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GIT Equivalence beyond the Ample Cone

Florian Berchtold & Jürgen Hausen

Introduction

The approach to moduli spaces (e.g., for curves of fixed genus) presented by
D. Mumford in his geometric invariant theory [17] relies on his construction of
quotients for actions of reductive groupsG on algebraic varietiesX. He introduces
the notion of a G-linearized line bundle on X, and to any such bundle L he asso-
ciates a G-invariant open set Xss(L) ⊂ X of semistable points. This set admits
a so-called good quotient Xss(L) → Xss(L)//G with a quasiprojective quotient
space.

Mumford’s construction, however, is in general not unique: his “GIT quotients”
turn out to depend essentially on the choice of the bundle and the linearization.
Therefore, it is a natural desire to describe the collection of all possible GIT quo-
tients for a given reductive group action. For “ample GIT quotients”—that is,
those arising from linearized ample line bundles—this problem has been studied
by several authors; see [8; 10; 22] and [19].

A first basic step in the study of ample GIT quotients is to show that there are
only finitely many of them (see [5; 10; 20; 22]). Then the subject becomes com-
binatorial. The situation is described by a sort of fan subdividing the so-called
(open)G-ample cone: the cones of this fan correspond to the ample GIT quotients
and the face relations reflect, in an order-reversing manner, the set-theoretical in-
clusion of the respective sets of semistable points; see [19].

However, there are interesting examples of projective GIT quotients that do not
arise from linearized ample bundles (see [6]). Motivated by this observation, we
study here the situation beyond the G-ample cone, and we propose a combinato-
rial framework for the description of the phenomena occurring there. We restrict
our attention to the case of a torus action. This case is the most vivid one concern-
ing variation of GIT quotients, and it allows an elementary treatment.

The setup is as follows: X is a normal projective variety over an algebraically
closed field K of characteristic zero such that X has a free finitely generated di-
visor class group Cl(X) as well as a finitely generated total coordinate ring (see
Section 3)

R(X) :=
⊕
Cl(X)

	(X, O(D)).
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We consider the action T × X → X of an algebraic torus T = Spec(K[M ]),
whereM is the lattice of characters. This comprises subtorus actions on projective
toric varieties [14] and, more generally, on projective spherical varieties.

In our setup, we can even do a little more than describing only the collection
of the quotients arising from the possible T-linearized line bundles over X: we
allow, more generally, quotients arising from T-linearized Weil divisors (see Sec-
tion 1). Compared with Mumford’s original approach, this has the advantage that
also for singular X we obtain all good quotients with a quasiprojective quotient
space; see [13].

We make use of the fact that X is a good quotient of an invariant open subset X̂
of X̄ := Spec(R(X)) by the torus H := Spec(K([Cl(X)]) corresponding to the
divisor class group. The action of T may be lifted to the multicone X̄ over X, and
this lifting corresponds to a refinement of the grading

R(X) =
⊕

(D,w)∈Cl(X)⊕M
	(X, R)(D,w).

It turns out that the degrees (D,w) ∈ Cl(X) ⊕ M of the refined grading are in
one-to-one correspondence with the possible T-linearizations of the divisor classes
D ∈Cl(X) and that the sets of semistable points depend only on the classes of the
T-linearized divisors.

Let us indicate how the combinatorial description runs. To any T-linearized
class (D,w) having a nonempty set of semistable points, we associate what we
call its GIT bag µ(D,w). This GIT bag is a certain pointed convex polyhedral
cone living in the rational vector space associated to Cl(X) ⊕M, and it can be
directly computed from a finite set of orbit data associated to the lifted action of
H × T on X̄. The set of GIT bags is finite, and it comes with a natural partial
ordering “≤”. Here is our main result (see Theorem 4.3).

Theorem. Let (Di,wi) ∈ Cl(X)⊕M represent two T-linearized Weil divisors
onX, and let µ(Di,wi) denote the associated GIT bags. Then, for the associated
sets of semistable points, we have

Xss(D1,w1) ⊂ Xss(D2 ,w2) ⇐⇒ µ(D1,w1) ≥ µ(D2 ,w2).

Inside the T-ample cone, the GIT bags coincide with the cones of the fan sub-
division defined by the GIT chambers of [10] and [19]. But outside the T-ample
cone, not much is left from the fan properties; for example, overlappings are pos-
sible (see Section 6). Nevertheless, the GIT bags allow us to formulate answers
to several questions.

For example, motivated by [5], we study qp-maximal T-sets. These are T-
invariant open subsets U ⊂ X admitting a good quotient U → U//T with a
quasiprojective quotient space U//T that do not occur as a saturated subset with
respect to (w.r.t.) the quotient map of a properly larger U ′ ⊂ X with the same
properties. Any qp-maximal set is a set of semistable points of a linearized Weil
divisor; in terms of GIT bags, qp-maximality is characterized as follows (see
Corollary 4.5).
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Theorem. A GIT bag describes a qp-maximal T-set if and only if its relative in-
terior is set-theoretically minimal in the collection of the relative interiors of all
GIT bags.

Using this characterization, one can easily produce examples of qp-maximal T-
sets having a noncomplete quotient space; see Example 6.3. It can as well be
described in terms of GIT bags when a quotient space is projective (see Proposi-
tion 4.6), and there is a simple criterion for figuring out the ample GIT quotients
(see Proposition 4.7). These two criteria are useful for discussing an “exotic orbit
space” as presented in [6]; see Example 6.2.

For the case of a Q-factorial varietyX, the combinatorial description of the col-
lection of qp-maximal T-sets allows us to extend a basic statement from the ample
theory: there, one obtains as a consequence of the fan structure that any two sets
of semistable points arising from ample bundles admit at most one minimal such
set comprising both of them. We show the following (see Corollary 5.2).

Theorem. Suppose that X is Q-factorial. Then, for any two qp-maximal T-sets
U1,U2 ⊂ X, the collection of qp-maximal T-sets of U ⊂ X with (U1 ∪ U2) ⊂ U
is either empty or it contains a unique minimal element.

The paper is organized as follows. In Section1, we recall some basics on good quo-
tients and the construction presented in [13]. Moreover, we introduce the group
of isomorphism classes of G-linearized Weil divisors. In Section 2, we present a
simple direct proof for the affine version of [19], which is needed later but also
might be of independent interest. Section 3 is devoted to a combinatorial char-
acterization of semistability, and the main results are presented in Section 4. In
Section 5 we investigate the case of a Q-factorial X, and in Section 6 we discuss
some examples.

1. Good Quotients

In this section, we recall the notion of a good quotient and provide the basic facts on
this concept. Moreover, we briefly recall from [13] a generalization of Mumford’s
construction of good quotients, using Weil divisors instead of line bundles. Fi-
nally, we introduce the group of isomorphism classes of linearized Weil divisors
and the GIT equivalence.

We work over an algebraically closed field K of characteristic zero. The word
“variety” refers to a reduced scheme of finite type over K , and by a “point” we
always mean a closed point. When we speak of an action of an algebraic groupG
on a varietyX, we tacitly assume that this action is given by a morphismG×X→
X; we then also speak of the G-variety X.

Definition 1.1. Let a reductive linear algebraic group G act on a variety X.

(i) A good quotient for theG-action is aG-invariant affine morphism π : X→ Y

such that the canonical map OY → π∗(OX)G is an isomorphism.
(ii) A good quotient π : X → Y is called geometric if each fibre π−1(y), where

y ∈ Y, consists of a single G-orbit.
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The definition of a good quotient was formulated by Seshadri [21], but the concept
was implicit in Mumford’s book [17]. Note that good quotients are obtained by
glueing classical invariant theory quotientsX→ Y of affineG-varietiesX, which
means that Y := Spec(	(X, O)G) holds. We now list some basic properties (see
e.g. [21]).

Proposition 1.2. Let π : X → Y be a good quotient for a G-action on a vari-
ety X.

(i) If A,B ⊂ X are G-invariant closed subsets with A ∩ B = ∅, then their
images in Y are also closed and satisfy π(A) ∩ π(B) = ∅.

(ii) For every y ∈ Y, there is a unique closed G-orbit G · x0 ⊂ π−1(y), and this
orbit lies in the closure of any other orbit G · x ⊂ π−1(y).

(iii) If ϕ : X → Z is a G-invariant morphism, then there is a unique morphism
ψ : Y → Z with ϕ = ψ � π.

The last property implies that a good quotient for a G-variety is basically unique,
provided it exists. This justifies the notations X→ X//G for a good quotient and
X → X/G for a geometric quotient. In general, a G-variety X need not admit
a good quotient, but it may have many G-invariant open subsets U ⊂ X with a
good quotient U → U//G. For the study of such subsets, the following concept is
crucial (cf. [5]).

Definition 1.3. Let X be a G-variety. A G-invariant open subset U ⊂ X is
called G-saturated in X if G · x ⊂ U for all x ∈U, where G · x denotes the orbit
closure taken in X.

Usually, one compares invariant open subsets V ⊂ U of a G-variety X, which
means that one asks if V isG-saturated in theG-varietyU. IfG is reductive linear
algebraic and there is a good quotient π : U → U//G, then, by Proposition 1.2(ii),
the set V is G-saturated in U if and only if V = π−1(π(V )) holds. In that case,
π(V ) is open in U//G and the restriction π|V : V → π(V ) is a good quotient.

We now recall the construction of good quotients given in [13]. It extends Mum-
ford’s construction by taking Weil divisors instead of line bundles. The advantage
of this approach is that it provides also in the singular (normal) case basically all
good quotients with a quasiprojective quotient. Observe that we present here a
slightly modified version that allows also nontrivial linearizations of the trivial di-
visor D = 0. However, this has no impact on the results and their proofs.

Let X be a normalG-variety, whereG is a reductive linear algebraic group. To
any Weil divisor D on X we associate a sheaf of OX-algebras, and we consider
the corresponding relative spectrum with its canonical morphism:

A :=
⊕
n∈Z≥0

OX(nD), X(D) := SpecX(A), qD : X(D)→ X.

The Z≥0-grading of the sheaf of algebras A defines an action of the multiplicative
group K∗ = Spec(K[Z]) on X(D), and the canonical morphism qD : X(D)→ X

is a good quotient for this action.
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Note that, near singular points of X, it is not necessary a priori for the scheme
X(D) to be of finite type over X; however, we need not care too much about this
difficulty because it is ruled out by assumption in the cases of interest.

Definition 1.4 (cf. [13]). A G-linearization of the divisor D is a morphical
G-action on X(D) that commutes with the K∗-action on X(D) and makes
qD : X(D)→ X into a G-equivariant morphism.

Any G-linearization of the divisor D gives rise to a rational G-representation on
the global sections respecting the Z≥0-grading, namely,

G× 	(X(D), O)→ 	(X(D), O), (g · f )(x) := f(g−1 · x).
We now introduce a notion of semistability that is similar to that in [13]. As usual,
for a section f ∈	(X, O(D)) of a Weil divisor, we denote its set of zeroes as

Z(f ) := Supp(div(f )+D).
Definition 1.5. Let D be a G-linearized Weil divisor on X. We call a point
x ∈X semistable with respect to this linearization if there exist an n ∈ Z>0 and a
section f ∈	(X, O(nD)) such that X \ Z(f ) is an affine neighborhood of x and
f is invariant under the G-representation on 	(X(D), O).
We denote the set of semistable points of aG-linearized Weil divisorD byXss(D),
or by Xss(D,G) if we want to specify the group G. From [13] we infer the basic
features of this construction as follows.

