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Coincident Root Loci of Binary Forms

L. M. Fehér, A. Némethi , & R. Rimányi

1. Introduction

Coincident root loci are subvarieties of S dC2—the space of binary forms of de-
gree d—labeled by partitions of d. Given a partition λ, let Xλ be the set of forms
with root multiplicity corresponding to λ. There is a natural action of GL2(C) on
S dC2, and the coincident root loci are invariant under this action. We calculate
their equivariant Poincaré duals, generalizing formulas of Hilbert and Kirwan. In
the second part we apply these results to present the cohomology ring of the cor-
responding moduli spaces (in the GIT sense) by geometrically defined relations.

One of the main goals of geometric invariant theory is to calculate the cohomol-
ogy ring of a geometric quotient. For the case when all semistable point are stable,
several techniques have been developed. But even for very simple representations
this condition is not satisfied. In this paper we study the action of GL(2) on the
space of binary forms of degree d. In the case of d odd the methods of [JK; K1;
M] can be applied, but none of these methods computes the cohomology ring of
the moduli space in the case of d even. We show how equivariant Poincaré-dual
calculations lead to relations for the cohomology ring in both the odd and the even
case.

Closely related rings have been computed previously. The computation for
H ∗
G(X

ss ) is well known (since Kirwan’s thesis in the case of Betti numbers), and
the existing procedure is independent of d being even or odd. In the d even case,
rational intersection cohomology of the moduli space is also known [K2], a result
we also recover in Remark 4.11.

Our Poincaré-dual (a.k.a. Thom polynomial) calculations are also interesting
in their own right because they generalize formulas of Hilbert and Kirwan on co-
incident root loci. These calculations not only lead to explicit relations for these
cohomology rings but also identify them with the equivariant Poincaré-duals of
the simplest unstable coincident root loci.

Consider the dth symmetric power S dC2 of the standard representation of
GL2(C)—that is, the action of G on the space Vd of degree-d homogeneous poly-
nomials in two variables x, y. For any partition λ = (λ1, λ2 , . . . , λn) of d (i.e.,∑

j λj = d) we define
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Xλ =
{
B(x, y)∈Vd

∣∣∣ B =
n∏

j=1

L
λj
j for some linear forms Lj

}
,

which is a subvariety invariant under the group action; it is called the coincident
root loci associated with λ and is a cone in Vd. Let PXλ be the projectivization of
Xλ in the projective space PVd. It is more convenient to use a different notation
for partitions: λ = (1e12e2 . . . r er ) will mean the partition consisting of e1 copies
of 1, e2 copies of 2, and so forth. Then

∑
iei = d and

∑
ei = n, and the complex

dimension of PXλ is exactly n.
The study of coincident root loci probably started with Cayley. For example,

the very first question of this type seeks the characterization of polynomials B
with a double root. The answer is the vanishing of the discriminant, which pro-
vides in this way an equation for X(1d−2 2). For higher-codimensional coincident
root loci, finding the defining equations is very complicated (see [C] for recent
results). However, important geometric information can be obtained about these
subvarieties. For instance, the starting point of this paper is the Hilbert formula
that calculates the degree of PXλ ⊂ PVd :

deg(PXλ) = n!∏
i(ei!)

∏
i

iei.

We can interpret this formula as follows: For a generic family of polynomials pa-
rameterized by a projective space of dimension equal to the codimension of PXλ,
the number of polynomials in the family with root multiplicity λ is deg(PXλ).

By generalizing this approach we arrive at the theory of degeneracy loci. Sup-
pose we have a vector bundleE → M with fiber S dC2 as well as a generic section
s : M → E. Let s−1(Xλ) be the set of points in M where the value of s is in Xλ.

Its Poincaré dual [s−1(Xλ)] ∈H ∗(M) measures the “size” of s−1(Xλ). It turns out
that, for any S dC2-bundle, [s−1(Xλ)] can be deduced from the corresponding co-
homology class of the universal bundle associated with the GL2(C)-representation
S dC2. This universal invariant is called the GL2(C)-equivariant Poincaré dual, or
Thom polynomial, ofXλ in S dC2. In Section 3 we determine all these polynomials.

Calculating equivariant Poincaré duals for invariant subvarieties of representa-
tions has a long history. We can interpret many results of the nineteenth-century
algebraic geometers in these terms. Beginning in the 1970s the main method, ini-
tiated by Porteous [P], was a type of resolution of the subvariety. The method
requires a deep understanding of the geometry of the resolution and can be car-
ried out only in special cases; most examples can be found in [Fu]. The first and
third author designed a different method (the method of restriction equations; see
[FR2]) based on ideas that came from calculating Thom polynomials in singular-
ity theory [R]. However, the method of restriction equations works well mainly if
the representation has finitely many orbits, which is usually not the case (e.g., for
S dC2 if d > 3).

In this paper we return to the technique of resolution but in a very different way.
The main novelty is that our new approach requires only knowledge of some basic
cohomological data. Consequently, the method is more flexible. We illustrate this
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method here by the coincident root loci, but the range of applications is much
wider.

Parallel to our work, Kőműves [Kő] also provided a presentation of these
Poincaré duals in a completely different form. He worked more in the spirit of
the method of restriction equations, studying incidences of the coincident root loci
with the orbitsX(i,d−i). In a recent work, Kazarian [Ka] used multisingularity loci
polynomials to compute the Thom polynomials of coincident root loci.

In Section 4 we study the cohomology ring of the moduli space of the represen-
tation S dC2 (in the GIT sense). Following the paper of Atiyah and Bott [AB1], a
whole theory for calculating cohomology rings of the moduli space of represen-
tations was built up by F. Kirwan; also, methods of a more algebraic nature were
successfully applied by Brion [Br] and Martin [M]. However, the application of
the general theorems to specific examples is often not easy. Our approach results
in explicit presentations of the rational cohomology rings H ∗

G(X
ss ), H ∗(Xss//G),

and H ∗
G(X

s ) ∼= H ∗(Xs//G) in terms of generators and relations (if d is odd then
all these rings coincide, but for the even case they are different). We wish to em-
phasize that a main advantage of our presentation of the cohomology rings is that
we attribute to the set of relations deep geometric significance: they are the uni-
versal Thom polynomials of some distinguished spaces Xλ.

Acknowledgments. The authors are grateful to A. Szenes for helpful discus-
sions on localization techniques and on moduli spaces. The authors also thank the
referee for suggesting improvements and in particular Remark 4.11.

