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Explicit Versions of the
Briançon–Skoda Theorem with Variations

Mats Andersson

1. Introduction

Let φ and f1, . . . , fm be holomorphic functions in a neighborhood of the origin in
C

n. The Briançon–Skoda theorem [9] states that φmin(n,m) belongs to the ideal (f )

generated by fj if |φ| ≤ C|f |. This condition is equivalent toφ belonging to the in-
tegral closure of the ideal (f ). The original proof is based on Skoda’s L2-estimates
in [20] (see Remark 1 in this section) and actually gives the stronger statement that
φ ∈ (f ) if |φ| ≤ C|f |min(n,m). An explicit proof based on Berndtsson’s division
formula [8] and multivariable residue calculus appeared in [5]; see also [14] for
a special case. There are purely algebraic versions in more arbitrary rings due to
Lipman and Teissier [17].

In general this result cannot be improved, but for certain tuples fj a much weaker
size condition on φ is enough to guarantee that φ belongs to (f ). For instance, the
ideal (f )2 is generated by the m(m+ 1)/2 functions gjk = fjfk; we have |f |2 ∼
|g|, so applying the previous result yields φ ∈ (f )2 if |φ| ≤ C|f |min(2n,m(m+1)).

However, in this case actually the power min(n,m)+ 1 is enough. In general we
have the following statement.

Theorem 1.1 (Briançon–Skoda). If f = (f1, . . . , fm) and φ are holomorphic at
0 in C

n and if |φ| ≤ C|f |min(m,n)+r−1, then φ ∈ (f )r.

This more general formulation follows in a manner similar to the case r = 1 by
L2-methods as well as by (a small modification of ) the argument in [5]. In [1] we
gave a somewhat different proof of the case r = 1 by means of residue calculus,
and in this paper we extend that method to achieve various related results for prod-
uct ideals as well as the general case of Theorem 1.1. We consider several possibly
different tuples in the first result, as follows.

Theorem 1.2. Let fj (j = 1, . . . , r) be mj -tuples of holomorphic functions at 0∈
C

n, and assume that
|φ| ≤ C|f1|s1 · · · |fr |sr

for all s such that s1+ · · · + sr ≤ n+ r−1 and 1≤ sj ≤mj . Then φ∈ (f1) · · · (fr).
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Notice that this immediately implies Theorem 1.1 in the case m ≥ n by simply
choosing all fj = f. In certain cases Theorem 1.2 can be improved, as one can see
by taking fj = f and m < n and then comparing with Theorem 1.1. Another case
is when all the functions in the various tuples fj together form a regular sequence.

Theorem1.3. Let fj (j = 1, . . . ,m) be mj -tuples of holomorphic functions at 0∈
C

n, and assume that the codimension of {f1 = · · · = fr = 0} is m1+ · · · +mr. If

|φ| ≤ C min(|f1|m1, . . . , |fr |mr ),

then φ ∈ (f1) · · · (fr).

We have not seen these latter two results in the literature, although they might be-
long to the folklore. In the algebraic setting there are several results related to the
Briançon–Skoda (and Lipman–Teissier) theorem (see e.g. [16; 22] and the refer-
ences therein).

Remark 1. The Briançon–Skoda theorem follows by a direct application of
Skoda’s L2-estimate [20; 21] if m ≤ n. In fact, if ψ is any plurisubharmonic
function then the L2-estimate guarantees a holomorphic solution to f · u = φ

such that ∫
X\Z

|u|2
|f |2(min(m,n+1)−1+ε)

e−ψ dV < ∞,

provided that ∫
X\Z

|φ|2
|f |2(min(m,n+1)+ε)

e−ψ dV < ∞.

If |φ| ≤ C|f |m then the second integral is finite (taking ψ = 0) provided ε is
small enough, and thus Skoda’s theorem provides the desired solution. The case
when r > 1 is obtained by iteration. If m > n then a direct use of the L2-estimate
will not give the desired result. However, in this case one can find an n-tuple f̃

such that (f̃ ) ⊂ (f ) and |f̃ | ∼ |f | (see [11]), and the theorem then follows by
applying the L2-estimate to the tuple f̃.

In the same way, Theorem 1.2 can easily be proved from the L2-estimate if
m1 + · · · +mr ≤ n+ r −1. To see this, assume for simplicity that r = 2 and that
|φ| ≤ C|f1|m1|f2|m2. Choosing ψ = 2(m1 + ε) log|f1|, Skoda’s theorem gives a
solution to f2 · u = φ such that∫

X\Z
|u|2

|f1|2(m1+ε)
dV < ∞.