Proposition 1.6. Let G be a reductive linear algebraic group, and let X be a
normal G-variety.

(i) If D is a G-linearized Weil divisor on X, then there exists a good quotient
Xss(D)→ Xss(D)//G with a quasiprojective quotient space.

(ii) If U ⊂ X is a G-invariant open subset having a good quotient U → U//G

with U//G quasiprojective, then U is G-saturated in some set Xss(D).

In the literature, one often introduces a G-linearization of a line bundle L → X

over aG-variety more geometrically as a fibrewise linear lifting of theG-action to
the total space L (see e.g. [16]). This is related to our definition, as the following
remark shows.

Remark 1.7. If D is Cartier and represents the class of a line bundle L→ X in
Pic(X), thenX(D)→ X is the dual bundle ofL→ X and there is an isomorphism

	(X,L)→ 	(X(D), O)1, s �→ fs , where fs(z) := 〈z, s(qD(z))〉.
If D is G-linearized, then the G-action on X(D) defines a dual, fibrewise linear
action on the total space L via

〈z, g · y〉 := 〈g−1 · z, y〉 for g ∈G, y ∈Lx , z∈X(D)g·x , x ∈X.
This action makes the projection equivariant, and it induces the “dual representa-
tion” of G on the space 	(X,L) of global sections:
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g · s(x) = g · (s(g−1 · x)).
With respect to this representation, the isomorphism 	(X,L) → 	(X(D), O)1
mentioned before becomes an isomorphism of G-modules.

We conclude this section with a few words about the passage to divisor classes.
For any G-variety X, we have the notion of the group PicG(X) of isomorphism
classes ofG-linearized line bundles over X. Let us show how this concept can be
extended to Weil divisors.

First of all, we must prepare the definition of the G-linearized sum of two G-
linearized Weil divisors D1 and D2 on a normal G-variety X. For this, consider
the following sheaf of bigraded OX-algebras and its relative spectrum:

B :=
⊕

(n,m)∈Z2≥0

O(nD1 +mD2), X(D1,D2) := SpecX(B).

Note that X(D1,D2) comes with an action of the torus T2 := K∗ × K∗ defined
by the bigrading of B. Moreover, we have canonical morphisms X(D1,D2) →
X(Di) arising from the inclusions of sheaves⊕

k∈Z≥0

OX(kDi)→
⊕

(n,m)∈Z2≥0

O(nD1 +mD2).

These morphisms determine a morphism ϕ : X(D1,D2)→ X(D1)×X X(D2) to
the fibre product, which also comes with a canonical T2-action and the diagonal
G-action. Here are the basic properties of this setting.

Lemma 1.8. For two G-linearized Weil divisors D1,D2 on X, let X(D1,D2)

be as just described. Then there is a commutative diagram of T2-equivariant
morphisms:

X(D1)×X X(D2)

����
��

��
��

�� �����
��

��

X(D1,D2)

ϕ ��

��������������
��

qD1,D2 ��

X(D2)

����
��

��
��

��

X(D1)

��������

X .

The diagonal G-action on the fibre product lifts uniquely to X(D1,D2) and then
descends to X(D1 +D2) within a canonical commutative diagram:

X(D1,D2) ��

������������ X(D1 +D2)

������������

X .

Moreover, the induced G-action on X(D1 +D2) is a G-linearization of the Weil
divisor D1 +D2.



GIT Equivalence beyond the Ample Cone 489

Proof. The morphism ϕ : X(D1,D2) → X(D1) ×X X(D2) is given by the uni-
versal property of the fibre product. It is an isomorphism over the set Xreg ⊂ X

of smooth points, because there it comes from the canonical isomorphism of the
corresponding sheaves of OX-algebras:

( ⊕
m∈Z≥0

O(mD1)

)
⊗OX

( ⊕
n∈Z≥0

O(nD2)

)
→

⊕
(m,n)∈Z2≥0

O(mD1 + nD2).

Moreover, since this is a bigraded homomorphism, we can conclude that ϕ is T2-
equivariant. That ϕ is an isomorphism over theG-invariant setXreg ⊂ X allows us
to shift the diagonalG-action on the fibre product over Xreg to a morphical action

α : G× q−1
D1,D2

(Xreg)→ q−1
D1,D2

(Xreg).

Our task is to extend this action to the whole X(D1,D2); this is done via ex-
tending the corresponding comorphisms. Let β : G × X → X denote the action
on X. Then, by G-equivariance, we obtain the commutative diagram

	(U ∩Xreg, B) α∗ �� 	(β−1(U ∩Xreg), OG ⊗ B)

	(U, B) �� 	(β−1(U), OG ⊗ B)

for any affine open subset U ⊂ X. As one can easily verify, the lower rows of
these diagrams are the comorphisms of a G-action on X(D1,D2). By construc-
tion, this extension has the desired properties and so the first part of the lemma is
proved.

To see the second part, consider the antidiagonal K∗-action on X(D1,D2) de-
fined by the homomorphism of tori K∗ → T2 sending t to (t, t−1). This action
admits a good quotient: the morphism X(D1,D2) → X(D1 + D2) arising from
the canonical injection of sheaves

⊕
k∈Z≥0

O(kD1 + kD2)→
⊕

(m,n)∈Z2≥0

O(mD1 + nD2).

Since the antidiagonal K∗-action and theG-action onX(D1,D2) commute, it fol-
lows that the G-action descends to an action on the quotient space X(D1 +D2).

By construction, it commutes with the K∗-action on X(D1 +D2) and the canoni-
cal morphism X(D1 +D2)→ X becomes G-equivariant.

Definition 1.9. Let D1 and D2 be two G-linearized Weil divisors on a normal
G-variety X.

(i) TheG-linearization of the sumD1+D2 is the uniqueG-action onX(D1+D2)

provided by Lemma 1.8.
(ii) We say thatD1 andD2 are isomorphic if there is a (K∗ ×G)-equivariant iso-

morphism X(D1)→ X(D2) over X.
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Note that, for the case of a pair of linearized Cartier divisors, our definition of the
linearized sum corresponds to the usual tensor product of linearized line bundles,
and the notion of isomorphism is the usual one.

Proposition 1.10. The set of isomorphism classes of G-linearized Weil divisors
form a group ClG(X). Furthermore:

(i) forgetting about the linearizations gives rise to a well-defined homomorphism
ClG(X)→ Cl(X); and

(ii) for anyG-linearized Weil divisorD onX, the setXss(D,G) depends only on
its class in ClG(X).

Observe that the kernel of the forgetting homomorphism ClG(X)→ Cl(X) con-
sists precisely of the linearizations of the trivial bundle. Finally, by Proposition
1.10, we may generalize the usual concept of GIT equivalence to the setting of
Weil divisors.

Definition 1.11. We say that two G-linearized divisor classes in ClG(X) are
GIT equivalent if they define the same set of semistable points.

2. The Affine Case

In this section, we study the collection of sets of semistable points arising from
the possible linearizations of the trivial bundle over an affine variety with a torus
action. We provide a simple direct proof for the fact that this collection is an
order-reversing bijection to a (quasi)fan subdividing the weight cone of the action.

This result may be viewed as an affine version of [19]. It is well known for
linear torus actions on Kn; in this case, the describing fan is a so-called Gelfand–
Kapranov–Zelevinsky decomposition (see [18]).

The precise setup is as follows: K is an algebraically closed field, and R is a
finitely generated integral K-algebra that is graded by a latticeM ∼= Zd :

R =
⊕
w∈M

Rw.

This grading corresponds to an action of the algebraic torus T := Spec(K[M ])
on the affine variety X := Spec(R).

We denote byMQ := M⊗Z Q the rational vector space associated toM. Recall
that the weight cone of the T-variety X is the convex cone inMQ generated by all
w ∈M admitting a nontrivial homogeneous f ∈Rw:

)T (X) := cone(w ∈M; Rw �= 0) ⊂ MQ.

Since the algebra R is generated by finitely many homogeneous elements, it fol-
lows that the weight cone )T (X) is also finitely generated and thus is a polyhe-
dral cone. Note that )T (X) is pointed (i.e., it contains no line) if R0 = K and
R∗ = K∗.

Definition 2.1. For a point x ∈X, its orbit monoid is the semigroup consisting
of all weights that admit a homogeneous function that is invertible near x:
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ST (x) := {w ∈M; ∃f ∈Rw, f(x) �= 0}.
The orbit cone of x ∈X is the convex (polyhedral) cone ωT (x) ⊂ MQ generated
by the orbit monoid ST (x).

We collect some basic properties of orbit cones. A first observation is that the orbit
cones are not affected by passing to the normalization.

Lemma 2.2. Let ν : X ′ → X be the T-equivariant normalization. Then, for
every x ′ ∈X ′, we have ωT (x ′) = ωT (ν(x ′)).
Proof. The inclusion ωT (ν(x ′)) ⊂ ωT (x ′) is clear by equivariance. The reverse
inclusion follows from considering equations of integral dependence for the ho-
mogeneous elements f ∈O(X ′) with f(x ′) �= 0.

We shall use the orbit cones to describe properties of orbit closures. The basic
statement in this regard is the following one.

Proposition 2.3. For a point x ∈ X, let Tx ⊂ T be its isotropy group and let
MT (x) ⊂ M be the sublattice generated by the orbit monoid ST (x).

(i) The algebraic torus T/Tx acts with a dense free orbit on the orbit closure
T · x ⊂ X.

(ii) T · x has the affine toric variety Spec(K[ωT (x) ∩ MT (x)]) as its (T/Tx)-
equivariant normalization.

Proof. The first assertion is obvious, and the second one follows immediately from
Lemma 2.2 and the fact that the algebra of global functions of T · x is the semi-
group algebra K[ST (x)] of the weight monoid.

For two polyhedral cones ω1 and ω2 in a common vector space, we write ω1 "
ω2 if ω1 is a face of ω2. Lemma 2.2 and Proposition 2.3 have the following
consequence.

Corollary 2.4. Let x ∈ X. Then the T-orbits in T · x correspond to the faces
of ωT (x) via T · y �→ ωT (y).

The following simple observation will replace in our setup the deeper finiteness
result on GIT quotients given in [10] and [22].

Proposition 2.5. The collection of orbit cones {ωT (x); x ∈X} is finite.

Proof. EmbedX equivariantly into some Kn on which T acts diagonally. Then the
T-orbit cone of a point x ∈X equals its T-orbit cone w.r.t. Kn. The T-orbit cones
w.r.t. Kn are constant along the orbits of the standard action of Tn := (K∗)n, be-
cause this action commutes with that of T. Since Tn has only finitely many orbits
in Kn, the assertion follows.