2. Review of Affine and Projective Thom Polynomials

Let the group G act on the complex vector space V, and let η be an invariant va-
riety in V that supports a fundamental class (for more details see [FR2]). Then
define the (affine) Thom polynomial of η as the Poincaré dual of the fundamental
homology class of η in equivariant cohomology:

Tpη = Poincaré dual of [η] ∈H ∗
G(V, Z).

The vector space V is contractible; hence the ring H ∗
G(V, Z) is naturally isomor-

phic to H ∗(BG, Z), the ring of G-characteristic classes. The degree of Tpη is the
real codimension 2c of η in V, so Tpη ∈H 2c(BG, Z). The direct geometric mean-
ing of Tpη is as follows.

Consider a fiber bundle ξ with fiber V and structure group G over a manifold
M. Because of its invariance, the set η can be defined in each fiber; let the union of
these be η(ξ). Then consider those points where a generic section s of ξ hits η(ξ),
that is, s−1(η(ξ)) ⊂ M. By Poincaré duality this set defines a cohomology class
in M. Standard arguments show that this class equals Tpη(ξ) := f ∗

ξ Tpη, where
fξ : M → BG is a classifying map of ξ.

We will also use the projective version of Thom polynomials (see [FNR]) as
follows. Assume that G acts on V in such a way that the scalars are in the image
of G → GL(V ). Then the orbits of this action (different from {0}) are in bijection



378 L. M. Fehér, A. Némethi , & R. Rimányi

with the orbits of the induced action of G on PV. Also, the corresponding orbits η
and Pη have the same codimension. The equivariant Poincaré dual of Pη will be
called the projective Thom polynomial of η:

PTpη = Poincaré dual of [Pη] ∈H ∗
G(PV, Z)

= H ∗(BG, Z)[x]/(Q(x)) (deg(x) = 2);
here Q(x) is the product of all the (x + αj ), where αj ∈H 2(BG) are the weights
of the representation of G on V [BT]. The projective Thom polynomial can be
written as PTpη = pc + pc−1x + · · · + p0x

c, where pi ∈ H 2i(BG). By [FNR,
Sec. 6], pc = Tpη and p0 is the degree of the variety Pη. The projective Thom
polynomial seemingly contains more information than the “affine” one, but this is
not the case; by [FNR, Thm. 6.1], PTpη can be obtained from Tpη via a simple
substitution (although this fact will not be used in the present paper). In particu-
lar, the degree p0 of Pη itself can be obtained from Tpη by a substitution. For this
substitution in our specific case, see Remark 3.9(2).

3. Coincident Root Loci

Consider the dth symmetric power Vd = S dC2 of the standard representation of
G = GL2(C) as well as the invariant subvarietyXλ associated with a partition λ =
(λ1, λ2 , . . . , λn) of d (cf. the Introduction). In this section we compute its Thom
polynomial Tpλ∈H ∗(BG, Z).

Points in the projectivization PVd of Vd can be identified with d-tuples of points
in P1 = {(x : y)} (counted with multiplicities). The projectivization PXλ is
then the closure of the set of d-tuples having n distinct points with multiplicities
λ1, λ2 , . . . , λn. The variety PXλ is called the coincident root locus.

Consider also the other notation λ = (1e12e2 . . . r er )with
∑

iei = d and
∑

ei =
n as described in the Introduction. Then PXλ is the image of the map

φ : PVe1 × PVe2 × · · · × PVer → PVd

defined (via point-tuples of P1) by (D1,D2 , . . . ,Dr) �→ ∑
iDi. It is readily seen

that φ is birational onto its image PXλ (i.e., φ is a resolution of PXλ). In particu-
lar, dim(PXλ) = n and Tpλ is of degree d − n (cf. Section 2).

The map φ is equivariant under the action of G on the two spaces, so it makes
sense to talk about the maps φ∗ (induced by φ) and φ! (the push-forward map of
φ) in G-equivariant cohomology. The equivariant cohomology rings are as fol-
lows (cf. e.g. [BT, p. 270]):

H ∗
G

(∏
i PVei , Z

) = R[x1, . . . , xr ]/(Qe1(x1), . . . ,Qer (xr))

and
H ∗
G(PVd , Z) = R[x]/(Qd(x)),

respectively. Here

R = H ∗(BG, Z) = Z[c1, c2 ] = Z[u, v]Z2 ,

where Z2 permutes the roots u and v (hence c1 = u + v and c2 = uv); the poly-
nomial Qk (k ≥ 1) is defined by
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Qk(y) =
∏

α is a weight of S kC2

(y + α) =
k∏

j=0

(y + ju+ (k − j)v).

The map φ∗ is a ring homomorphism; it leaves elements of R invariant and maps
x to

φ∗(x) =
r∑
i=1

ixi .

The foregoing rings can be described also as finite-dimensional modules overR
spanned by

∏
i x

ki
i (0 ≤ ki ≤ ei) and xk (0 ≤ k ≤ d), respectively. We say that

a representative of an element [f ] (in any of these rings) is reduced if it is writ-
ten as an R-linear combination of these monomials; we use the notation [f ]red. In
this language, the value of the integration maps (along the fibers)∫

∏
PVei

: H ∗
G

(∏
i PVei , Z

) → R and
∫

PVd

: H ∗
G(PVd , Z) → R,

respectively, are the coefficients of the top-degree monomials in the corresponding
reduced forms: the coefficient of xe := ∏

i x
ei
i in the first case and the coefficient

of xd in the second case.
Set

q(x) := (Qd(x)− Cd+1)/x = xd + C1x
d−1 + · · · + Cd ,

where Qd(x) = ∑d+1
j=0 Cd+1−j(c1, c2)x

j and C0 = 1.

Theorem 3.1. Tpλ equals
∫∏

PVei
φ∗(q).

Proof. First we prove that Tpλ = ∫
PVd

(q ·PTpλ). Indeed, from the general theory
of projective and affine Thom polynomials (cf. Section 2) we know that PTpλ =
pd−n + pd−n−1x + · · · + p0x

d−n, where pj ∈ Z[c1, c2 ] and pd−n = Tpλ. When
we multiply xjpd−n−j (1 ≤ j ≤ d−n) by q = (Qd −Cd+1)/x and reduce it mod-
ulo Qd(x), the coefficient of xd will be 0. So the only contribution comes from
qpd−n, which is the coefficient pd−n of pd−nx

d.

Now, using the definition of PTpλ and the fact that φ is birational, we have
Tpλ = ∫

PVd
(q · φ!(1)); this equals

∫∏
PVei

φ∗(q), which we wanted to prove.

