ 1;
this implies R ≥ 5/4, as desired.
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