We now enter the study of the collection of sets of semistable points arising from
the possible T-linearizations of the trivial bundle. First, we recall that these lin-
earizations correspond to the characters of T.
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Lemma 2.6. Consider a T-linearization of the trivial bundle over X. Then there
is a unique w ∈M such that the dual T-action on X × K is of the form

t · (x, z) := (t · x,χw(t)z). (2.6.1)

Proof. The dual action is a fibrewise linear T-action on X×K making X×K →
X equivariant. Consequently, there is a morphism c : T ×X→ K∗ such that

t · (x, z) := (t · x, c(t, x)z).

Clearly, we always have c(1, x) = 1. Thus, for fixed x, the map t �→ c(t, x) is a
homomorphism. Hence, by rigidity of tori, c does not depend on x.

In the sequel we shall denote by Xss(w) ⊂ X the set of semistable points defined
by the linearization (2.6.1). It can be explicitly described in terms of homogeneous
functions and also in terms of orbit cones.

Lemma 2.7. The setXss(w) ⊂ X of semistable points of the linearization (2.6.1)
is given by

Xss(w) =
⋃

f∈Rnw, n∈Z>0

Xf

= {x ∈X; w ∈ωT (x)}.
In particular, the set of semistable points Xss(w) is nonempty if and only if w ∈
)T (X) ∩M.
Proof. As indicated in Remark 1.7, the invariant sections for the linearization
(2.6.1) are precisely the functions f ∈ Rnw with n ∈ Z≥0. This gives the first
equality. The second one is a direct consequence of the definition of an orbit cone,
and the last statement is obvious.

As outlined in Section 1, the set Xss(w) is T-invariant and admits a good quotient
Xss(w)→ Y(w) by the action of T. In fact, the quotient space Y(w) = Xss(w)//T
is the homogeneous spectrum of a Veronese subalgebra:

Y(w) = Proj(R(w)), where R(w) =
⊕
n∈Z≥0

Rnw ⊂ R.

In particular, every quotient space Y(w) is projective over Y(0) = Spec(R0).

Furthermore, if Xss(w1) ⊂ Xss(w2) then Proposition 1.2(iii) yields the commu-
tative diagram

Xss(w1)
⊂ ��

//T

��

Xss(w2)

//T

��
Y(w1)

ϕ
w1
w2 ��

����������� Y(w2)

		���������

Y(0).
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Note that the induced map ϕw1
w2

: Y(w1)→ Y(w2) of the quotient spaces is domi-
nant and projective. Moreover, we have ϕw1

w3
= ϕw2

w3
� ϕw1

w2
whenever composition

is possible.
The collection of all nonempty sets Xss(w), together with their good quotients

Xss(w)→ Y(w) and the preceding diagrams, is called the GIT system associated
to the trivial bundle on the T-variety X. Let us turn to the combinatorial descrip-
tion of this GIT system. We introduce a collection of convex polyhedral cones.

Definition 2.8. For a weight w ∈)T (X) ∩M, the associated GIT cone is the
(nonempty) intersection of all orbit cones containing w:

σT (w) :=
⋂

w∈ωT (x)
ωT (x).

Moreover, the collection of all possible GIT cones defined by the action of T on
X is denoted as

0T (X) := {σT (w); w ∈)T (X) ∩M}.
Note that, for us, GIT cones are closed cones and thus are not chambers in the
sense of [19]. A first important observation is that the GIT cones are in order-
reversing one-to-one correspondence with the possible sets of semistable points
arising from the various linearizations of the trivial bundle.

Proposition 2.9. Let w1,w2 ∈)T (X) ∩M. Then:

(i) Xss(w1) ⊂ Xss(w2) ⇐⇒ σT (w1) ⊃ σT (w2);
(ii) Xss(w1) = Xss(w2) ⇐⇒ σT (w1) = σT (w2).

Proof. This is an immediate consequence of our definition of GIT cones and the
characterization of semistability in terms of orbit cones given in Lemma 2.7.

Proposition 2.9 allows us to speak about the set of semistable points correspond-
ing to a GIT cone σ ∈0T (X). Set

Xss(σ) := Xss(w), where σ = σT (w).
Lemma 2.10. The set of semistable points associated to a GIT cone σ ∈0T (X)
is given by

Xss(σ) = {x ∈X; σ ⊂ ωT (x)}.
We now come to the main result of this section. Together with Proposition 2.9, it
describes the structure of the collection of sets of semistable points associated to
the linearizations of the trivial bundle as a partially ordered set.

A quasifan is a finite collection 0 of (not necessarily pointed) convex polyhe-
dral cones in a common vector space such that, for σ ∈0, all faces of σ belong to
0 and, for any two σ, σ ′ ∈0, the intersection σ ∩ σ ′ is a face of both σ and σ ′. A
quasifan is called a fan if it consists of pointed cones. The support of a quasifan
is the union of its cones.
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Theorem 2.11. The collection of all GIT cones 0T (X) is a quasifan in the vec-
tor spaceMQ having the weight cone )T (X) as its support.

In the proof of this result, we need a further basic property of the GIT cones (which
is also needed later). For a convex polyhedral cone σ, we denote its relative inte-
rior by σ ◦; this means that σ ◦ is obtained by removing all proper faces from σ.

Lemma 2.12. Letw ∈)T (X)∩M. Then the associated GIT cone σ := σT (w)∈
0T (X) satisfies:

σ =
⋂

w∈ωT (x)◦
ωT (x) =

⋂
σ ◦⊂ωT (x)◦

ωT (x);

w ∈ σ ◦ =
⋂

w∈ωT (x)◦
ωT (x)

◦ =
⋂

σ ◦⊂ωT (x)◦
ωT (x)

◦.

Proof. For any orbit cone ωT (x) with w ∈ωT (x), there is a unique minimal face
ω " ωT (x)withw ∈ω that satisifiesw ∈ω◦. According to Corollary 2.4, the face
ω " ωT (x) is again an orbit cone. This gives the first formula. The second one
follows from an elementary observation: if the intersection of the relative interi-
ors of a finite number of convex polyhedral cones is nonempty, then it equals the
relative interior of the intersection of the cones.

Proof of Theorem 2.11. First of all note that, by finiteness of the number of orbit
cones (as shown in Proposition 2.5), the collection of all GIT cones is finite.

The remainder of the proof is split into verifications of several claims. For the
sake of handy notation, we set for the moment ) := )T (X) and 0 := 0T (X).

Moreover, we omit the subscript T when denoting orbit cones and GIT cones, and
we write X(σ) instead of Xss(σ).

Claim 1. Let σ1, σ2 ∈ 0 with σ1 ⊂ σ2. Then, for every x1 ∈ X(σ1) with σ ◦
1 ⊂

ω(x1)
◦, there exists an x2 ∈X(σ2) with ω(x1) " ω(x2).

Let us verify the claim. By Proposition 2.9, we have X(σ2) ⊂ X(σ1). Conse-
quently, the GIT system provides a commutative diagram with a dominant, proper,
and hence surjective morphism ϕ : Y(σ2)→ Y(σ1) of the quotient spaces:

X(σ2)
⊂ ��

p2

��

X(σ1)

p1

��
Y(σ2) ϕ

�� Y(σ1).

If a point x1 ∈ X(σ1) satisfies σ ◦
1 ⊂ ωT (x1)

◦, then (by Lemma 2.10 and Corol-
lary 2.4) its T-orbit is closed in X(σ1). Proposition 1.2(ii) thus tells us that
x1 ∈ T · x2 holds for any point x2 belonging to the (nonempty) intersection
X(σ2) ∩ p−1

1 (p1(x1)). Using once more Corollary 2.4 now gives Claim 1.
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Claim 2. Let σ1, σ2 ∈0. Then σ1 ⊂ σ2 implies σ1 " σ2.

For the verification, let τ2 " σ2 be the (unique) face with σ ◦
1 ⊂ τ ◦2 , and let

ω1,1, . . . ,ω1,r be the orbit cones withσ ◦
1 ⊂ ω◦

1,i . Then we obtain, using Lemma 2.12
for the second observation,

τ ◦2 ∩ ω◦
1,i �= ∅, σ1 = ω1,1 ∩ · · · ∩ ω1,r .

By Claim 1, we haveω1,i " ω2,i with orbit conesω2,i satisfying σ2 ⊂ ω2,i; there-
fore, τ2 ⊂ ω2,i . The first of the displayed formulas implies τ2 ⊂ ω1,i, and the
second one thus gives τ2 = σ1. Hence, Claim 2 is verified.

Claim 3. Let σ ∈0. Then every face σ0 " σ belongs to 0.
To see this, consider any w ∈ σ ◦

0. Lemma 2.12 yields w ∈ σ(w)◦. By the defini-
tion of GIT cones we have σ(w) ⊂ σ, and Claim 2 gives σ(w) " σ. Thus we have
two faces of σ, σ0 and σ(w), having a common point w in their relative interiors.
This means that σ0 = σ(w) and so Claim 3 is verified.

Claim 4. Let σ1, σ2 ∈0. Then σ1 ∩ σ2 is a face of both σ1 and σ2.

Let τi " σi be the minimal face containing σ1 ∩ σ2. Choose w in the relative
interior of σ1∩ σ2 , and consider the GIT cone σ(w). By Lemma 2.12 and the def-
inition of GIT cones, we see that

w ∈ σ(w)◦ ∩ τ ◦i , σ(w) ⊂ σ1 ∩ σ2 ⊂ τi .
By Claim 2, the second relation implies in particular that σ(w) " σi.We can there-
fore conclude that σ(w) = τi and so σ1 ∩ σ2 is a face of both σi. Hence Claim 4
is verified, and the properties of a quasifan are established for 0T (X).

3. A Semistability Criterion

We present a combinatorial description of the set of semistable points associated to
a linearized Weil divisor. ByX we denote a normal projective variety with finitely
generated free divisor class group Cl(X), and we consider the action T × X →
X of an algebraic torus T = Spec(K[M ]) on the variety X.

The total coordinate ring R(X) of the variety X is defined as follows: Choose
a subgroup K ⊂ WDiv(X) of the group of Weil divisors such that the canonical
map K → Cl(X) is an isomorphism, and set

R(X) := 	(X, R), where R :=
⊕
D∈K

O(D).

This ring depends only up to isomorphism on the choices made in its definition.
An important property of the total coordinate ring R(X) is that it is a factorial
ring; see [1] and [11].

Throughout this section, we assume that R(X) is finitely generated as a K-
algebra. We consider the following geometric objects associated to the K-graded
sheaf R of OX-algebras:

H := Spec(K[K]), X̄ := Spec(R(X)), X̂ := SpecX(R).
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Thus X̂ refers to the relative spectrum of R. Recall that there is a canonical mor-
phism qX : X̂→ X. We list some basic properties of this setting, which we use
often in the subsequent constructions and proofs (cf. [3]).

Proposition 3.1. Let H, X̄, X̂, and qX : X̂→ X be as before. Then the follow-
ing statements hold.

(i) TheK-grading of R defines an action of the torusH on X̂, and qX : X̂→X

is a good quotient for this action.
(ii) The K-grading of R(X) defines an action of the torus H on X̄, and the

canonical map X̂→ X̄ is an equivariant open embedding.
(iii) For D ∈ K and f ∈ 	(X, O(D)) with X \ Z(f ) affine, the inverse image

q−1
X (X \ Z(f )) equals X̄f .