Theorem 3.1 gives the following computational recipe: Tpλ is the top coefficient
(i.e., the coefficient of xe) of φ∗(q)red. Notice that any representative [f ]red

is automatically calculated by computer algebra packages (e.g. [GS]), yielding
an algorithmic solution to finding the Thom polynomials (see e.g. 〈www.unc.
edu/∼rimanyi/progs/rootloci.m2〉). We can, however, give explicit formulas as
well.

Formulas for Thom Polynomials

Lemma 3.2. Set f ∈R[y] with class [f ] modulo Qe(y). Then the top coefficient
of the reduced representative [f ]red is∫

PVe

[f ] = 1

(v − u)e

e∑
s=0

(−1)sf(−(e − s)u− sv)

s! (e − s)!
. (1)
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Proof. This is a simple application of the Atiyah–Bott integration formula [AB2,
p. 9], but we prefer to give a direct proof as follows. The formula is linear in f ,
so it is enough to verify (1) for any f(y) = yj (j ≥ 0). In this case we need
Ae, where yj ≡ Aey

e + Ae−1y
e−1 + · · · + A0 modulo the ideal (Qe(y)). If we

consider this congruence for y = −eu, −(e − 1)u − v, . . . , −ev, the result is a
system of equations for Ae, . . . ,A0 (since Qe(y) vanishes at these points). The
matrix of this system is a Vandermonde matrix, so by Cramer’s rule we obtain the
formula.

Corollary 3.3 (The “naive” formula). Let
∑

s1,...,sr
denote the sum over 0 ≤

si ≤ ei for each 1 ≤ i ≤ r. Then

Tpλ = 1

(v − u)n

d∑
j=n

∑
j1+···+jr=j

Cd−j

(
j

j1, . . . , jr

)

×
∑

s1,...,sr

r∏
i=1

(−1)si(−i)ji((ei − si)u+ siv)
ji

si! (ei − si)!
.

Proof. Write
∑d

j=n Cd−j

(∑
ixi

)j
as a linear combination of monomials of type∏r

i=1 x
ji
i . The polynomial Qei(xi) contains only the variable xi. Hence, to find

the top coefficient of the remainder of
∏

i x
ji
i we can simply multiply the top co-

efficient of the remainders of xjii modulo Qei(xi). The formula then follows from
Lemma 3.2 applied to each xjii .

One can derive a more interesting formula. First observe that xq + Cd+1 = Qd

and so
(∑

ixi
)
φ∗(q) ≡ −Cd+1 modulo the ideal I ⊂ R[x1, . . . , xr ] generated by

all Qei(xi) (1 ≤ i ≤ r). We consider the following identities regarding 1/
∑

i ixi .

Let t be a free variable. Then

1

−t + ∑
i ixi

= 1

−t
∑
j≥0

(∑
i ixi

t

)j

= 1

−t
∑
j≥0

∑
j1+···+jr=j

(
j

j1, . . . , jr

) ∏
i

(
ixi

t

)ji

.

By Lemma 3.2, the top coefficient of the last expression is

1

−t
∑
j≥0

∑
j1+···+jr=j

(
j

j1, . . . , jr

)

×
∏
i

ei∑
si=0

(−1)si

(v − u)eisi! (ei − si)!
((ei − si)u+ siv)

ji

(−i
t

)ji

= 1

(−t)(v − u)n

∑
s1,...,sr

(−1)
∑

i si∏
i si! (ei − si)!

· 1

1 + ∑
i i((ei − si)u+ siv)/t

= 1

(v − u)n

∑
s1,...,sr

(−1)
∑

i si∏
i si! (ei − si)!

· 1

−t − du+ (∑
i isi

)
(u− v)

.
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Let A(t) be this last expression. The foregoing identities show the following con-
gruence (valid for generic t):(

−t +
∑
i

ixi

)
(A(t)xe + lower-order terms) ≡ 1 (mod I ). (2)

Evidently, this is true for t = 0 as well. On the other hand, notice that there
is a unique reduced Y ∈ R[x1, . . . , xr ] satisfying

(∑
ixi

)
Y ≡ −Cd+1 (mod I ).

Indeed, if both Y and Y ′ satisfy this equivalence, then −Cd+1Y
′ ≡ Y

(∑
ixi

)
Y ′ ≡

−Cd+1Y ; hence Y = Y ′. Since
(∑

ixi
)
φ∗(q) ≡ −Cd+1, from (2) (with t = 0) we

get that the top coefficient of φ∗(q)red is −Cd+1A(0). Hence we have proved the
following statement.

Theorem 3.4. With the notationCd+1 := Cd+1(S
dC2) = ∏d

j=0(ju+ (d−j)v),
one has

Tpλ = Cd+1

(v − u)n
·

∑
s1,...,sr

(−1)
∑

i si∏
i si! (ei − si)!

· 1

du− (∑
i isi

)
(u− v)

.

This can also be considered as a higher-order divided difference formula (cf. Ex-
ample 3.7).

Example 3.5. If λ = iei and hence d = iei, then

Tpλ = iei ·
∏

0≤j≤d; i �j
(ju+ (d − j)v).

This example can be deduced from Theorem 3.4 (cf. Remark 3.6), but one also
can argue as follows. Since ixiφ

∗(q) + Cd+1 ≡ 0 (mod Qei(xi)), clearly
ixiφ

∗(q)red + Cd+1 ≡ 0 as well. Since ixiφ
∗(q)red + Cd+1 and Qei(xi) both

have degree ei + 1, it follows that ixiφ∗(q)red + Cd+1 = C · Qei(xi) for some
C ∈R. Comparing the coefficients of xei+1

i and x0
i , we obtain

iTpλ = Cd+1(S
dC2)/Cei+1(S

eiC2).

Remark 3.6. Lemma 3.2 has the following consequence. For some C ∈ R and
g ∈R[y], we denote by [C/g]red (or by

∫
PVe

[C/g]) that reduced element satisfy-
ing [C/g]red · g ≡ C (mod Qe(y)) (if it exists). Then also∫

PVe

[C/g] = 1

(v − u)e

e∑
s=0

(−1)s

s! (e − s)!
· C

g(−(e − s)u− sv)
. (3)

The proof is similar to that for Theorem 3.4, which is actually a multivariable ver-
sion of (3) (applied to −Cd+1/

∑
ixi).

Let us consider again λ = iei. Theorem 3.4 and (3) give that

Tpλ =
∫

PVei

[−Cd+1(S
d)/ixi].