Another application then gives vj such that f1 · vj = uj . This means that φ be-
longs to (f1)(f2). However, we do not know whether one can derive Theorem 1.3
from the L2-estimate when m1 + · · · +mr > n+ r − 1.

Now consider an r × m matrix f k
j of holomorphic functions, r ≤ m, with rows

f1, . . . , fr . We let F be the m!/(m− r)! r! tuple of functions det(f Ik
j ) for increas-

ing multi-indices I of length r. We will refer to F as the determinant of f. If fj
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are the rows of the matrix considered as sections of the trivial bundle E∗, then F

is just the section fr ∧ · · · ∧ f1 of the bundle �rE∗. Our next result is a Briançon–
Skoda-type result for the tuple F. It turns out that it is enough to use a power much
less than m!/(m− r)! r!. Let Z be the zero set of F and observe that codimZ ≤
m− r + 1; this is easily seen by Gauss elimination.

Theorem1.4. Let F be the determinant of the holomorphic matrix f as before. If

|φ| ≤ C|F |min(n,m−r+1),

then φ ∈ (F ).

Remark 2. This result is closely related to the following statement, which was
proved in [3]. Suppose that φ is an r-tuple of holomorphic functions and let ‖φ‖
be the pointwise norm induced by f ; that is, ‖φ‖ = det(ff ∗)〈(ff ∗)−1φ,φ〉. If

‖φ‖ � |F |min(n,m−r+1),

then fψ = φ has a local holomorphic solution.

Remark 3. Another related situation is when f is a section of a bundle E∗, φ
takes values in �lE, and we ask for a holomorphic section ψ of �l+1E such that
δf ψ = φ (provided that the necessary compatibility condition δf φ = 0 is ful-
filled). Let p = codim{f = 0}. Then a sufficient condition is that

|φ| ≤ C|f |min(n,m−l )

if l ≤ m− p, whereas there is no condition at all if l > m− p; see Theorems 1.2
and 1.4 and Corollary 1.5 in [1].

Theorem 1.4 is proved by constructing a certain residue current R with support
on the analytic set Z such that Rφ = 0 implies that φ belongs to the ideal (F )

locally. The size conditions of φ then imply that Rφ = 0 by brute force (see
Theorem 2.3 in the next section). There may be more subtle reasons for annihi-
lation. For instance, in the generic case (i.e., when codimZ = m − r + 1) even
the converse statement holds; if φ is in the ideal (F ) then actually Rφ = 0 (see
Theorem 2.3(iv)). The analogous statement also holds for the equation fψ = φ

in Remark 2 (see [3]). These results are thus extensions of the well-known dual-
ity theorem of Dickenstein–Sessa [12] and Passare [18] stating that, if f is a tuple
that defines a complete intersection (i.e., if codim{f = 0} = m), then φ ∈ (f ) if
and only if φ annihilates the Coleff–Herrera current defined by f. For the analy-
sis of the residue current R we use the basic tools developed in [5; 6; 7; 19]—that
is, resolution of singularites by Hironaka’s theorem followed by a toric resolu-
tion. In Section 3 we obtain Theorems 1.2 and 1.3 (as well as Theorem 1.1) along
the same lines by analysis of special choices of the matrix f. It might happen that
there are some similarities with the methods used here and the algebraic methods
introduced in [13].

By means of the new construction in [4] of division formulas we obtain, for a
given holomorphic function φ, a holomorphic decomposition
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φ = Tφ + Sφ (1.1)

such that Tφ belongs to the determinant ideal (F ) and Sφ vanishes as soon as
φ annihilates the residue current R. In particular, this gives an explicit proof of
Theorem 1.4 and also leads to explicit proofs of Theorems 1.1–1.3.

Acknowledgment. I am grateful to Alain Yger and to the referee for several
important remarks on a previous version.