(iv) For the set Xreg ⊂ X of nonsingular points, the complement X̄ \ q−1
X (Xreg)

is of codimension ≥ 2 in X̄.
(v) Suppose that H · x ⊂ X̂ is closed; then f ∈ 	(X̄, O)D satisfies f(x) = 0 if

and only if qX(x)∈Z(f ) for f ∈	(X, O(D)).
(vi) There exists a T-action on X̄, commuting with the H -action on X̄, such that

X̂ ⊂ X̄ is T-invariant and qX : X̂→ X is T-equivariant.

Proof. We begin with a basic observation. Let D ∈ K and f ∈ 	(X, O(D)) be
such that X \ Z(f ) is affine. Then we have the following identities of global
functions:

	(X̄f , O) = R(X)f = 	(X \ Z(f ), R) = 	(q−1
X (X \ Z(f )), O).

Since K = Cl(X), it follows that the variety X is covered by such affine sets
X \ Z(f ). Thus, we see in particular that R is locally of finite type and X̂ is a
variety.

The first assertion is then obvious. In the second, we need only explain why
X̂→ X̄ is an open embedding. By the previous identities, each affine subset
q−1
X (X \ Z(f )) is mapped isomorphically onto X̄f . It follows that X̂→ X̄ is an

open embedding. Moreover, assertion (iii) drops out as well.
The fourth assertion is due to an identity of global functions: it follows from

the fact that 	(Xreg, R) equals 	(X, R).
To verify assertion (v), suppose first that qX(x) /∈Z(f ) holds for a section f ∈

	(X, O(D)). Then f restricts to an invertible section of R over a suitable neigh-
borhood U ⊂ X of qX(x). Consequently, f is invertible as a function on q−1

X (U),
which implies f(x) �= 0.

Conversely, let f(x) �= 0 for f ∈ 	(X̄, O)D. Consider the orbit H · x and the
zero set B := N(f , X̂). By Proposition 1.2(i), the image qX(B) ⊂ X is closed
and does not contain qX(x). Hence, for a suitable neighborhood U ⊂ X of qX(x),
we see that f is invertible as a function on q−1

X (U) and thus it is so as a section of
R over U. This implies that qX(x) /∈Z(f ).

We are therefore left with verifying the last statement. By [13], there is a T-
linearization of the group K ⊂ WDiv(X) over Xreg ⊂ X; in other words, we
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may lift the T-action to q−1
X (Xreg). By part (iv) of the proposition, the comple-

ment X̄ \q−1
X (Xreg) is of codimension ≥ 2 in X̄. Hence the lifted T-action extends

to X̄.

For the remainder of this section, we fix a lifting of the T-action to X̄ as in Propo-
sition 3.1(vi). In terms of multigraded rings, this means that we have the following
refinement of the K-grading:

R(X) =
⊕

(D,w)∈K⊕M
	(X, R)(D,w).

We need a pullback construction for linearized Weil divisors. For a Weil divisor
D on X, consider its restriction Dreg to Xreg, and let D̄ denote the Weil divisor on
X̄ obtained by closing the support of q∗XDreg. Now suppose thatD is T-linearized.
We then observe that D̄ inherits, in a canonical way, an (H × T )-linearization. In
fact, consider the Cartesian square

q−1
X (Xreg)(q

∗
XDreg)

��

�� Xreg(Dreg)

qD

��
q−1
X (Xreg) qX

�� Xreg .

Viewing the upper left space as a fibre product q−1
X (Xreg)×Xreg Xreg(Dreg), one de-

fines an (H × T )-action on it by letting H act on the first factor and letting T
act diagonally. Since X̄ is locally factorial, X̄(D̄) → X̄ is a bundle and thus, by
Proposition 3.1(iv), the (H × T )-action extends to the desired linearization of D̄.

Lemma 3.2. The set q−1
X (X

ss(D, T )) is (H × T )-saturated in X̄ss(D̄,H × T )
and we have the following commutative diagram, where the horizontal arrows are
open embeddings:

X̂

//H

��

q−1
X (X

ss(D, T ))

 ��

//H

��

X̄ss(D̄,H × T ) ��

//H×T

��

X̄

X Xss(D, T )



//T

��
Xss(D, T )//T �� X̄ss(D̄,H × T )//H × T .

Proof. Every T-invariant section f ∈	(X, O(nD)) defines via pullback a section
of 	(X̄, O(nD̄)) that is (H ×T )-invariant. Thus, Proposition 3.1(iii) and the def-
inition of semistability yield the desired statement.

Lemma 3.3. As an (H × T )-linearized divisor, D̄ is isomorphic to the trivial
bundle with an (H × T )-linearization, and there is a unique w ∈M such that the
corresponding dual action is given as
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(h, t) · (x, z) = ((h, t) · x,χ(D,w)(h, t)z).

Moreover, the assignment D �→ (D,w) induces an isomorphism ClT (X) →
K⊕M from the group of T-linearized divisor classes onX to the character lattice
of the torus H × T.
Proof. Consider the setXreg ⊂ X of nonsingular points and the restrictionDreg of
D to Xreg. Then, over the sets Ui ⊂ Xreg of a suitably fine open cover, the sheaf
O(Dreg) is generated by invertible elements fi ∈	(Ui, O(D)).

The line bundle π : L → Xreg with the transition functions ξij := fj/fi is the
dual bundle ofXreg(Dreg)→ Xreg; it comes with the dual T-action and with canon-
ical trivializations

π−1(Ui)→ Ui × K , v �→ (π(v), zi(v)).

The pullback line bundle q∗XL = q−1
X (Xreg) ×Xreg L is dual to the line bun-

dle q−1
X (Xreg)(q

∗
XDreg) → q−1

X (Xreg) arising from the restriction of D̄. The dual
(H × T )-action on q∗XL equals the pullback linearization and is of the form

(h, t) · (x, v) = (t · h · x, t · v).
We claim that q∗XL is H -equivariantly isomorphic to the trivial bundle, H -

linearized by the characterχD; this follows because the functionsfi ∈	(Ui, O(D))
define a global trivialization for q∗XL, namely,

q−1
X (Xreg)×Xreg L→ q−1

X (Xreg)× K ,

(x, v) �→ (x, fi(x)zi(v)) for x ∈ q−1
X (Ui).

Using Proposition 3.1(iv), we can extend this to a global trivialization of the dual
bundle of D̄, which proves the first part of the assertion.

For the second part, note first that H acts freely on q−1
X (Xreg) because, locally

on Xreg, all divisors D ∈K are principal and hence locally any point of q−1
X (Xreg)

has K as its weight monoid. Moreover, there is a commutative diagram,

0 �� M �� PicH×T (q−1
X (Xreg)) �� PicH (q

−1
X (Xreg)) �� 0

0 �� M �� PicT (Xreg) ��

q∗
X

��

Pic(Xreg) ��

q∗
X

��

0,

with exact rows. Since H acts freely on q−1
X (Xreg), we infer from [16, Prop. 4.2]

that the right-hand pullback is an isomorphism. Consequently, the pullback in the
middle of the diagram must also be an isomorphism.

The assertion thus follows from the fact that we have canonical isomorphisms
ClT (X) ∼= PicT (Xreg) and ClH×T (X̄) ∼= PicH×T (q−1

X (Xreg)), where the latter
relies on Proposition 3.1(iv).
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Via the isomorphism [D] �→ (D,w) just established, we shall hereafter identify
the T-linearized divisor classes onX with the elements onK ⊕M. We denote the
corresponding sets of semistable points by

Xss(D,w) := Xss(D, T ), where ClT (X)% [D] �→ (D,w)∈K ⊕M.
We are now ready to begin with the combinatorial characterization of semista-

bility. It involves two fans: the collections of GIT cones 0H×T (X̄) and 0H(X̄)
for the actions ofH ×T andH on X̄. These collections are actually fans because,
by [3, Prop. 4.3], the weight cones )H×T (X̄) and )H(X̄) are pointed.

Let κX ∈ 0H(X̄) be the GIT cone corresponding to X̂ ⊂ X̄, which (by pro-
jectivity of X) is a set of H -semistable points. Moreover, let ; : K ⊕M → K

denote the projection. We consider the collections of orbit cones

CT (X) := {ωH×T (x); x ∈ X̄, κ◦X ⊂ ;(ωH×T (x))◦} and

CT (σ) := {ωH×T (x); x ∈ X̄, σ ◦ ⊂ ωH×T (x)◦},
where σ ∈0H×T (X̄)may be any GIT cone. The geometric meaning of these col-
lections is that they describe the collection of closed orbits in the respective sets
of semistable points as follows.

Lemma 3.4. Let σ ∈0H×T (X̄) and x ∈ X̄, and consider the orbit coneωH×T (x).
(i) The orbit H · x is a closed subset of X̂ if and only if ωH×T (x)∈CT (X).

(ii) The orbit (H × T ) · x is a closed subset of X̄ss(σ) if and only if ωH×T (x) ∈
CT (σ).

Proof. First note that, for any orbit cone ωH×T (x), the image;(ωH×T (x)) equals
the orbit coneωH(x). Hence, the collectionsCT (X) andCT (σ) describe the orbits
of H in X̂ = X̄ss(κX) and H × T in X̄ss(σ) having minimal orbit cones. The as-
sertions now follow from Corollary 2.4.

Our next result characterizes semistability in terms of the collections of orbit cones
just described.

Theorem 3.5. Let (D,w)∈)H×T (X̄)∩ (K⊕M) represent a T-linearized Weil
divisorD onX, and consider the GIT cone σ := σH×T (D,w) in0H×T (X̄). Then

q−1
X (X

ss(D,w)) = {x ∈ X̄; ω " ωH×T (x) for some ω ∈CT (X) ∩ CT (σ)}.
Proof. As before, let D̄ denote the divisor on X̄ obtained by closing the support
of the pullback divisor q∗XDreg, and consider the inherited (H × T )-linearization
of D̄. Then X̄ss(D̄,H ×T ) is precisely the set of semistable points corresponding
to the GIT cone σ ∈0H×T (X̄).

To verify the “⊂” part, consider first a closed orbit (H×T ) ·x in q−1
X (X

ss(D, T )).
By Lemma 3.2, this orbit is closed in X̄ss(D̄,H ×T ) and hence Lemma 3.4 yields
σ ◦ ⊂ ωH×T (x)◦. Moreover, the orbit H · x is closed in (H × T ) · x and thus also
in q−1

X (X
ss(D, T )); therefore, since q−1

X (X
ss(D, T )) isH -saturated in X̂, the orbit
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H · x is also closed in X̂. Lemma 3.4 yields κ◦X ⊂ ωH(x)
◦, so ωH×T (x) lies in

CT (X) ∩ CT (σ).
Now, given an arbitrary point x ∈ q−1

X (X
ss(D, T )), we may consider any point y

in the (H×T )-orbit closure of x having a closed (H×T )-orbit in q−1
X (X

ss(D, T )).
According to Corollary 2.4, the orbit cone ω := ωH×T (y) is a face of ωH×T (x)
and thus, by the preceding consideration, ω belongs to CT (X) ∩ CT (σ).