But xi(x
ei
i + · · · ) + Cei+1(S

ei ) = Qei and so
∫

PVei
[−Cei+1(S

ei )/xi] = 1. In par-

ticular, Tpλ = Cd+1(S
d)/iCei+1(S

ei ), as verified in Example 3.5.
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Example 3.7. Assume that λ = ieij ej (i �= j). Consider the expression given
by Theorem 3.4 for this λ, and apply to variable xi the identity (3). Clearly
du− (isi + jsj )(u− v) = g(−eiu+ si(u− v)), where g(xi) := a− ixi with a :=
jeju− jsj(u− v). Therefore,

Tpλ = Cd+1(S
d)

(v − u)ej

ej∑
sj=0

(−1)sj

sj! (ej − sj )!
·
∫

PVei

[1/g(xi)].

Since Qei(xi)−Qei(a/i) = (xi − a/i)(x
ei
i + · · · ), it follows that∫

PVei

[iQei(a/i)/g(xi)] = 1.

Hence

Tpλ = Cd+1(S
d)

(v − u)ej

ej∑
sj=0

(−1)sj

sj! (ej − sj )!
· 1

i ·Qei((jeju− jsj(u− v))/i)
.

For example, assume that λ = ieij (i.e., ej = 1). Then sj = 0 or 1, so

Tpλ = Cd+1(S
d)

i(v − u)
·
(

1

Qei(ju/i)
− 1

Qei(jv/i)

)
.

It is convenient to express this in the language of divided difference: If P(u, v)
is a polynomial in two variables (u, v), we shall denote by ∂(P ) the polynomial
(P(u, v)− P(v, u))/(u− v). Then

Tp(ieij) = 1

i
· ∂

(
Cd+1(S

d)

Qei(jv/i)

)
= iei · ∂

(∏
((d − k)v + ku)

)
;

here the product is over k with 0 ≤ k ≤ d, but k �= is with 0 ≤ s ≤ ei . In
particular,

Tp(1e1j) = ∂

( j−1∏
l=0

(lv + (e1 + j − l )u)

)
for j ≥ 2, (4)

which is equivalent with Kirwan’s formula [K4, p. 902].

Example 3.8. Assume that d = 2h is even, h > 2, and λ = (1h−j, j,h) for some
1 < j < h. By computation and an argument similar to that used in Example 3.7,

Tpλ = Cd+1(S
d)

(u− v)2
·
(

1

Qh−j(hu+ ju)
− 1

Qh−j(hu+ jv)

− 1

Qh−j(hv + ju)
+ 1

Qh−j(hv + jv)

)

= ∂

[
Cd+1(S

d)

u− v
·
(

1

Qh−j(hv + jv)
− 1

Qh−j(hv + ju)

)]

= ∂

[
Dj ·

h−1∏
l=0

(lv + (d − l )u)

]
,
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where

Dj := 1

u− v
·
[ h∏
l=h−j+1

(lv + (d − l )u)−
j−1∏
l=0

(lv + (d − l )u)

]
.

For example, if j = 2 then

Tpλ = h(h− 1) · ∂
[
(u+ 3v)

h−1∏
l=0

(lv + (d − l )u)

]
.

Remarks 3.9. (1) The Thom polynomials are connected by many interesting
polynomial relations. For instance, the next section presents two situations when
the ideal generated by natural families of Thom polynomials is generated only by
two of them. Some of these relations can be verified easily. Assume for example
that d = 2h as in Example 3.8 and consider the partitions λ′

0 = (1h−2, 2,h), λ0 =
(1h,h), λ1 = (1h−1,h + 1), and λ2 = (1h−2,h + 2). Then (4) and Example 3.8
together imply that Tpλ1 = hc1 · Tpλ0 and

(h− 1) · Tpλ2 = (h− 1)(h− 2)c1 · Tpλ1 + c1Tpλ′
0
.

(2) Using [FNR], one can determine deg(PXλ) by the substitution u = v =
1/d in Tpλ∈ Z[u, v]. The interested reader is invited to verify the compatibility of
Hilbert’s result (cf. the Introduction) with this section.

(3) In the sequel we will often use the following divided difference formula:
For any polynomial A∈ Q[u, v] write A∗(u, v) := A(v, u); then

∂(AB) = B∗ · ∂(A)+ A · ∂(B).

4. Thom Polynomial Description of the Cohomology Ring
of the Moduli Space

In this section we apply the coincident root loci formulas in the study of the coho-
mology ring of the moduli space of the representation S dC2 (in the GIT sense). We
calculate the rational cohomology rings H ∗

G(X
ss ), H ∗(Xss//G), and H ∗

G(X
s ) ∼=

H ∗(Xs//G) in terms of generators and relations. If d is odd then all these rings
coincide, but for the even case they are different.

There is an extensive literature on these cohomology rings, both from the com-
binatorial algebraic perspective (see e.g. [Br; M]) and from geometric point of
view (the Atiyah–Bott–Kirwan theory [K1]). Our approach (in the d odd case) is
closest to that of Kirwan. The advantages of our approach are that (a) we treat the
odd and even cases in a uniform language and (b) we provide for these cohomol-
ogy rings a transparent structure, obtaining explicit presentations of them in terms
of generators and relations with clear geometric meanings.

Let us sketch our approach in the odd case first (a more detailed presentation
will follow). In this case the Kirwan stratification of S dC2 is G-perfect because
the normal (equivariant) Euler classes of the strata are not 0-divisors, and this im-
plies that the spectral sequence of the corresponding filtration degenerates. It is
not difficult to calculate all but the 0th column of the E1-table, so by subtraction
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we can calculate the ranks of the 0th column: the Betti numbers of H ∗
G(X

ss ). Also
by G-perfectness, the natural map

κ : H ∗
G(S

dC2) ∼= Q[c1, c2 ] → H ∗
G(X

ss )

is surjective and so we need to find relations in terms of c1 and c2; that is, we
must find generators of Ker(κ). If Y ∩Xss = ∅ for an invariant subvariety Y then
clearly [Y ] ∈ Ker(κ) (this idea was studied in [FR1]). Hence all the higher Kirwan
strata provide relations. But the Kirwan strata are coincident root loci for specific
partitions, and we can calculate their equivariant Poincaré duals using the first part
of this paper. Our main point is that the first two Kirwan strata are enough to gen-
erate Ker(κ), which can be checked by a simple Betti number calculation.