2. The Ideal Generated by the Determinant Section

Although in this paper we are mainly interested in local results, it is convenient to
adopt an invariant perspective. Therefore, assume we have hermitian vector bun-
dles E and Q of ranks m and r ≤ m (respectively) over a complex n-dimensional
manifold X as well as a holomorphic morphism f : E → Q. We also assume
that f is generically surjective (i.e., that the analytic set Z where f is not surjec-
tive has codimension ≥ 1). If εj is a local holomorphic frame for Q then f =
f1 ⊗ ε1 + · · · + fr ⊗ εr , where fj are sections of the dual bundle E∗. Moreover,
F = fr ∧· · ·∧f1⊗ε1∧· · ·∧εr is an invariantly defined section of �rE∗⊗detQ∗
that we will call the determinant section associated with f. Notice that if ej is a
local frame for E with dual frame e∗j for E∗, then fj = ∑m

1 f k
j e∗k and

F =
∑′

|I |=r

FI e
∗
I1
∧ · · · ∧ e∗Ir ,

where the sum runs over increasing multi-indices I and where FI = det(F Ik
j ). Let

S lQ∗ be the subbundle of (Q∗)⊗l consisting of symmetric tensors. We consider
the so-called Eagon–Northcott complex

· · · δf−→ �r+k−1E ⊗ S k−1Q∗ ⊗ detQ∗ δf−→ · · ·
δf−→ �r+1E ⊗Q∗ ⊗ detQ∗ δf−→ �rE ⊗ detQ∗ δF−→ C → 0. (2.1)

Here
δf =

∑
j

δfj ⊗ δεj ,

with δfj and δεj denoting interior multiplication on �E and from the left on
SQ∗ ⊗ detQ∗ (respectively), and

δF = δr
f/r! = δfr

· · · δf1 ⊗ δε1 · · · δεr .
It is readily checked that (2.1) actually is a complex. Observe that if r = 1 then
(2.1) is the usual Koszul complex.

In X \ Z we let σj be the sections of E with minimal norms such that fkσj =
δjk. Then σ = σ1 ⊗ ε∗1 + · · · + σr ⊗ ε∗r is the section of Hom(Q,E) such that, for
each section φ of Q, v = σφ is the solution to fv = φ with pointwise minimal
norm. We also have the invariantly defined section
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σ = σ1 ∧ · · · ∧ σr ⊗ ε∗r ∧ · · · ∧ ε∗1
of �E⊗ = detQ∗, which in fact is the section with minimal norm such that
Fσ = 1 (see e.g. [3]).

Example 1. Assume that E and Q are trivial. Let εj be an ON-frame for Q and
let ej be an ON-frame for E, with dual frame e∗j . If F = ∑ ′

|I |=r FI e
∗
I1
∧ · · · ∧ e∗Ir

as before, then

σ =
∑′

|I |=r

F̄I

|F |2 eI1 ∧ · · · ∧ eIr .

We will consider (0, q)-forms with values in�r+k−1E⊗S k−1Q∗⊗detQ∗; it is con-
venient to consider them as sections of �r+k+q−1(E⊕T ∗

0,1(X))⊗S k−1Q∗⊗detQ∗

so that δf anticommutes with ∂̄ and δF ∂̄ = (−1)rδF ∂̄. In what follows we let
⊗ denote the usual tensor product of all Q∗-factors and the wedge product of
�(E ⊕ T ∗

0,1(X))-factors. Thus, for instance,

σ ⊗ σ =
( r∑

1

σj ⊗ ε∗j

)
⊗ (σ1 ∧ · · · ∧ σr ⊗ ε∗1 ∧ · · · ∧ ε∗r ) = 0.

Moreover, (∂̄σ)⊗(k−1) is a symmetric tensor for each k ≥ 1; more precisely,

(∂̄σ)⊗(k−1) =
∑

|α|=k−1

(∂̄σ1)
α1 ∧ · · · ∧ (∂̄σr)

αr ⊗ ε∗α. (2.2)

Here ε∗α = (ε∗1 )α1 ⊗̇ · · · ⊗̇ (ε∗r )αr/α1! · · · αr !, with ⊗̇ denoting symmetric tensor
product. For each k ≥ 1 we define in X \ Z the (0, k − 1)-forms

uk = (∂̄σ)⊗(k−1) ⊗ σ = σ1 ∧ · · · ∧ σr ∧ (∂̄σ)⊗(k−1) ⊗ ε∗ (2.3)

(where ε∗ = ε∗r ∧ · · · ∧ ε∗1 ) with values in �r+k−1E ⊗ S k−1Q∗ ⊗ detQ∗.