We turn to the inclusion “⊃”. First consider a point x ∈ X̄ such that ωH×T (x)
belongs to CT (X) ∩ CT (σ). Then we have

x ∈ X̂ ∩ X̄ss(D̄,H × T ).
Moreover, by Lemma 3.4, the orbit H · x is closed in X̂ and the orbit (H × T ) · x
is closed in X̄ss(D̄,H × T ).

By a repeated shrinking procedure, we shall now construct a neighborhood of
qX(x) ∈ X as required in Definition 1.5. First, note that the definition of semi-
stability for the linearized divisor D̄ provides an f ∈ 	(X̄, O), homogeneous of
weight (nD, nw) with some n∈Z>0, such that

(H × T ) · x ⊂ X̄f ⊂ X̄ss(D̄,H × T ).
Consider the complement B1 := X̄f \ X̂. This is an (H × T )-invariant closed

subset of X̄f that is disjoint from (H × T ) · x. By Proposition 1.2(i), the good
quotient

X̄f → X̄f//(H × T )
separates x and B1. Hence we can choose an (H × T )-invariant function f0 ∈
	(X̄f , O) that satisfies f0|B1 = 0 and has no zeroes in (H × T ) · x.

For a suitable k ∈ Z>0, the product g := f0f
k is a T-invariant element of

	(X, O(knD)). Since H · x is closed in X̂, Proposition 3.1(v) yields

x ∈ q−1
X (X \ Z(g)) ⊂ X̄g ⊂ X̂.

Now consider the intersection B2 := X̄g ∩ q−1
X (Z(g)); this is an (H × T )-

invariant closed subset of X̄g that is disjoint from (H × T ) · x. As before, we can
choose an (H × T )-invariant function g0 ∈	(X̄g , O) that satisfies g0|B2 = 0 and
has no zeroes in (H × T ) · x.

Once more, for a suitable l ∈ Z>0, the product h := g0g
l is a T-invariant ele-

ment of 	(X, O(lknD)). This time we have

x ∈ q−1
X (X \ Z(h)) ⊂ X̄h ⊂ q−1

X (X \ Z(g)) ⊂ X̂.
We make the further claim that q−1

X (X \ Z(h)) = X̄h. Assume, to the contrary,
that there exists a point y ∈ X̄h with qX(y)∈Z(h). Observe that the orbit closure
in X̂ satisfies

H · y ⊂ q−1
X (qX(y)) ⊂ q−1

X (X \ Z(g)).
Consider any y0 ∈ H · y such that H · y0 is closed in X̂. By the preceding ob-
servation, qX(y0) /∈ Z(g) holds. Proposition 3.1(v) thus yields g(y0) �= 0. By
assumption, we have
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qX(y0) = qX(y)∈Z(h).
Applying again Proposition 3.1(v) gives h(y0) = 0, and thus g0(y0) = 0. Since
g0 is an H -invariant function, this means g0(y) = 0. Hence we obtain h(y) = 0,
which is in contradiction to y ∈ X̄h.

Having seen that q−1
X (X \Z(h)) = X̄h holds, we easily obtain the rest: the ele-

ment h∈	(X, O(lknD)) is T-invariant and defines an affine neighborhood

X \ Z(h) = X̄h//H
of the point qX(x) ∈X as required in Definition 1.5. This shows that the point x
belongs to q−1

X (X
ss(D, T )).

If x ∈ X̄ is an arbitrary point in the set on the RHS of the equation in Theorem 3.5,
then Corollary 2.4 tells us that the face ω " ωH×T (x) with ω ∈ CT (X) ∩ CT (σ)
is the orbit cone of some point y belonging to the (H × T )-orbit closure of x.
Given the previous consideration, we have y ∈ q−1

X (X
ss(D, T )), and this implies

that x ∈ q−1
X (X

ss(D, T )).

Even in the case of a trivial torus action, Theorem 3.5 is of some interest: it then
provides a description of the cone of ample divisors of the variety X. See also [3,
Thm. 7.3].

Corollary 3.6. The cone of ample divisor classes on X is the relative interior
κ◦X ⊂ KQ = ClQ(X) of the GIT cone κX ∈0H(X̄).
Proof. Consider the action of the trivial torus T = {eT } onX. Then, for any x ∈ X̄,
we have ωH×T (x) = ωH(x). Moreover, the fans0H×T (X̄) and0H(X̄) coincide.
Any divisor D ∈K is T-linearized, and D ∈K is ample if and only if Xss(D) =
X holds. The latter is equivalent to q−1

X (X
ss(D)) = X̂; by Theorem 3.5, this holds

if and only if D ∈ κ◦X.
Remark 3.7. The case of a trivial T-action already shows that q−1

X (X
ss(D, T ))

is in general properly smaller than X̂ ∩ X̄ss(D̄,H × T ). Let D be effective but
not big. Then Xss(D, T ) is empty but X̂ ∩ X̄ss(D̄,H × T ) is nonempty. As an
explicit example, one may take X = P1 × P1 and D = P1 × {0}.

4. The General Case

In this section we present the main results of the paper. As in Section 3,X is a nor-
mal projective variety with finitely generated total coordinate ring R(X), and the
algebraic torus T = Spec(K[M ]) acts onX. We give a combinatorial description
of the collection of sets of semistable points associated to the T-linearized Weil
divisors on X.

Recall from Section 3 thatX is a good quotient of an open subset X̂ of the affine
variety X̄ = Spec(R(X)) by the torus H = Spec(K[K]) corresponding to the
grading latticeK ∼= Cl(X) of R(X). As before, we fix a lifting of the T-action to
X̄; this corresponds to the choice of a refined grading
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R(X) =
⊕

(D,w)∈K⊕M
	(X, R)(D,w).

As observed in Lemma 3.3, the degrees (D,w)∈K ⊕M describe the possible
T-linearizations of the divisorsD ∈K. Again, we denote by κX ∈0H(X̄) the GIT
cone corresponding to X̂ ⊂ X̄. Moreover, ; : K ⊕M → K denotes the projec-
tion, and we use the collection of cones

CT (X) := {ωH×T (x); x ∈ X̄, κ◦X ⊂ ;(ωH×T (x))◦}.
We must first figure out the linearized divisor classes with a nonempty set of

semistable points. For that purpose, consider the set

C
?

T (X) :=
⋃

ω∈CT (X)
ω◦ ⊂ KQ ⊕MQ.

Lemma 4.1. The setC?T (X) is a convex cone inKQ⊕MQ = ClT (X)Q. For a vec-
tor (D,w)∈K⊕M, the setXss(D,w) is nonempty if and only if (D,w)∈C?T (X).
Proof. That Xss(D,w) is nonempty if and only if (D,w) ∈ C?T (X) holds is a
fact that follows directly from Lemma 3.2 and Theorem 3.5. Moreover, multi-
plying suitable invariant sections allows one to see that, for any two linearized
divisor classes (Di,wi)with nonempty sets of semistable pointsXss(Di,wi), also
(D1+D2 ,w1+w2) admits semistable points. This gives convexity ofC?T (X).

Definition 4.2. Let the pair (D,w)∈C?T (X)∩(K⊕M) represent aT-linearized
divisor on X. Then we define its associated GIT bag to be the convex polyhedral
cone

µ(D,w) =
⋂

ω∈CT (X); (D,w)∈ω◦
ω.

The collection of all these GIT bags is denoted by @T (X). For µ1,µ2 ∈@T (X),
we write µ1 ≤ µ2 if, for any ω2 ∈CT (X) with µ◦

2 ⊂ ω◦
2 , there is a face ω1 " ω2

with ω1 ∈CT (X) and µ◦
1 ⊂ ω◦

1.

Note that every GIT bag is a union of GIT cones of the GIT fan 0H×T (X̄) in
K ⊕M corresponding to the (H × T )-action on X̄. Moreover, the relation “≤”
clearly is a partial ordering on@T (X). We shall now see that the partially ordered
set of GIT bags describes precisely the GIT equivalence.

Theorem 4.3. Let (Di,wi)∈C?T (X)∩(K⊕M) represent two T-linearized Weil
divisors on X. Then

Xss(D1,w1) ⊂ Xss(D2 ,w2) ⇐⇒ µ(D1,w1) ≥ µ(D2 ,w2).

Proof. We shall make repeated use of the combinatorial characterization of semi-
stability given in Theorem 3.5. For this, let σ1, σ2 ∈ 0H×T (X̄) denote the GIT
cones associated to (D1,w1) and (D2 ,w2), respectively. Furthermore, set

Wi := q−1
X (X

ss(Di,wi)) ⊂ X̄.
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First suppose that Xss(D1,w1) ⊂ Xss(D2 ,w2). Consider an orbit cone ω1 =
ωH×T (x) ∈ CT (X) with µ(D1,w1) ⊂ ω◦

1. Then (D1,w1) ∈ ω◦
1 and, by Lemma

2.12, we have σ ◦
1 ⊂ ω◦

1; hence Theorem 3.5 yields x ∈W1. Thus, by assumption,
x ∈ W2. Again by Theorem 3.5, there exists an ω2 " ω1 with ω2 ∈ CT (X) and
σ ◦

2 ⊂ ω◦
2. Therefore, (D2 ,w2) ∈ ω◦

2 and so µ(D2 ,w2)
◦ ⊂ ω◦

2. This eventually
implies that µ(D1,w1) ≥ µ(D2 ,w2).

Conversely, supposeµ(D1,w1) ≥ µ(D2 ,w2). Consider x ∈W1 with (H×T )·x
closed in W1. By Theorem 3.5 and Corollary 2.4, the orbit cone ω1 := ωH×T (x)
belongs to CT (X) and satisfies σ ◦

1 ⊂ ω◦
1. The latter implies (D1,w1) ∈ ω◦

1, so
µ(D1,w1)

◦ ⊂ ω◦
1. By assumption, there is an ω2 " ω1 with ω2 ∈ CT (X) and

µ(D2 ,w2)
◦ ⊂ ω◦

2. The latter implies σ ◦
2 ⊂ ω◦

2. Thus, Theorem 3.5 yields x ∈W2 ,
and we can conclude thatW1 ⊂ W2.

We shall now use the description of the collection of sets of semistable points in
terms of GIT bags in order to study basic properties of the corresponding system
of quotients. The first statement is the following characterization of saturated in-
clusion by means of GIT bags.

Theorem 4.4. Let (Di,wi)∈C?T (X)∩(K⊕M) represent two T-linearized Weil
divisors on X. Then Xss(D1,w1) is a T-saturated subset of Xss(D2 ,w2) if and
only if µ(D1,w1)

◦ ⊃ µ(D2 ,w2)
◦.

Proof. We begin with a preparatory observation that characterizes closedness of a
given T-orbit in the set Xss(Di,wi).

Claim. Consider points x ∈Xss(Di,wi) and x̂ ∈Wi := q−1
X (X

ss(Di,wi)) such
that qX(x̂) = x and H · x̂ is closed in X̂. Then T · x is closed in Xss(Di,wi) if
and only if (H × T ) · x̂ is closed inWi.