In the d even case we shall refine the Kirwan stratification (see Discussion 4.6).
The main difficulty is that for one of the strata in this refined stratification the nor-
mal (equivariant) Euler class is a 0-divisor. In order to prove G-perfectness, we
use results from the first part of this paper. Namely, we show that certain ele-
ments in the E1-table can be represented by the Poincaré dual of coincident root
loci (these are not Kirwan strata!) and that they survive to E∞; hence they could
not be hit by a differential. After G-perfectness is proven, the process is the same
as in the odd case. We can find coincident root loci in the null cone such that their
Poincaré duals generate Ker(κ). Here we also need two coincident root loci, but
one of them is not a Kirwan stratum.

In this section, all cohomologies are assumed to have rational coefficients. Let
us now consider the Kirwan stratification (see [K1; K4]) of the vector space Vd :

• Xss = {B | B has no root of multiplicity > d/2};
• Xi = {B | B has a root of multiplicity i but not with multiplicity i + 1}, d/2 <
i ≤ d;

• X0 = {0}.
The strata are smooth open submanifolds, and the complex codimensions are 0,
i−1, and d +1 in the three cases. If Fi = ⋃

(strata of complex codimension ≤ i)

then we have the following filtration of Vd :

∅ = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fd+1 = S dC2.

Let E∗,∗∗ be the associated spectral sequence in G-equivariant cohomology with
Q-coefficients.

Proposition 4.1.

(i) E 0,∗
1 = H ∗

G(X
ss; Q);

(ii) E 2p,∗
1 = H ∗(BU(1); Q) for p = [d/2], . . . , d − 1;

(iii) E 2(d+1),∗
1 = H ∗(BG; Q);

(iv) E∗,∗
1 = 0 for all cases not covered by (i)–(iii);

(v) the spectral sequence converges to H ∗(BG; Q); and
(vi) the spectral sequence degenerates atE∗,∗

1 (in particular,H odd
G (Xss, Q) = 0).

Proof. By definition we have that E 2p,∗
1 = H

2p+∗
G (Fp,Fp−1), which by Thom iso-

morphism is H ∗
G(Fp \ Fp−1). This proves (i) and (iv). For p = d + 1 we have



Coincident Root Loci of Binary Forms 385

E 2(d+1),∗
1 = H ∗

G({0}) = H ∗(BG), which proves (iii). For d/2 < i ≤ d we define
Yi = {B ∈Xi : xi|B and coeff(x iy d−i ) = 1}. Let H be the stabilizer subgroup of
Yi, that is, the group of matrices of the form

(
α1 β
0 α2

)
with αi

1α
d−i
2 = 1. Since Yi is

contractible and Xi = G×H Yi, (ii) follows from

H ∗
G(Xi) ∼= H ∗

G(G×H Yi) ∼= H ∗
H (Yi)

∼= H ∗(BH ) ∼= H ∗(BU(1)) (over Q).

The degeneracy of the spectral sequence—called G-perfectness by Atiyah and
Bott in [AB1]—follows from usual arguments as follows. Let us build up Vd by
gluing the strata together, one by one, in order of increasing codimension. Then
at one step we have U and glue a new stratum X of complex codimension c to it.
We need to prove that the first map in the diagram

Hn−2c
G (X) ∼= Hn

G(U ∪X,U) → Hn
G(U ∪X) → Hn

G(X)

is injective. However, the whole composition is the multiplication with the equi-
variant Euler class of the stratum X. This is an injective map because it is a mul-
tiplication by a nonzero element in a polynomial ring. (For a computation of an
equivariant Euler class see the proof of Proposition 4.7.)

Since E∞ = E1, it follows that the sum of the ranks of the groups in diagonal
(i.e., p+ q = r) entries must be the rank of the appropriate cohomology group of
H ∗(BG; Q). Thus we have our next result.

Corollary 4.2. Let h := [d/2]. The Poincaré series of the ring H ∗
G(X

ss; Q) is

1

(1 − t)(1 − t 2)
(1 − t d+1)− 1

1 − t
(t h + · · · + t d−1)

= 1 − t h − t h+1 + t d

(1 − t)(1 − t 2)
(deg(t) = 2).

What we have obtained so far is basically equivalent to the Atiyah–Bott–Kirwan
theory applied to our representation; see [K1, 16.2].

What can also be seen from the spectral sequence is thatH ∗
G(X

ss ) = H ∗(BG)/I,
where the ideal comes from the p > 0 columns of the spectral sequence. Thus,
among the elements of I we have those that are the images of the generators of
E

2p,0
1 under the edge homomorphism. For [d/2] ≤ p ≤ d − 1, these are ex-

actly the Thom polynomials corresponding to the strata Xi, i = p + 1. We have
Tp(Xi) = Tpλ with λ = (1d−i, i), since the closures of Xi and Xλ are the same.
The preceding Betti number computation can be used to test whether a few of these
Thom polynomials are enough to generate I.

Theorem 4.3. Set λ1 = (1d−h−1,h + 1) and λ2 = (1d−h−2,h + 2), where h =
[d/2]. Then I is generated by Tpλ1 and Tpλ2 . In particular,

H ∗
G(X

ss; Q) = Q[c1, c2 ]/(Tpλ1, Tpλ2).

Proof. We have already observed that the given two Thom polynomials are in I.
Now we prove that the ring on the right-hand side has the same Poincaré series as
the one given in Corollary 4.2.
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We claim that the ideal J := (Tpλ1, Tpλ2) has the following R-resolution: 0 ←
J ← (Tpλ1) ⊕ (Tpλ2) ← U ← 0, where U is a principal ideal generated by a
deg d polynomial in R = Q[c1, c2 ]. If d = 2h + 1 then for this we need only
prove that Tpλ1 and Tpλ2 have no nontrivial common divisor D. We know that
Tpλ1 = ∂(8) and Tpλ2 = ∂(8L), where 8(u, v) = ∏h

l=0(lv + (d − l )u) and
L(u, v) = (h+1)v+ hu. By Remark 3.9(3), if D|gcd(Tpλ1, Tpλ2) then D|8 and
hence D|gcd(8, ∂(8)) as well. But gcd(8,8∗) = 1, which ends the proof of the
claim.

Hence we obtain the Poincaré series of R/J as (1 − t h − t h+1 + t 2h+1)/

(1 − t)(1 − t 2), which is the same as the Poincaré series of H ∗
G(X

ss; Q). For
d even, the proof is similar.

Discussion 4.4 (The cohomology ring ofXss//G). Observe that if d is odd then
Xss = Xs and all stabilizers of polynomials in Xss are finite. We therefore have
the ring isomorphism H ∗

G(X
ss; Q) = H ∗(Xss//G; Q) with Poincaré polynomial

(1 − t h)(1 − t h+1)/(1 − t)(1 − t 2).