Proposition 2.1. In X \ Z we have

δFu1 = 1, δf uk+1 = ∂̄uk , k ≥ 1. (2.4)

Proof. Since the δεj act from the left and since δfj ∂̄σl = 0 for all l, it follows that

δf uk+1 = δf [σ1 ∧ · · · ∧ σr ∧ (∂̄σ)⊗k ⊗ ε∗ ]

= δf [σ1 ∧ · · · ∧ σr ∧ ∂̄σ] ⊗ (∂̄σ)⊗(k−1) ⊗ ε∗

=
r∑

j=1

δfj (σ1 ∧ · · · ∧ σr) ∧ ∂̄σj ⊗ (∂̄σ)⊗(k−1) ⊗ ε∗

= ∂̄(σ1 ∧ · · · ∧ σr) ∧ (∂̄σ)⊗(k−1) ⊗ ε∗ = ∂̄uk.

Since δFu1 = Fσ = 1, the proposition is proved.

Let u = u1 + u2 + · · · and let δ denote either δf or δF ; then (2.4) can be written
as (δ − ∂̄)u = 1. We shall use the following lemma to analyze the singularities of
u at Z.
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Lemma 2.2 [3, Lemma 4.1]. If F = F0F
′ for some holomorphic function F0

and nonvanishing holomorphic section F ′, then

s ′ = F0σ and S ′ = F0σ

are smooth across Z.

Notice that |F |2λu and ∂̄|F |2λ ∧ u are well-defined forms in X for Re λ � 0.

Theorem 2.3.

(i) The forms |F |2λu and ∂̄|F |2λ ∧ u have analytic continuations as currents in
X to Re λ > −ε. If U = |F |2λu|λ=0 and R = ∂̄|F |2λ ∧ u|λ=0, then

(δ − ∂̄)U = 1− R.

(ii) The current R has support on Z and R = Rp+· · ·+Rµ, where p = codimZ

and µ = min(n,m− r + 1).
(iii) If φ is a holomorphic function and Rφ = 0, then locally F- = φ has holo-

morphic solutions.
(iv) If codimZ = m − r + 1 and F- = φ has a holomorphic solution, then

Rφ = Rm−r+1φ = 0.
(v) If |φ| ≤ C|F |µ, then Rφ = 0.

Here, of course, Rk = ∂̄|F |2λ∧uk|λ=0 is the component ofR that is a (0, k)-current
with values in �r+k−1E ⊗ S k−1Q∗ ⊗ detQ∗.

Proof of Theorem 2.3. For r = 1 this theorem is contained in [1, Thms. 1.1–1.4],
and most parts of the proof are completely analogous; we therefore merely point
out the necessary modifications. By Hironaka’s theorem and a further toric reso-
lution (following the technique developed in [6; 19]), we may assume that locally
F = F0F

′ as in Lemma 2.2. Since moreover σ ⊗ σ = 0 it follows that, locally in
the resolution,

uk = (∂̄s ′)⊗(k−1) ⊗ S ′

F k
0

.

It is then easy to see that the proposed analytic extensions exist; hence we have

Uk =
[

1

F k
0

]
(∂̄s ′)⊗(k−1) ⊗ S ′ (2.5)

and

Rk = ∂̄

[
1

F k
0

]
∧ (∂̄s ′)⊗(k−1) ⊗ S ′, (2.6)

where [1/F k
0 ] is the usual principal value current. If Rφ = 0 then (δ − ∂̄)Uφ =

φ, so by successively solving the ∂̄-equations ∂̄wk = Ukφ + δwk+1 we finally ob-
tain the holomorphic solution - = U1φ + δw2. All parts but (iv) now follow in
a similar way as in [1]. Notice in particular that k ≤ min(n,m − r + 1) in (2.6)
for degree reasons and so Rφ = 0 if the hypothesis in (v) is satisfied. As for (iv),
assume we have a holomorphic section - of �rE ⊗ detQ∗ such that F- = φ.

If - = ψ ⊗ ε∗, then F- = δfr
· · · δf1ψ. Since um−r+1 has full degree in ej , it

follows that
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um−r+1φ = φσ1 ∧ · · · ∧ σr ∧ (∂̄σ)⊗(m−r) ⊗ ε∗

= (δfr
· · · δf1ψ)σ1 ∧ · · · ∧ σr ∧ (∂̄σ)⊗(m−r) ⊗ ε∗

= ψ ∧ (∂̄σ)⊗(m−r) ⊗ ε∗|λ=0

= (∂̄σ)⊗(m−r) ⊗- = ∂̄(σ ⊗ (∂̄σ)⊗(m−r+1))⊗- = ∂̄u′
m−r ⊗-.