Let us verify the claim. The “if” part is clear, so letT ·x be closed inXss(Di,wi).
Assume that the complement

Y := (H × T ) · x̂ \ (H × T ) · x̂ ⊂ Wi
is nonempty. Then Proposition 1.2(ii) tells us that x /∈ qX(Y ). On the other hand,
we have

qX(Y ) ⊂ qX
(
(H × T ) · x̂ ) ⊂ qX(H × T ) · x̂ = T · x ⊂ Xss(Di,wi).

Since qX(Y ) is T-invariant and we assumed T · x to be closed, this is a contradic-
tion. Thus, the claim is verified.

We come to the proof of the theorem. First, suppose that Xss(D1,w1) is T-
saturated in Xss(D2 ,w2). We must then show that⋂

ω1∈CT (X); (D1,w1)∈ω◦1
ω◦

1 ⊃
⋂

ω2∈CT (X); (D2,w2 )∈ω◦2
ω◦

2.

Consider ω1 = ωH×T (x̂) ∈ CT (X) as on the LHS. Then, by Theorem 3.5 and
Corollary 2.4, the orbit (H × T ) · x̂ is closed inW1 and the orbitH · x̂ is closed in
X̂. Therefore, T · x is closed in Xss(D1,w1). By T-saturatedness, T · x is closed
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in Xss(D2 ,w2). The claim just verified tells us that (H × T ) · x̂ is closed inW2.

Thus, Theorem 3.5 and Corollary 2.4 show that (D2 ,w2)∈ω◦
1.

Conversely, suppose that µ(D1,w1)
◦ ⊃ µ(D2 ,w2)

◦. This clearly implies that
µ(D1,w1) ≥ µ(D2 ,w2) and so Theorem 4.3 yieldsXss(D1,w1) ⊂ Xss(D2 ,w2).

We now need only show that the inclusion is T-saturated. For this, it suffices to
show that every closed T-orbit in Xss(D1,w1) is also closed in Xss(D2 ,w2); use,
for example, Proposition 1.2 and Corollary 2.4.

Consider a closed orbit T · x ⊂ Xss(D1,w1). Choose x̂ ∈ q−1
X (X) such that

H · x̂ is closed in X̂. By our previous claim, (H ×T ) · x̂ is closed inW1. By Theo-
rem 3.5 and Corollary 2.4, the orbit cone ω := ωH×T (x̂) satisfies ω ∈CT (X) and
(D1,w1)∈ω◦

1. The assumption then gives (D2 ,w2)∈ω◦
1. Using once more The-

orem 3.5 and Corollary 2.4, we see that (H ×T ) · x̂ is closed inW2. Consequently,
T · x is closed in Xss(D2 ,w2).

As a consequence, we can describe the qp-maximal T-sets of X. By definition,
these are open T-invariant subsets U ⊂ X that admit a good quotient U → U//T

such that U//T is quasiprojective and U does not occur as a T-saturated subset of
some properly larger U ′ ⊂ X admitting a good quotient U ′ → U ′//T with U ′//T
quasiprojective.

Corollary 4.5. Let @0
T (X) ⊂ @T (X) consist of all GIT bags µ0 ∈ @T (X)

such that µ◦
0 is set-theoretically minimal in {µ◦; µ ∈ @T (X)}. Then the sets of

semistable points associated to the µ0 ∈ @0
T (X) are precisely the qp-maximal

T-sets of X.

Proof. By Proposition 1.6, every qp-maximal T-set is the set of semistable points
of a T-linearized Weil divisor on X. Hence, the assertion follows from Theo-
rem 4.4.

As shown by the examples discussed in Section 6, there may exist qp-maximal
open subsets that have a noncomplete quotient even though X is assumed to be
complete. For the subcollection of GIT bags defining projective quotient spaces,
we obtain a simple picture as follows.

Proposition 4.6. For the subcollection of the collection@T (X) of all GIT bags

@
pr
T (X) := {µ∈@T (X); ∀x ∈ X̄, ωH×T (x)◦ ∩ µ◦ �= ∅ ⇒ ωH×T (x)∈CT (X)},

the following statements hold.

(i) A GIT bag µ ∈ @T (X) belongs to @pr
T (X) if and only if the corresponding

set of semistable points has a projective quotient space.
(ii) For any µ ∈ @pr

T (X) we have µ ∈ 0H×T (X̄), and for any two µ1,µ2 ∈
@

pr
T (X) we have µ1 ≤ µ2 ⇔ µ1 " µ2.

(iii) For any two GIT bags µ1 ∈@T (X) and µ2 ∈@pr
T (X), we have µ1 ≤ µ2 ⇒

µ1 ∈@pr
T (X).
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Proof. Consider a GIT bag µ = µ(D,w) and the GIT cone σ := σH×T (D,w). If
µ ∈@pr

T (X) then the definition of GIT bags and Lemma 2.12 yield µ = σ, which
is the first part of assertion (ii). Moreover, Theorem 3.5 yields

q−1
X (X

ss(D,w)) = X̄ss(σ).
SinceXss(D,w)//T equals q−1

X (X
ss(D,w))//(H ×T ), we infer from the equation

just displayed that Xss(D,w)//T is projective. Thus, the “only if” part of asser-
tion (i) is verified.

To see the “if” part of (i), suppose that the quotient spaceXss(D,w)//T is pro-
jective; then q−1

X (X
ss(D,w))//(H×T ) is also projective. Thus, by Lemma 3.2, the

inverse image q−1
X (X

ss(D,w)) equals X̄ss(σ). Consequently, Theorem 3.5 gives

ωH×T (x)∈CT (σ) (⇒ ωH×T (x)∈CT (X)
for all x ∈ X̄. By the definition of a GIT bag, this shows that µ = σ. Applying
the implication once more, we obtain µ ∈ @pr

T (X). This completes the proof of
assertion (i).

In order to conclude the proof of (ii), we must relate the two GIT bags µ1,µ2 ∈
@

pr
T (X). If µ1 ≤ µ2 holds, then obviously we have µ1 ⊂ µ2. Since µ1 and µ2 are

cones of the fan0H×T (X̄), it follows that µ1 " µ2. Conversely, µ1 " µ2 implies
X̄ss(µ1) ⊃ X̄ss(µ2). Since X̄ss(µi) = q−1

X (X
ss(Di,wi)), whereµi = µ(Di,wi),

we infer that µ1 ≤ µ2 from Theorem 4.3.
The last assertion is easy to see. Let µi = µ(Di,wi); then µ1 ≤ µ2 implies

that Xss(D1,w1) ⊃ Xss(D2 ,w2). Since Xss(D2 ,w2)//T is projective and since
the induced map Xss(D2 ,w2)//T → Xss(D1,w1)//T is dominant, it follows that
Xss(D1,w1)//T must also be projective. This shows µ1 ∈@pr

T (X).

Let us indicate how the description of the GIT equivalence for linearized ample
bundle classes given in [10] and [19] fits into the present framework. For this, re-
call from Corollary 3.6 that κ◦X ⊂ KQ is the cone of ample divisor classes on X.

Proposition 4.7. Let (D,w)∈C?T (X) ∩ (K ⊕M) represent a T-linearized di-
visor class on X, and consider the corresponding GIT bag µ(D,w). Then the set
of semistable points Xss(D,w) arises from an ample T-linearized bundle if and
only if µ(D,w)∈@0

T (X) and ;(µ(D,w))◦ ∩ κ◦X �= ∅.
Proof. Suppose first that the set of semistable points Xss(D,w) arise from an
ample T-linearized bundle. ThenXss(D,w)//T is projective and henceXss(D,w)
is qp-maximal. Thus, µ(D,w) ∈ @0

T (X). Moreover, according to Theorem 4.3,
µ(D,w) = µ(D ′,w ′) with some (D ′,w ′) ∈ K ⊕ M satisfying D ′ ∈ κ◦X. This
shows that ;(µ(D,w))◦ ∩ κ◦X �= ∅.

Conversely, suppose µ(D,w) ∈ @0
T (X) and ;(µ(D,w))◦ ∩ κ◦X �= ∅. Then

there exists a (D ′,w ′) ∈µ(D,w)◦ ∩ (K ⊕M) such that D ′ ∈ κ◦X. The definition
of GIT bags gives µ(D ′,w ′)◦ ⊂ µ(D,w)◦. Since µ(D,w) ∈ @0

T (X), we obtain
µ(D ′,w ′)◦ = µ(D,w)◦. This shows that µ(D ′,w ′) = µ(D,w) and hence Theo-
rem 4.3 gives the assertion.
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Propositions 4.6 and 4.7 allow us to rediscover the fan structure inside the T-ample
cone described in [10] and [19]. The T-ample cone is defined as the cone gener-
ated by the T-linearized ample divisor classes having a nonempty set of semistable
points, and it is given by

C+
T (X) = ;−1(κX)

◦ ∩ C?T (X).
Corollary 4.8. The ample GIT classes of the T-action on X are in order-
reversing correspondence to the fan of partially open cones µ∩C+

T (X), where µ
runs through the cones of @0

T (X) with κ◦X ∩;(µ)◦ �= ∅.
Proof. By Propositions 4.7 and 4.6(ii), the partially open cones µ ∩ C+

T (X) of
the corollary are precisely the intersections σ ∩C+

T (X), where σ ∈0H×T (X). In
particular, they form a fan. The rest is a direct consequence of Theorem 4.3 and
Proposition 4.6(ii).

5. The Q-Factorial Case

The setup and notation in this section are the same as in Section 4. We study the
partially ordered collection of qp-maximal T-sets in terms of GIT bags for the case
of a Q-factorial variety X; recall that Q-factoriality means that X is normal and
that, for every Weil divisor on X, some positive multiple is Cartier.

According to Theorem 4.3 and Proposition 4.5, the qp-maximal subsets ofX are
in order-reversing bijection with the GIT bags in @0

T (X) ⊂ @T (X), where µ ∈
@T (X) belongs to@0

T (X) if and only ifµ◦ is set-theoretically minimal among the
relative interiors of all elements of @T (X). The main result of this section is the
following.

Theorem 5.1. Assume that X is Q-factorial, and let µ1,µ2 ∈@0
T (X).

(i) If µ1 ≤ µ2 holds then µ1 " µ2 holds, and we have

star(µ1,µ2) := {µ " µ2; µ1 " µ} ⊂ @0
T (X).

Moreover, µ1 ≤ µ2 implies µ1 ≤ µ ≤ µ2 for any µ∈ star(µ1,µ2).

(ii) If there is a µ0 ∈@0
T (X) with µ0 ≤ µ1,µ2 , then

µ1 ∩ µ2 " µ1,µ2 , µ1 ∩ µ2 ∈@0
T (X), µ0 ≤ µ1 ∩ µ2 ≤ µ1,µ2.

As a direct application of Theorem 5.1, we note the following statement on the
structure of the collection of all qp-maximal T-sets ofX as a partially ordered set.

Corollary 5.2. Assume that X is Q-factorial. Then, for any two qp-maximal
T-sets U1,U2 ⊂ X, the collection of qp-maximal T-sets U ⊂ X with (U1 ∪U2) ⊂
U is either empty or contains a unique minimal element.