If d = 2h is even then Xss//G = Xs//G ∪ {pss}, where pss is the unique
“semisimple point” ofXss//G. The Poincaré series ofH ∗

G(X
ss ) is infinite; namely,

1

1 − t 2
+ t · P(t), where P(t) is the polynomial

(1 − t h−1)(1 − t h)

(1 − t)(1 − t 2)

(deg(t) = 2). (5)

All the stabilizers of the stable part are finite, and there is only one orbit in the
strict semistable part with infinite stabilizer Hss : the orbit of the partition (h,h).
The stabilizer Hss can be described explicitly, and one has an exact sequence
1 → U(1) × Zh → Hss → Z2 → 1. Hence BHss is a double covering of
BU(1) × BZh with rational cohomology H ∗(BH ss ) = H ∗(BU(1))Z2 = Q[t]Z2

(degt = 2). Here the Z2-action is t �→ ±t, so the invariant part is Q[t 2] with an
infinite Poincaré series 1/(1− t 2). This is exactly the “infinite contribution” in the
Poincaré series (5) of H ∗

G(X
ss ).

In fact, the map r : H ∗(BG) → H ∗(BH ss ) (induced by the inclusion) is given,
at the level of roots, by u �→ ±t and v �→ ∓t; hence it is the epimorphism
r : Q[c1, c2 ] → Q[t 2] given by c1 �→ 0 and c2 �→ −t 2.

As usual, for any connected space Z we let H̃ ∗(Z) be the kernel of H ∗(Z) →
H ∗(point) as an ideal (or subring without unit) in H ∗(Z). The ring H ∗(Z) can be
reconstructed from H̃ ∗(Z) by adding the unit: H ∗(Z) = Q〈1〉⊕ H̃ ∗(Z) (with the
natural multiplication).

Let o be the orbit corresponding to the partition (h,h) and consider the natu-
ral inclusion j : o×G EG → Xss ×G EG. Obviously, o×G EG can be identified
with BHss. Moreover, j ∗ : H ∗

G(X
ss ) → H ∗(BH ss ) induced by j can be identi-

fied with the epimorphism Q[c1, c2 ]/(Tpλ1, Tpλ2) → Q[t 2], where c1 �→ 0 and
c2 �→ −t 2 are induced by the epimorphism r described previously. In fact, Tpλ1

and Tpλ2 are both divisible by c1 (cf. Remark 3.9(1)) and hence r sends the ideal
generated by them to zero.
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Finally, observe that H ∗(Xss ×G EG,BHss ) = H̃ ∗(Xss ×G EG/BH ss ) and
that the natural map r : Xss ×G EG/BH ss → Xss//G induces an isomorphism at
the level of rational cohomology rings. In particular, the long exact cohomology
sequence of the pair (Xss ×GEG,BHss ) transforms into the short exact sequences

0 −→ H̃ ∗(Xss//G) −→ H ∗
G(X

ss )
j∗−→ H ∗(BH ss ) −→ 0. (6)

Analyzing the kernel of j ∗ yields our next corollary.

Corollary 4.5. With the notation of Theorem 4.3, one has the following ring
isomorphisms:

H ∗(Xss//G; Q) =
{

Q[c1, c2 ]/(Tpλ1, Tpλ2) if d is odd;
Q〈1〉 ⊕ (c1Q[c1, c2 ])/(Tpλ1, Tpλ2) if d is even.

Notice that the Poincaré series formula (5) is compatible with (6) and Corollary 4.5.
In particular, if d = 2h then the Poincaré polynomial of H ∗(Xss//G) is 1+ tP(t).

Discussion 4.6 (The cohomology ring of Xs//G). Next, for the case d = 2h
we wish to determine the cohomology ring of the geometric quotientXs//G. In the
notation that follows it is convenient to assume h > 2 (if h = 2, then Xss//G =
P1 and Xs//G = C).

We consider a similar spectral sequence but now associated with the following
“refined” stratification:

• Xs = {B | B has no root of multipicity ≥ h};
• Xi = {B | B has exactly one root of multiplicity i but no roots of multiplicity
i + 1}, h ≤ i ≤ d;

• o = {the orbit associated with the partition (h,h)}; and
• X0 = {0}.

In Proposition 4.1, E 0,∗
1 will be replaced by H ∗

G(X
s ). For i > h the stratum Xi

is the same as in the previous case, but now there are two new strata: Xh and o.

Since o is an orbit with stabilizer Hss, it follows that H ∗
G(o) = H ∗(BH ss ). The

complex codimension of o in Vd is d − 2, so this will provide an additional direct
sum contribution in E 2(d−2),∗

1 . Hence E 2p,∗
1 = H ∗(BU(1)) if h ≤ p ≤ d − 1 but

p �= d − 2, and E 2(d−2),∗
1 = H ∗(BU(1))⊕H ∗(BH ss ).

Finally, we compute E 2(h−1),∗
1 = H ∗

G(Xh). Set

Yh = {B ∈Xh : B = xh · B ′ = xh(y h + a2x
2y h−2 + · · · + ahx

h)

and B ′ is not an h-power}.
The stabilizer subgroup H of Yh is the group of diagonal matrices of the form
diag(α1,α2) with αh

1 α
h
2 = 1. One can verify that Xh = G ×H Yh. Moreover, B ′

is not an h-power if and only if (a2 , . . . , ah) �= (0, . . . , 0). Hence Yh is Ch−1 \ {0}
and the action of H is a diagonal torus action (modulo a finite group). In partic-
ular, E 2(h−1),∗

1 = H ∗
G(Xh) equals the cohomology ring of a weighted projective

space of dimension h− 2, which is Q[t]/(t h−1) (deg(t) = 2).
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Proposition 4.7. The spectral sequence converges to H ∗(BG; Q) and degener-
ates at E∗,∗

1 .

The Euler classes of the strata are not 0-divisors except for Xh. Hence we need
the following local version of the Atiyah–Bott argument.

Lemma 4.8. Suppose that {Xi} is aG-equivariant stratification of V and that the
equivariant normal Euler class of Xi is not a 0-divisor if codim(Xi) > c. Then
all differentials of the corresponding spectral sequence Ep,q

r starting or landing
in the region p > c are zero.

Proof. LetX be the union ofXi with codim(Xi) > c. Then the lemma is equivalent
to the statement that H ∗

G(V,V \ X) → H ∗
G(V ) is injective, since {Ep,q

r : p > c}
converges toH ∗

G(V,V \X). Injectivity can be proved by adding theXi one by one
and then noticing that the composition

Hn−2c
G (X) ∼= Hn

G(U ∪Xi,U) → Hn
G(U ∪Xi) → Hn

G(Xi)

is multiplication with the equivariant normal Euler class of the stratum Xi (where
U is an open subset of V in which Xi is closed).