Since codimZ = m− r + 1, by part (ii) we have R = Rm−r+1; hence

Rφ = Rm−r+1φ = ∂̄|F |2λ ∧ um−r+1φ|λ=0 = −∂̄(∂̄|F |2λ ∧ u′
m−r ⊗-|λ=0).

However,
∂̄|F |2λ ∧ u′

m−r ⊗-|λ=0

vanishes for degree reasons, precisely in the same way as Rk vanishes for k ≤
m− r.

Proof of Theorem 1.4. If we consider the matrix f as a morphism E → Q for
trivial bundles E and Q, then the theorem follows immediately from parts (v) and
(iii) of Theorem 2.3.

Remark 4. As we have seen, the reason for the power m− r +1 in Theorem 1.4
(and in part (v) of Theorem 2.3) when n is large is that the complex (2.1) terminates
at k = m − r + 1. In attempting to analyze the section F by means of the usual
Koszul complex with respect to the basis (eI)

′
|I |=r , one could hope that the corre-

sponding forms uk would miraculously vanish when k > m − r + 1—although
one has m!/(m− r)! r! dimensions (basis elements). However, this is not the case
in general. Take for instance the simplest nontrivial case, m = 3 and r = 2, and
choose f1 = (1, 0, ξ1) and f2 = (0,1, ξ2) as well as the trivial metric. Then F12 =
1, F13 = ξ2 , F23 = ξ1, and σ = F̄/|F |2, so that

σ12 = 1

1+ |ξ1|2 + |ξ2|2 , σ13 = ξ̄2

1+ |ξ1|2 + |ξ2|2 , σ23 = ξ̄1

1+ |ξ1|2 + |ξ2|2 .
Now m− r +1 = 2, but if we form the usual Koszul complex with (say) the basis
ε1, ε2 , ε3, so that

σ = σ12ε1 + σ13ε2 + σ23ε3 = 1

|F |2 (ε1 + ξ̄2ε2 + ξ̄1ε3),

then

σ ∧ (∂̄σ )2 = 2

|F |6 dξ̄1 ∧ dξ̄2 ∧ ε1 ∧ ε2 ∧ ε3,

and this form is not zero. For an example where Z is nonempty, multiply f by a
function f0.

3. Products of Ideals

For j = 1, . . . , r, let Ej → X be a hermitian vector bundle of rank mj and let fj
be a section of E∗

j . Let E = ⊕r
1Ej , and let Q � C

r with ON-basis ε1, . . . , εr . If
we consider fj as sections of E, then f = ∑r

1 fj ⊗ εj is a morphism E → Q.



368 Mats Andersson

Furthermore, F- = φ (with - = ψ ⊗ ε∗ as before) means that δfr
· · · δf1ψ = φ

and hence that φ belongs to the product ideal (f1) · · · (fr). To obtain such a solu-
tion - we proceed as in the previous section. Notice that now σj can be identified
with the section of Ej having minimal norm such that fjσj = 1. Moreover, |F | =
|f1| · · · |fr |. In this case we thus have

Rk = ∂̄|F |2λ ∧ uk = ∂̄(|f1|2λ · · · |fr |2λ) ∧ σ1 ∧ · · · ∧ σr

∧
∑

|α|=k−1

(∂̄σ1)
α1 ∧ · · · ∧ (∂̄σr)

αr ⊗ ε∗α ⊗ ε∗|λ=0.

For degree reasons, Rk will vanish unless

0 ≤ αj ≤ mj − 1 and α1 + · · · + αr ≤ n− 1. (3.1)

Proof of Theorem 1.2. Consider the tuples fj as sections of Ej . For each j, let eji
(i = 1, . . . ,mj) be a local frame for Ej so that fj = ∑mj

i=1 f
i
j e

∗
ji . After a suitable

resolution as before we may assume that f1 = f 0
1f

′
1, where f 0

1 is holomorphic and
f ′

1 is a nonvanishing section of E∗
1 . After a further resolution we may also assume

that f2 = f 0
2 f

′
2 , and so forth. Hence we may finally assume for each j that fj =

f 0
j f ′

j , where f 0
j is holomorphic and f ′

j is a nonvanishing section of E∗
j . Therefore,

Rk is a sum of terms like

∂̄(|f 0
1 |2λ · · · |f 0

r |2λvλ) ∧ β

(f 0
1 )α1+1 · · · (f 0

r )αr+1

∣∣∣∣
λ=0

,

where v is smooth and nonvanishing. By the same argument as before, this cur-
rent is annihilated by φ if |φ| ≤ C|f1|α1+1 · · · |fr |αr+1; in view of (3.1) and the
theorem’s hypothesis, taking sj = αj + 1 thus yields that φ annihilates R. It now
follows from Theorem 2.3(iii) that F- = φ has a holomorphic solution and so
ψ ∈ (f1) · · · (fr).