Proof. Let U1,U2 arise from GIT bags µ1,µ2 ∈ @0
T (X), and consider the col-

lection of all GIT bags that define sets U ⊂ X of semistable points comprising
U1 ∪ U2:
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	 = {µ0 ∈@0
T (X); µ0 ≤ µ1, µ0 ≤ µ2}.

Suppose that 	 �= ∅ holds. Then Theorem 5.1 yields µ1 ∩ µ2 ∈ 	 and µ0 ≤
µ1 ∩ µ2 for any µ0 ∈	. Hence, the set Xss(µ1 ∩ µ2) is as desired.

The key to the results in the Q-factorial case is the following observation on the
ample cone of the variety X.

Proposition 5.3. The variety X is Q-factorial if and only if the closure κX ⊂
KQ of the ample cone is of full dimension.

Proof. The statement follows from the well-known fact that κX is of full dimension
in the vector subspace KCQ ⊂ KQ generated by the Cartier divisors (see [15]).

For the proof of Theorem 5.1, we need a couple of preparatory observations. The
first one holds also for not necessarily Q-factorial varieties X.

Lemma 5.4. Let µ1,µ2 ∈@0
T (X) be different from each other. Thenµ◦

1 ∩µ◦
2 = ∅.

Proof. Suppose that µ◦
1 ∩ µ◦

2 �= ∅; then there exists a lattice vector (D,w) ∈
µ◦

1 ∩ µ◦
2. For the associated GIT bag, we have µ(D,w)◦ � µ◦

i. This contradicts
µi ∈@0

T (X).

Lemma 5.5. Assume that X is Q-factorial, and consider two orbit cones ω :=
ωH×T (x) and ω0 := ωH×T (x0) of the (H × T )-action on X̄ satisfying ω0 " ω.
Then ω0 ∈CT (X) implies ω ∈CT (X).
Proof. Recall that ω0 ∈CT (X) merely means κ◦X ⊂ ;(ω0)

◦. The statement thus
follows because κX is of full dimension.

Lemma 5.6. Assume thatX is Q-factorial. Let σ ∈0H×T (X̄) and ω0 ∈CT (X),
where σ ∩ ω◦

0 �= ∅. Then there is an ω ∈CT (X) with ω0 " ω and σ ◦ ⊂ ω◦.

Proof. Let σ0 " σ be the face with σ ◦
0 ∩ω◦

0 �= ∅. Then also σ0 is a GIT cone and
thus we have σ0 ⊂ ω0.

By Lemmas 2.10 and 3.4, any x0 ∈ X̄ with ωH×T (x0) = ω0 belongs to X̄ss(σ0)

and has a closed (H ×T )-orbit inside this set. So, fix such a point x0 and consider
the commutative diagram

X̄ss(σ)
⊂ ��

��

X̄ss(σ0)

��
X̄ss(σ)//H × T �� X̄ss(σ0)//H × T .

Because the induced map of quotients is projective and dominant, it is surjective.
Hence there is a point x ∈ X̄ss(σ) lying in the same fibre as x0, and we may even
choose x such that its (H × T )-orbit is closed in X̄ss(σ).
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Consider ω := ωH×T (x). Lemma 3.4 yields σ ◦ ⊂ ω◦. Moreover, by Proposi-
tion 1.2(ii), x0 lies in the closure of the orbit (H ×T ) ·x. Therefore, Corollary 2.4
givesω0 " ω. Lemma 5.5 then implies thatω ∈CT (X) and soω is as desired.

Proof of Theorem 5.1. We first verify the following three claims, and we then put
them together to obtain the statements of the theorem.

Claim 1. Let µ1,µ2 ∈@0
T (X) such that µ1 ⊂ µ2 holds. Then µ1 " µ2.

To verify this claim, let ν1 " µ2 denote the face with µ◦
1 ⊂ ν◦1. Since µ2 is a

union of cones of the fan 0H×T (X̄), it follows that the cones τ1,k ∈ 0H×T (X̄)
with τ ◦1,k ⊂ ν◦1 satisfy

ν◦1 =
⋃
k

τ ◦1,k.

Since also µ1 is a union of some of the cones τ1,k , we know that at least one of
them (say, τ ◦1,0) satisfies τ ◦1,0 ⊂ µ◦

1. We must show that all τ ◦1,k are contained in µ◦
1.

So, suppose that one of them (say, τ ◦1,1) is not. Then there must be an orbit cone
ω0 = ωH×T (x0) with the following properties:

ω0 ∈CT (X), τ ◦1,0 ⊂ ω◦
0, τ ◦1,1 ∩ ω◦

0 = ∅.
Now let σ1,0 ∈ 0H×T (X̄) be a cone such that τ1,0 " σ1,0 and σ ◦

1,0 ⊂ µ◦
2.

According to Lemma 5.6, there exists an orbit cone ω = ωH×T (x) with the fol-
lowing properties:

ω ∈CT (X), ω0 " ω, σ ◦
1,0 ⊂ ω◦.

The last inclusion implies that µ◦
2 ∩ω◦ �= ∅. Since µ2 belongs to@0

T (X), we can
conclude that µ◦

2 ⊂ ω◦; otherwise, µ2 ∩ ω would contain an element µ∈@T (X)
with µ◦ ⊂ µ◦

2 , which would be in contradiction to the definition of @0
T (X).

We have thus obtained µ2 ⊂ ω. Consequently, also the face ν1 " µ2 is con-
tained in ω. Since ν◦1 ∩ ω◦

0 �= ∅, we can conclude that ν◦1 ⊂ ω◦
0. This implies

τ ◦1,1 ⊂ ω◦
0, a contradiction, so Claim 1 is verified.

Claim 2. Let µ1,µ2 ∈ @0
T (X) with µ1 ≤ µ2 , and let µ " µ2 with µ1 " µ.

Then µ∈@0
T (X).

Let us check this claim. Choose any (D,w) ∈ µ◦ and consider the associated
GIT bag µ(D,w). We show that µ(D,w) = µ and µ(D,w)∈@0

T (X).

First, consider any ω2 ∈ CT (X) with µ◦
2 ⊂ ω◦

2. Let ω1 " ω " ω2 denote
the faces with µ◦

1 ⊂ ω◦
1 and µ◦ ⊂ ω◦. Then µ1 ≤ µ2 implies ω1 ∈ CT (X). By

Lemma 5.5, this gives ω ∈ CT (X). Thus, since (D,w) ∈ ω◦ holds, we obtain
µ(D,w) ⊂ ω and hence µ(D,w) ⊂ ω2.

This consideration shows µ(D,w) ⊂ µ2. Because (D,w) ∈ µ(D,w)◦ ∩ µ◦
and µ " µ2 , we even obtain µ(D,w) ⊂ µ.

To proceed, note that there exists a GIT bag ν ∈@0
T (X) such that ν◦ ⊂ µ(D,w)◦.

By Claim 1, the inclusion ν ⊂ µ2 implies ν " µ2. Thus, ν◦ ⊂ µ(D,w)◦ ⊂ µ◦
implies ν = µ and so we have obtained µ∈@0

T (X).
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Claim 3. For any three µ1,µ2 ,µ3 ∈@0
T (X) with µ1 " µ2 " µ3 and µ1 ≤ µ3,

we have µ1 ≤ µ2 ≤ µ3.

In order to verifyµ1 ≤ µ2 , considerω2 ∈CT (X)withµ◦
2 ⊂ ω◦

2. By Lemma 5.6,
there is an ω3 ∈ CT (X) with ω2 " ω3 and µ◦

3 ⊂ ω◦
3. Since µ1 ≤ µ3, the face

ω1 " ω3 with µ◦
1 ⊂ ω◦

1 belongs to CT (X). Moreover, µ1 " µ2 ⊂ ω2 and µ◦
1 ⊂

ω◦
1 imply that ω1 " ω2. This shows µ1 ≤ µ2.

Similarly, to see µ2 ≤ µ3, consider ω3 ∈ CT (X) with µ◦
3 ⊂ ω◦

3. For i = 1, 2,
let ωi " ω3 be the faces with µ◦

i ⊂ ω◦. Note that ω1 " ω2 holds. Now µ1 ≤ µ3

implies ω1 ∈ CT (X), and by Lemma 5.5 this means ω2 ∈ CT (X). We can there-
fore conclude that µ2 ≤ µ3, proving Claim 3.

We now return to the assertions of Theorem 5.1. For (i), note that µ1 ≤ µ2 im-
plies µ1 ⊂ µ2; thus, Claims 1, 2, and 3 yield the desired statements. In (ii) the
case µ1 = µ2 is trivial, so we may assume that µ1 �= µ2. Then Lemma 5.4 gives
µ◦

1 ∩µ◦
2 = ∅. Moreover, µ0 ≤ µi implies µ0 ⊂ µi and thus, by Claim 1, we have

µ0 " µi.
Consider the faces ν1 " µ1 and ν2 " µ2 with (µ1 ∩ µ2)

◦ ⊂ ν◦i ; then µ0 "
ν1, ν2. As a result, Claim 2 yields νi ∈@0

T (X). Since ν◦1 ∩ ν◦2 �= ∅ it follows that
Lemma 5.4 yields ν1 = ν2 , and this in turn implies µ1 ∩ µ2 = ν1. Thus, µ1 ∩ µ2

is a face of µ1 and of µ2 , and µ1 ∩ µ2 ∈@0
T (X). Claim 3 eventually shows that

µ0 ≤ µ1 ∩ µ2 ≤ µi.
We conclude this section with a characterization of the geometric GIT quotients
in terms of their describing GIT bags in the case of a Q-factorial variety X. We
obtain it as a consequence of the following more general statement.

Proposition 5.7. Let (D,w)∈C?T (X)∩ (K ⊕M), and consider the associated
GIT bag µ(D,w). Then the following statements are equivalent.

(i) The morphism Xss(D,w)→ Xss(D,w)//T is a geometric quotient.
(ii) Any ω ∈CT (X) with (D,w)∈ω◦ satisfies dim(ω) = dim(;(ω))+dim(M).

Proof. The quotient Xss(D,w) → Xss(D,w)//T is geometric if and only if all
T-orbits inside Xss(D,w) are of full dimension. The latter holds if and only if,
for all points x ∈ q−1

X (X
ss(D,w)) with a closed (H × T )-orbit, the quotient of

isotropy groups (H × T )x/Hx is finite. In terms of orbit cones, this means that

dim(ωH×T (x)) = dim(ωH (x))+ dim(T ).

According toTheorem 3.5, the points with a closed (H×T )-orbit inq−1
X (X

ss(D,w))
are precisely those with an orbit cone ω ∈ CT (X) satisfying (D,w) ∈ ω◦. This
gives the assertion.

As an immediate consequence of Proposition 5.3, this characterization of geomet-
ric quotients breaks down in the Q-factorial case to the following.