Proof of Proposition 4.7. For the convenience of the reader we show how one de-
termines the equivariant Euler class of o. Fix an element (say, xhy h) on o, let
Hss be its stabilizer, and consider an Hss invariant normal slice N at xhy h. In
fact, for N one can take the vector space spanned by xiy d−i, where 0 ≤ i ≤
d but i /∈ {h − 1,h,h + 1}. The stabilizer Hss acts on N, and our goal is the
computation of the Euler class ess ∈ H ∗(BH ss ) of EHss ×Hss N → BHss.

Consider now the subgroup U(1) of Hss (see Discussion 4.4). The Euler class
e ∈H ∗(BU(1)) = Q[t] of EHss ×U(1) N → BU(1) can be computed as follows.
The eigenvalues of diag(α, ᾱ) ∈ U(1) on N are (αd,αd−2, . . . ,α4,α−4, . . . ,α−d);
hence e = (dt)((d − 2)t) · · · (4t)(−4t) · · · (−dt) = mt d−2 for some m �= 0.
Since d is even, this is in the invariant part H ∗(BH ss ) = Q[t 2] and can be identi-
fied in this ring by ess. Therefore, ess �= 0. (This type of argument does not work
for the stratum Xh, since the stabilizers of its points are finite and since H ∗

G(Xh)

has 0-divisors.)
In order to show that the differentials d 0,q

2h−2 (q odd and 2h− 3 ≤ q ≤ 4h− 7)
of the spectral sequence are trivial, we consider another spectral sequence associ-
ated with only two strata—namely, with Xs and Xh. The differential d 0,q

2h−2 in the
two spectral sequences coincides. If we compare them by the natural maps then
we obtain the exact sequence

0 −→ I ′ −→ H ∗
G(Vd)

τ−→ H ∗
G(X

s ∪Xh),

where the ideal I ′ is generated by all the columnsE>2h−2,∗
1 . InE 2(h−1),2(j−1)

∞ we can
find special elements: those represented by the Thom polynomials Tpj ∈H ∗

G(Vd)
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associated with the partitions (1h−j, j,h), where 0 < j < h. Hence d 0,2j+2h−5
2h−2 =

0 if τ(Tpj ) �= 0 or (equivalently) if Tpj /∈ I ′. Observe that the graded ideal I ′ and
the graded ideal I considered in Corollary 4.2 and Theorem 4.3 are the same in
the relevant degrees, so it is enough to verify that Tpj /∈ I for any j. But in Theo-
rem 4.3 we verified that I = (Tpλ1, Tpλ2); we therefore need to prove

Tpj /∈ (Tpλ1, Tpλ2). (7)

Set

8 :=
h−1∏
l=0

(lv + (d − l )u) and L = (h+ 1)v + (h− 1)u.

By (4) we have Tpλ1 = hc1 · ∂(8) and Tpλ2 = hc1 · ∂(8L). In particular, by Re-
mark 3.9(3) it follows that Tpλ2 = hL∗c1 · ∂(8)− 2hc18 and hence

(Tpλ1, Tpλ2) = (c1 · ∂(8), c1 ·8) (8)

in Q[u, v]. Assume that (7) is not true and that we have Tpj = Ac1 ·∂(8)+Bc18.

Since the degrees of Tpj and 8 are h+ j − 2 and h (respectively), the degree of
Ac1 is j −1. From Example 3.8 and Remark 3.9(3) we obtain Tpj = ∂(8 ·Dj) =
D∗
j · ∂(8)+8 · ∂(Dj ); this means that

8(∂(Dj )− Bc1) = ∂(8)(Ac1 −D∗
j ). (9)

Yet it is easy to verify that gcd(8, ∂(8)) = 1. Indeed, if F |gcd(8, ∂(8)) then also
F |(u− v)∂(8) = 8−8∗ and hence F |8∗ as well. However, gcd(8,8∗) = 1.

This fact, together with (9), shows that 8|Ac1 − D∗
j ; but deg(Ac1 − D∗

j ) =
j−1 < deg8 and henceAc1 = D∗

j . In particular, c1|D∗
j or u+v|Dj . But this leads

to a contradiction. Indeed, analyzing in Example 3.8 the expression for (u−v)Dj ,
one sees that the first product is divisible by u + v (take l = h) but the second is
not. Hence, (7) is true.

By arguments similar to the case for H ∗
G(X

ss ), for H ∗
G(X

s ) = H ∗(Xs//G) one
has the following.

Corollary 4.9. H odd(Xs//G, Q) = 0, and the Poincaré series of H ∗(Xs//G)

is the polynomial P(t) introduced in (5).

Let I ′′ be the ideal in H ∗(BG) = Q[c1, c2 ] generated by the columns E>0,∗
1 ; then

one has the ring isomorphism H ∗(Xs//G) = Q[c1, c2 ]/I ′′. Now we consider two
special elements of I ′′: the Thom polynomials Tpλ0 and Tpλ′

0
, where λ0 = (1h,h)

and λ′
0 = (1h−2, 2,h). Their degrees are h − 1 and h, respectively. We shall now

verify that they are relative prime. Indeed, with notation as before we have Tpλ0 =
∂(8) (from Example 3.7). Moreover, from Example 3.8 and Remark 3.9(3) it fol-
lows that Tpλ′

0
= h(h − 1)∂((u + 3v)8) = h(h − 1)[(v + 3u)∂8 − 28]. In

particular, in Q[u, v] we have gcd(Tpλ0 , Tpλ′
0
) = gcd(8, ∂8), which is 1 by the

proof of Proposition 4.7. Then the usual Poincaré polynomial argument shows
that I ′′ = (Tpλ0 , Tpλ′

0
).
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We have thus proved the following theorem.

Theorem 4.10. For d = 2h,

H ∗(Xs//G; Q) = Q[c1, c2 ]/(Tpλ0 , Tpλ′
0
) and

H ∗(Xss//G; Q) = Q〈1〉 ⊕ c1Q[c1, c2 ]

(Tpλ1, Tpλ2)
,

and the restriction map H ∗(Xss//G) → H ∗(Xs//G) is induced by the identity of
Q[c1, c2 ].