We can also easily obtain the Briançon–Skoda theorem.

Proof of Theorem 1.1. Assume that the tuple f = (f 1, . . . , f m) is given. Choose
disjoint isomorphic bundles Ej � C

m with isomorphic bases eji, and let fj =∑m
i=1 f

ie∗ji . Outside Z = {f = 0} we have σj = ∑m
1 σ ieji . Now the ∂̄σ i are

linearly dependent, since
∑m

1 f i∂̄σ i = ∂̄
∑m

1 f iσ i = ∂̄1 = 0. Hence the form uk

must vanish if k − 1 > m − 1 and so Rk vanishes unless k ≤ min(n,m). Since
|fj | = |f | locally in the resolution, we have

Rk = ∂̄|f |2rλ ∧ β

(f 0)k+r−1

∣∣∣∣
λ=0

;

therefore, Rk is annihilated by φ if |φ| ≤ C|f |min(m,n)+r−1.

It remains to consider the case when the fj together define a complete intersec-
tion. The proof is very much inspired by similar proofs in [24].
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Proof of Theorem 1.3. We now assume that codim{f1 = · · · = fr = 0} =
m1 + · · · + mr; in particular, m1 + · · · + mr ≤ n. Let ξ be a test form times
φ. If the support is small enough then, after a resolution of singularities and fur-
ther localization, the action of R on ξ becomes a sum of terms the worst of which
are like∫

∂̄(|f 0
1 |2λ · · · |f 0

r |2λ) ∧
s ′1 ∧ · · · ∧ s ′r ∧ (∂̄s ′1)m1−1 ∧ · · · ∧ (∂̄s ′r )mr−1 ∧ ξ̃ρ

(f 0
1 )m1 · · · (f 0

r )mr

∣∣∣∣
λ=0

,

where ξ̃ is the pull-back of ξ and ρ is a cutoff function in the resolution. We may
assume that each f 0

j is a monomial times a nonvanishing factor in a local coordi-
nate system τk. Let τ be one of the coordinate factors in, say, f1 (with order l ),
and consider the integral that appears when ∂̄ falls on |τ l|2λ. If τ does not occur
in any other f 0

j , then the assumption |φ| ≤ C|f1|m1 implies that φ̃ is divisible
by τ lm1. Hence φ̃ and thus also ξ̃ annihilates the singularity as before, so the in-
tegral vanishes. We now claim that if, on the other hand, τ occurs in some of the
other factors then the integral vanishes because of the complete intersection as-
sumption. Hence let us assume that τ occurs in f 0

2 , . . . , f 0
k but not in f 0

k+1, . . . , f
0
r .

The forms sj = |fj |2σj are smooth; moreover,

γ̃ = s ′k+1 ∧ · · · ∧ s ′r ∧ (∂̄s ′k+1)
mk+1−1 ∧ · · · ∧ (∂̄s ′r )mr−1 ∧ ξ̃

(f 0
k+1)

mk+1 · · · (f 0
r )mr

is the pull-back of

γ = sk+1 ∧ · · · ∧ sr ∧ (∂̄sk+1)
mk+1−1 ∧ · · · ∧ (∂̄sr )

mr−1 ∧ ξ

|fk+1|2mk+1 · · · |f 0
r |2mr

.

Since in dz̄ the form γ has codegree 1+ (m1−1)+· · ·+ (mk−1), which is strictly
less than m1+· · ·+mk = codim{f1 = · · · = fk = 0}, it follows that the antiholo-
morphic factor of the denominator vanishes on {f1 = · · · = fk = 0}. Therefore,
each term of its pull-back vanishes where τ = 0, so it must contain either a factor
τ̄ or dτ̄ . However, by assumption the (pull-back of the) denominator contains no
factor τ̄, so each term of γ̃ will contain τ̄ or dτ̄ . Hence the integral that appears
when ∂̄ falls on |τ |2λl will vanish when λ = 0.