Corollary 5.8. Let X be Q-factorial and (D,w) ∈C?T (X) ∩ (K ⊕M). Then
the quotient Xss(D,w)→ Xss(D,w)//T is geometric if and only if the GIT bag
µ(D,w) is of full dimension.
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6. Examples

In this section we present a few examples. We first discuss a quite simple exam-
ple, a K∗-action on a Hirzebruch surface, showing that the intersection of two GIT
bags need not be a GIT bag. Second, we treat an “exotic orbit space” found by
Białynicki-Birula and Świȩcicka [6, Ex. 3]; this is a projective geometric quo-
tient that does not arise from an ample bundle. Finally, we present a noncomplete
qp-maximal quotient of a smooth projective variety.

All our examples are subtorus actions on toric varieties X. Because this setup
might be of interest for further examples, we briefly explain the general procedure
required to obtain the necessary data for studying the GIT equivalence. A toric va-
riety X arises from a fan B in the lattice NX of 1-parameter subgroups of the big
torus TX ⊂ X (see [12]). As before, we suppose that X is projective and that its
divisor class group Cl(X) is free.

The group Cl(X) is generated by the classes of the invariant prime divisors
D1, . . . ,Dr on X, which in turn correspond to the rays (i.e., the 1-dimensional
cones) C1, . . . , Cr of B. By [9], the total coordinate ring R(X) is a polynomial
ring in r indeterminates, and thus we have X̄ = Kr for the corresponding spectrum.

In terms of fans, the subset X̂ ⊂ X̄ is obtained as follows: Let v1, . . . , vr ∈NX
denote the primitive lattice vectors generating the rays ofB, set F := Zr, and con-
sider the linear map P : F → NX that sends the ith canonical base vector ei ∈ F
to vi ∈NX. The fan of X̂ then consists of faces of the positive orthant δ ⊂ FQ:

BX̂ = {σ̂ " δ; P(σ̂) ⊂ σ for some σ ∈BX}.
Moreover, the torusH = Spec(K[Cl(X)]) acting on X̄ is the subtorus of (K∗)r

having L := ker(P ) as its lattice of 1-parameter subgroups. The canonical map
qX : X̂→ X is the toric morphism corresponding to the map P : F → NX of the
fans BX̂ and BX. Observe that the map P : F → NX determines a pair of exact
sequences, which are mutually dual to each other:

0 �� L �� F
P �� NX �� 0,

0 K

 E
Q



 MX

 0.



Note that the subtorus H ⊂ (K∗)r is as well determined by its weight map
Q : E → K. The weight cone of the H -action is given by )H(X̄) = Q(γ ),
where γ ⊂ EQ is the positive orthant. The fan 0H(X̄) is the Gelfan–Kapranov–
Zelevinsky decomposition of the cone Q(γ ), which means that it is the coarsest
common refinement of all the imagesQ(γ0) for γ0 " γ (cf. [18]).

The GIT cone κX ∈0H(X̄) corresponding to X̂ ⊂ X̄ can be calculated as fol-
lows (see [2, Thm. 10.2]). Consider the maximal cones δ0 " δ of the fanBX̂, and
determine the corresponding faces γ0 = δ⊥0 ∩ γ of γ. Then κX is the intersection
over all the images Q(γ0). Recall from Corollary 3.6 that the relative interior of
κX is the cone of ample divisors of X.
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Now suppose that T ⊂ TX is a subtorus of the big torus of X. Then T ⊂ TX
corresponds to a sublattice NT ⊂ NX. The lifting of the T-action to the affine
multicone X̄ corresponds to an embedding NX → F with NX ∩L = 0. By fixing
a lifting of the T-action, we have thus decorated the exact sequence consisting of
the map P : F → NX in the following sense:

0 �� L �� F
P �� NX �� 0

0 �� L �� L×NT
P

��

��

NT ��

��

0.

In order to determine the (H × T )-orbit cones and the fan 0H×T (X̄), we must
dualize this commutative diagram. The result is:

0 K

 E
Q



Q̂

��

MX



��

0



0 K

 K ⊕MT


 MT



 0.



Then the orbit cones of the (H × T )-action on X̄ are precisely the images Q̂(γ0),
where γ0 " γ ⊂ EQ being the positive orthant.

Moreover, the fan0H×T (X̄) is the coarsest common refinement of all the orbit
cones Q̂(γ0). Finally, the collections CT (X) and CT (σ) for σ ∈ 0H×T (X̄) can
now be directly computed according to their definitions, and thus it becomes pos-
sible to determine the collection of GIT bags.

For the computation steps just outlined, it is most convenient to use suitable
computer programs. We provide a (free) Maple package, TorDiv, that performs
all the needed computations (see [4]). Therefore, in the following examples, we
omit the computations and show only their results.

Example 6.1 (A K∗-action on a Hirzebruch surface). As a toric variety, the first
Hirzebruch surface X arises from the complete fan BX in Z2 with the four rays

C1 := Q≥0[1, 0], C2 := Q≥0[0,1], C3 := Q≥0[−1,1], C4 := Q≥0[0,−1].

We have X̄ = K4, and the action of the torus H = Spec(K[K]) is given by the
weight matrix

Q =
[

1 0 1 1
0 1 0 1

]
.

Let T := K∗ act on X̄ with weights 1, 0, −1, and 0. Then the weight matrix of the
(H × T )-action on X̄ is given by

Q̂ =

 1 0 1 1

0 1 0 1
1 0 −1 0


.
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The fans describing the corresponding GIT systems are easy to determine. Let
wi ∈Z2 denote the ith column ofQ. Then the maximal cones of 0H(X̄) are

κ1 := cone(w1,w4), κ2 := cone(w2 ,w4).

Note that the first cone equals κX. Similarly, denoting by ŵi the ith column of Q̂,
the maximal cones of 0H×T (X̄) are

σ1 := cone(ŵ2 , ŵ3, ŵ4), σ2 := cone(ŵ1, ŵ2 , ŵ4), σ3 := cone(ŵ1, ŵ3, ŵ4).

All three of these cones are GIT bags, and they even belong to @0
T (X). Observe

that σ1 and σ2 have a 2-dimensional face in common, but there is no element in
@0
T (X) that is smaller than σ1 and σ2.

Example 6.2 (Białynicki-Birula and Świȩcicka). Consider the smooth projec-
tive variety X obtained from P2 × P1 by blowing up first the line [z, 0,w] × [0,1]
and then the proper transform of the line [z,w, 0] × [0,1]. These blowups are com-
patible with the action of T := K∗ × K∗ on P2 × P1 given by

(t1, t2) · ([x0, x1, x2 ], [y0, y1]) := ([x0, t1x1, t1x2 ], [y0, t2y1]).

Hence there is an induced T-action on X, which makes the contraction map equi-
variant. We show that there exist precisely four different open sets admitting a
geometric quotient with a projective orbit space, but only three of them are sets of
semistable points of ample line bundles.

Let us verify these statements. As announced, we view X as a toric variety. It
arises from the fan BX in NX := Z3 with the seven rays

v1 := (1, 0, 0), v2 := (0,1, 0), v3 := (−1,−1, 0), v4 := (0, 0,1),

v5 := (0, 0,−1), v6 := (1, 0,1), and v7 := (0,1,1)

and with ten maximal cones (we denote by Cijk the cone generated by vi, vj , vk):

C235, C347, C237, C135, C346, C136, C125, C467, C267, C126.

The spectrum of the total coordinate ring R(X) is X̄ = K7, and the weight map
for the action of H = Spec(K[K]) on X̄ is given (w.r.t. the canonical bases) by

Q =




1 1 1 0 0 0 0
0 0 0 1 1 0 0

−1 0 0 0 1 1 0
0 −1 0 0 1 0 1


.

By our preceding remarks, the closure κX ⊂ KQ = Cl(X) of the ample cone is
given by

κX = cone((1, 0, 0, 0), (2,1, 0, 0), (0,1,1,1), (1,1, 0,1)).

The sublattice NT ⊂ NX describing the T-action on X is then generated by the
vectors (1,1, 0) and (0, 0,1). Hence, we may work with
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Q̂ =




1 1 1 0 0 0 0
0 0 0 1 1 0 0

−1 0 0 0 1 1 0
0 −1 0 0 1 0 1
1 1 0 0 0 0 0
0 0 0 1 0 0 0



.

Now, one has to compute the fan 0H×T (X̄) associated to the (H × T )-action
on X̄. This fan has the vectors

w1 := (1, 0, 0, 0, 0, 0), w2 := (0,1, 0, 0, 0,1), w3 := (0,1,1,1, 0, 0, 0),

w4 := (1, 0,−1, 0,1, 0), w5 := (1, 0, 0,−1,1, 0), w6 := (1, 0, 0, 0,1, 0),

w7 := (0, 0,1, 0, 0, 0), and w8 := (0, 0, 0,1, 0, 0)

as the primitive generators of its rays, and it has exactly four full-dimensional
cones:

cone(w1,w2 ,w3,w4,w5,w6), cone(w1,w2 ,w3,w7,w5,w6),

cone(w1,w2 ,w3,w4,w8,w6), cone(w1,w2 ,w3,w7,w8,w6).

It turns out that these cones are precisely the GIT bags of full dimension. Propo-
sition 5.7 thus tells us that there are exactly four different geometric quotients aris-
ing from linearized bundles. Moreover, by Proposition 4.6, the associated quotient
spaces are projective. Finally, Proposition 4.7 yields that the second of the listed
GIT bags describes a quotient that does not arise from an ample line bundle.

Example 6.3. We present a smooth projective variety X of dimension 3 and a
K∗-action on X that has qp-maximal sets with noncomplete quotient spaces.

Our X is the toric variety arising from the fan BX in NX := Z3, which has the
vectors

v1 := (1, 0, 0), v2 := (0,1, 0), v3 := (−1, 0,1),

v4 := (0,−1,1), and v5 := (0, 0,−1)

as the primitive generators of its rays as well as the following list of maximal
cones:

C1 := cone(v1, v2 , v3), C2 := cone(v1, v3, v4), C3 := cone(v1, v2 , v5),

C4 := cone(v2 , v3, v5), C5 := cone(v3, v4, v5), C6 := cone(v1, v4, v5).

We have X̄ = K5, and the action of the torus H = Spec(K[K]) on X̄ is given
by the weight map

Q :=
[−1 1 −1 1 0

0 1 0 1 1

]
.

Moreover, the closure κX ⊂ KQ = ClQ(X) of the ample cone of X is generated
by the vectors (1,1) and (0,1).

Now consider K∗-action on X corresponding to the sublattice NT of NX gener-
ated by (2,−4,1). A lifting of this action to X̄ is given by the weight matrix
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Q̂ :=

−1 1 −1 1 0

0 1 0 1 1
3 −4 1 0 0


.

The fan 0H×T (X̄) lives in the 3-dimensional lattice K ⊕ MT , and the cone σ
generated by (−1,1, 2) is an element of 0H×T (X̄). It turns out that σ is a GIT
bag. Hence, by Corollary 4.5, the associated set of semistable points X(µ) is
qp-maximal.

However, the criterion for projectivity given in Proposition 4.6 is not fulfilled:
the orbit cone

ω := cone((−1, 0, 3), (−1, 0,1), (0,1, 0))

contains σ ◦ in its relative interior, but the image of ω◦ in K does not intersect κ◦X.
Therefore, X(µ)//T is not projective.
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