Remark 4.11. Since the quotient Xss//G has a unique singular point (d = 2h),
its intersection cohomology can be computed from the cohomology description
of Xs//G and Xss//G by using (the intersection cohomology version of ) Theorem
3.5.1 in [K3]. Namely, in our case we have IH odd(Xss//G) = 0 and, for i even,

IH i(Xss//G) =
{
H i(Xs//G) if i < d − 3,

H i(Xss//G) if i > d − 3.
(10)

Since the Poincaré polynomials of Xs//G and Xss//G are P(t) and 1 + tP(t), re-
spectively (see (5)), we obtain that the Poincaré polynomial of IH ∗(Xss//G) is

(1 − t 2"d/4#)(1 − t 2$d/4%)
(1 − t)(1 − t 2)

(deg t = 2), (11)

where " # is the (usual, “lower”) integer part function and $ % is the upper inte-
ger part function. The same intersection cohomology Poincaré polynomial (in a
different disguise) can be computed using the method of [K2] (see e.g. [Ki]) as

1 + t + · · · + t d

1 − t 2
−

∑
d/2<r≤d

t r−1

1 − t
− t 2"d/4#

1 − t 2
.

Discussion 4.12 (The cohomology ring of the link). Denote byLss the link of the
unique semisimple pointpss inXss//G; that is,Lss = ρ−1(ε), whereρ : Xss//G →
[0, ∞) is a real analytic map with ρ−1(0) = {pss} and where ε is sufficiently small.
Write CLss for the real cone over Lss (i.e., CLss = [0,1] × Lss/{0} × Lss ). Then
H ∗(CLss,Lss ) = H ∗(Xss//G,Xs//G) and hence H ∗(Lss ) is completely deter-
mined by the restriction morphism from Theorem 4.10. In fact, Lss is a rational
homological manifold of real dimension 4h−7 (with Poincaré duality). (This can
also be proved as follows: The geometric quotient of the set of ordered d-points of
P1 is smooth, and there exist only finitely many ordered semisimple points; hence
Lss is the quotient by a finite permutation group of a smooth (4h−7)-dimensional
link.) Theorem 4.10, this duality, and a computation then yield our final result.

Theorem 4.13. H ∗(Lss, Q) can be generated by two elements, c2 of degree 4
and g (the Poincaré dual of c [h/2]−1

2 ) of degree 4h − 4[h/2] − 3, with relations
c

[h/2]
2 = 0 and g2 = 0. (Notice that all the Betti numbers are 0 or 1.)

Remark 4.14. Theorem 4.10 implies that the cohomology ring of the quasi-
projective varietyXs//G of (complex) dimension d−3 shares the Poincaré duality
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properties of a smooth projective variety of dimension d − 4. In fact, cohomo-
logically (over Q), Xs//G behaves like a line bundle L with Chern class c1 over
a smooth projective variety M with cohomology Q[c1, c2 ]/(∂8,8), and Xss//G

behaves like the Thom space of this line bundle (or, equivalently, like the com-
plex cone over M associated with L). In particular, Lss has the cohomology of
the S1-bundle of L.

Remark 4.15. Assume that d = 2h+1 is odd. It is tempting to compare the mod-
uli spaceXs//Gwith the (possibly weighted) Grassmanian Gr2C

h+1, since the pre-
sentation of their cohomology rings have the same structure Q[c1, c2 ]/(∂p1, ∂p2)

(where degp1 = h + 1 and degp2 = h + 2) and share the same Betti numbers.
Indeed, for the Grassmanian we can take p1 = uh+1 and p2 = uh+2. In fact, this
analogy can be continued: in both cases, the set of relations are guided by some
nice generating function as follows. Set 80 := 1 and 8j := ∏j−1

l=0(lv+ (d− l )u),
and consider the generating function

G(q) =
∑
j≥0

Gj qj :=
∑
j≥0

8jq
j

j!
= [1 + (u− v)q]du/(u−v)∈ Q[u, v][[q]].

Then H ∗(Xs//G) = Q[c1, c2 ]/I, where I is generated by ∂Gj , j > h.

In the Grassmanian case the same fact is true with G(q) = 1+uq+u2q2 +· · · =
1/(1 − uq). However, easy computation shows that, as graded rings, these coho-
mology rings are not isomorphic (except for small d).

References

[AB1] M. Atiyah and R. Bott, The Yang–Mills equation over Riemann surfaces, Philos.
Trans. Roy. Soc. London Ser. A 308 (1983), 523–615.

[AB2] , The moment map and equivariant cohomology, Topology 23 (1984), 1–28.
[BT] R. Bott and L. W. Tu, Differential forms in algebraic topology, Grad. Texts in

Math., 82, Springer-Verlag, Berlin, 1982.
[Br] M. Brion, Cohomologie équivariante des points semi-stables, J. Reine Angew.

Math. 421 (1991), 125–140.
[C] J.V. Chipalkatti, On equations defining coincident root loci, J. Algebra 267 (2003),

246–271.
[FNR] L. Fehér, A. Némethi, and R. Rimányi, Degeneracy of two and three forms, Canad.

J. Math. (to appear).
[FR1] L. Fehér and R. Rimányi, Schur and Schubert polynomials as Thom polynomials—

Cohomology of moduli spaces, Cent. Eur. J. Math. 1 (2003), 418–434.
[FR2] , Calculation of Thom polynomials and other cohomological obstructions

for group actions, Real and complex singularities (Sao Carlos, 2002), Contemp.
Math., 324, pp. 69–93, Amer. Math. Soc., Providence, RI, 2004.

[Fu] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1998 [1984].
[GS] D. R. Grayson and M. E. Stillman, Macaulay 2, A software system for research in

algebraic geometry, available at 〈http: //www.math.uiuc.edu/Macaulay2〉.
[JK] L. Jeffrey and F. Kirwan, Localization for nonabelian group actions, Topology 34

(1995), 291–327.



392 L. M. Fehér, A. Némethi , & R. Rimányi

[Ka] M. Kazarian, Morin maps and their characteristic classes, preprint, 2006,
〈http: //www.mi.ras.ru /∼kazarian /#publ〉.

[Ki] Y.-H. Kiem, Intersection cohomology of quotients of nonsingular varieties, Invent.
Math. 155 (2004), 163–202.

[K1] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Math.
Notes, 31, Princeton Univ. Press, Princeton, NJ, 1984.

[K2] , Rational intersection cohomology of quotient varieties, Invent. Math. 86
(1986), 471–505.

[K3] , An introduction to intersection homology theory, Pitman Res. Notes Math.
Ser., 187, Longman, Harlow, U.K., 1988.

[K4] , The cohomology rings of moduli spaces of bundles over Riemann surfaces,
J. Amer. Math. Soc. 5 (1992), 853–906.
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