4. Explicit Integral Representation

We shall now supply explicit proofs of Theorems 1.1–1.4. Since all of them are
local, we may assume (using the notation from Section 2) that both f : E → Q

and the function φ are holomorphic in a convex neighborhood X of the closure of
the unit ball B in C

n. We also fix global holomorphic frames ej and εk for E and
Q, respectively, and use the trivial metric with respect to these frames.

To give a hint of how the formulas are built up, first suppose that f is a func-
tion in the unit disk with no zeros on the unit circle—that is, n = r = m = 1. The
construction of representation (1.1) is a generalization of the simple one-variable
formula
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φ(z) = f(z)

∫
|ζ|=1

1

f(ζ)

dζ

ζ − z
φ(ζ)+ 1

2πi

∫
|ζ|<1

∂̄
1

f
∧ h(ζ, z)φ(ζ); (4.1)

here h = (f(ζ)− f(z))dζ/(ζ − z)2πi, which follows directly from Cauchy’s in-
tegral formula. Notice that the second term vanishes as soon as φ annihilates the
residue R = ∂̄(1/f ). Moreover, for an arbitrary holomorphic function φ, this term
interpolates φ at each zero of f up to the order of the zero. If the order is 1 then
this follows immediately from the simple observation that ∂̄(1/f )∧ df/2πi is the
point mass at the zero.

We now turn our attention to the general case. One can verify that, if in R =
∂̄|f |2λ ∧ u|λ=0 we contract each σ = ∑

σj ⊗ εj with
∑

dfj ⊗ ε∗j and contract σ

with dF, then we obtain a d-closed (∗, ∗)-current of order 0 that in some sense gen-
eralizes the Lelong current over Z; see [2] for the case when r = 1. The recipe for
obtaining a division interpolation formula like (1.1) (and (4.1)) is to replace the dif-
ferentials by Hefer forms and then multiply by a Cauchy-type form. This idea is de-
veloped in a quite general setting in [4], so we only sketch our special situation here.

For fixed z ∈ X, let δη denote interior multiplication with the vector field
2πi

∑
(ζj − zj )(∂/∂ζj ) and let ∇η = δη − ∂̄ . Moreover, let χ be a cutoff function

in X that is identically 1 in a neighborhood of B̄ and let

s(ζ, z) = 1

2πi

∂|ζ|2
|ζ|2 − ζ̄ · z .

Then, for each z∈B, it follows (see [4]) that

g = χ − ∂̄χ ∧ s

∇η s
= χ − ∂̄χ ∧

n∑
k=1

1

(2πi)k
∂|ζ|2 ∧ (∂̄∂|ζ|2)k−1

(|ζ|2 − ζ̄ · z)k (4.2)

is a compactly supported ∇η-closed form such that g0,0(z) = 1, where lower in-
dices denote bidegree. Furthermore, g depends holomorphically on z.

We then choose holomorphic (1, 0)-formshj inX (Hefer forms) such that δηhj =
fj(ζ) − fj(z). Let h = ∑m

1 hj ⊗ ε∗j ; we may also assume that hj (and hence h)

depend holomorphically on the parameter z. Now δh : Ek+1 → Ek for k ≥ 1, so
(δh)k : Ek+1 → E1 for k ≥ 0 if (δh)l = δ l

h/l!. It is easily seen that

δη(δh)k = (δh)k−1δf − δf(z)(δh)k−1. (4.3)

So far, δF has acted only on (0, 0)-forms with values in �rE. We now extend it
to general (p, q)-forms, with the convention that a negative sign is inserted when
p + q is odd. Thus we let

δF α = (−1)(r+1)(degα+1)δfr
· · · δf1 ⊗ δε1 · · · δεr ,

where degα is the degree of α in �(E ⊗ T ∗(X)). With this convention, both δF
and δf will anticommute with ∂̄ and δη. It is possible (see [4]) to find explicit holo-
morphic (1, 0)-form-valued mappings H 0

k : Ek → C that depend holomorphically
on the parameter z and such that

δηH
0

1 = δF(ζ) − δF(z) and

δηH
0
k = H 0

k−1δf(ζ) − δF(z)(δh)k−1, k ≥ 2.
(4.4)

If we define
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H1U =
min(n+1,m−r+1)∑

k=1

(δh)k−1Uk

and

H 0R =
min(n,m−r+1)∑

k=1

H 0
kRk ,

then it follows from (4.3) and (4.4) that g ′ = (δF(z)H
1U +H 0R)∧ g is ∇η-closed

and that g ′
0,0(z) = 1. This yields (see [4]) the following result.

Theorem 4.1. If φ is holomorphic in X and if g is the Cauchy form (4.2), then
we have the holomorphic decomposition

φ(z) = δF(z)

∫
H1U ∧ gφ +

∫
H 0R ∧ gφ, z∈B. (4.5)

In particular, -(z) = ∫
H1U ∧ gφ is an explicit solution to δF(z)- = φ if Rφ =

0. We now consider this solution in more detail. In view of (2.2) and (2.3), outside
Z we have that

(δh)k−1uk

=
∑

|α|=k−1

(δh1)α1 · · · (δhr
)αr

[σ1 ∧ · · · ∧ σr ∧ (∂̄σ1)
α1 ∧ · · · ∧ (∂̄σr)

αr ] ⊗ ε∗.

Moreover, since we have used a trivial metric, it follows that the

σj =
m∑
i=1

σij ej , j = 1, . . . , r,

are just the columns in the matrix f ∗(ff ∗)−1. Suppressing the nonvanishing sec-
tion ε∗ results in our first corollary.

Corollary 4.2. Let f be a generically surjective holomorphic r ×m matrix in
X with rows fj considered as sections of the trivial bundle E∗, and assume that
the hypothesis of Theorem 1.4 is fulfilled. Then

ψ(z) =
∫

H1U ∧ gφ

is an explicit solution to δF(z)ψ(z) = δf1(z) · · · δfr (z)ψ(z) = φ(z) in B, whereH1Uφ

is the value at λ = 0 of (the analytic continuation of )

|f |2λ
min(n+1,m−r+1)∑

k=1

∑
|α|=k−1

(δh1)α1 · · · (δhr
)αr

[σ1 ∧ · · · ∧ σr

∧ (∂̄σ1)
α1 ∧ · · · ∧ (∂̄σr)

αr ]φ. (4.6)

If m − r + 1 ≤ n, then H1Uφ is locally integrable and the value at λ = 0 exists
in the ordinary sense.

Proof. It remains to verify the claim about local integrability. In fact, after a
resolution of singularities (cf. (2.5)) it follows that Ukφ is locally integrable if
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|φ| � |F |k. If m − r + 1 ≤ n, then the sum terminates at k = m − r + 1 and so
the current is locally integrable; otherwise, the worst term is like Un+1φ and will
not be locally integrable in general.

If all the fj take values in different bundles E∗
j and if E = ⊕

Ej , then we can
further simplify the expression for H1U. In this case (cf. Section 3)

σj =
mj∑
i=1

f̄ i
j

|fj |2 eij , j = 1, . . . , r.

With natural choices of Hefer forms hj , the δhj will vanish on forms with values
in Ek for k  = j ; this yields our final result as follows.

Corollary 4.3. Let fj be mj -tuples of functions considered as sections of the
trivial bundles E∗

j over X. If the conditions of Theorem 1.2 or 1.3 are fulfilled,
or if all fj are equal to some fixed m-tuple f and the condition in Theorem 1.1 is
fulfilled, then

ψ(z) =
∫

H1Uφ ∧ g

is an explicit solution to δf1(z) · · · δfr (z)ψ(z) = φ(z) in B. Here H1Uφ is the value
at λ = 0 of (the analytic continuation of )

|f |2λ
n+1∑
k=1

∑
|α|=k−1

(δh1)α1 [σ1 ∧ (∂̄σ1)
α1 ] ∧ · · · ∧ (δhr

)αr
[σr ∧ (∂̄σr)

αr ]φ, (4.7)

and N = min(n+ 1,m− r + 1).

In the case of Theorems 1.2 and 1.3, the only terms that actually occur are those
such that αj ≤ mj . In the case of Theorem 1.1 we have only terms such that k ≤ m.

The division formulas discussed here are different from Berndtsson’s classical
formulas [8]. As already mentioned, an explicit proof of Theorem 1.1 in the case
r = 1, based on Berndtsson’s division formula, has already appeared in [5] (see
the proof of Theorem 3.25 there); the case with general r follows in essentially
the same way (see [15]). However, we see no way to prove any of the variations
discussed in this paper by classical Berndtsson-type formulas.
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