
Michigan Math. J. 54 (2006)

On Weyl Sums over Primes and Almost Primes

Angel V. Kumchev

1. Introduction

In this paper we pursue estimates for the exponential sum

f(α) =
∑

P≤p<2P

e(αpk), (1.1)

where α is a real number, k is a positive integer, e(z) = exp{2πiz}, and the sum-
mation is over prime numbers. This sum was introduced as a tool in analytic num-
ber theory by Vinogradov in the late 1930s. In 1937, Vinogradov developed an
ingenious new method for estimating sums over primes and applied that method
to obtain the first unconditional estimate for f(α) with k = 1. That estimate is the
main novelty in his celebrated proof [25] that every sufficiently large odd integer is
the sum of three primes. In the sharper form given in [27, Chap. 6], Vinogradov’s
result states (essentially) that, if a and q are integers satisfying

q ≥ 1, (a, q) = 1, |qα − a| < q−1, (1.2)

then
f(α) � qεP(q−1 + P−2/5 + qP−1)1/2 (1.3)

for any fixed ε > 0. Vinogradov also obtained estimates for f(α) with k ≥ 2 and
used them to give the first unconditional results concerning the Waring–Goldbach
problem. When k ≥ 2, the sharpest estimates for f(α) obtained by Vinogradov’s
method were proven by Harman [3; 4]. In particular, he showed in [3] that if (1.2)
holds then

f(α) � P 1+ε(q−1 + P−1/2 + qP−k )41−k

. (1.4)

Vinogradov’s approach does not rely heavily on the particular form of the phases
in (1.1) and can be applied to more general sums (see [3; 28]). In 1991, Baker and
Harman [1] demonstrated that, using the Diophantine properties of the sequence
amk/q, one can derive sharper bounds for f(a/q) with k ≥ 2. They proved (es-
sentially) that if q is near P k/2 and (a, q) = 1 then

f(a/q) � P 1−ρ(k)+ε,

where ρ(2) = 1
7 and ρ(k) = 2

3 × 2−k for k ≥ 3. They applied this bound to obtain
new results on the distribution of αpk modulo 1. On the other hand, research on
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topics related to the Waring–Goldbach problem prompted several authors to give
improvements on (1.4) valid for all real α. The sharpest result of that kind asserts
(in a slightly stronger form) that if k ≥ 3 and a and q are integers with

1 ≤ q ≤ P k/2, (a, q) = 1, |qα − a| < P−k/2,

then

f(α) � P 1−ρ(k)+ε + q−(1/2k)+εP(logP)4

(1 + P k|α − a/q|)1/2
, (1.5)

where ρ(3) = 1
24 and ρ(k) = 2−k−1 if k ≥ 4. This was proven by Kawada and

Wooley [11] for k ≥ 4 and by Wooley [29] for k = 3. In the present paper, we
combine the Kawada–Wooley and the Baker–Harman methods and obtain the fol-
lowing improvement on the first term on the right side of (1.5).

Theorem 1. Let k ≥ 3 and define

ρ(k) =
{ 1

14 if k = 3,

2
3 × 2−k if k ≥ 4.

(1.6)

Suppose that α ∈ R and that there exist a ∈ Z and q ∈ N satisfying

1 ≤ q ≤ Q, (a, q) = 1, |qα − a| < Q−1 (1.7)

with
Q = P (k2−2kρ(k))/(2k−1). (1.8)

Then, for any fixed ε > 0,

f(α) � P 1−ρ(k)+ε + q−1/2kP 1+ε

(1 + P k|α − a/q|)1/2
, (1.9)

where the implied constant depends at most on k and ε.

The proof of Theorem1uses machinery from additive number theory and Diophan-
tine approximation. If α is close to a rational a/q with a small denominator, then
we are able to obtain a substantially sharper result using methods from multiplica-
tive number theory. Developing an approach introduced by Linnik [15] and applied
by several authors to derive versions of Vinogradov’s bound (1.3) for the linear
sum f(α), we prove the following “major arc” estimate.

Theorem 2. Let k ∈ N and α ∈ R, and suppose that there exist a ∈ Z and q ∈ N
satisfying

1 ≤ q ≤ Q, (a, q) = 1, |qα − a| < QP−k (1.10)

with Q ≤ P. Then, for any fixed ε > 0,

f(α) � Q1/2P 11/20+ε + qεP(logP)c

(q + P k|qα − a|)1/2
, (1.11)

where c > 0 is an absolute constant and where the constant implied by “�” de-
pends at most on k and ε.
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When k = 1, Theorem 2 can be used in two ways. By choosing Q = P 1/2 we es-
sentially recover (1.3), a result that has previously been inaccessible via multiplica-
tive methods. Alternatively, applying (1.11) with Q ≤ P 1/2−ε yields an estimate
that is sharper than (1.3) but is not applicable for all α ∈ R. When k ≥ 2, only
the latter scenario occurs. However, in this case, the resulting estimate—when
applicable—is quite sharp. For example, if q ≤ P 9/20 then

f(a/q) � Pq−1/2+ε;
this is also the estimate one obtains for k ≥ 2 on the assumption of the generalized
Riemann hypothesis, albeit in the slightly longer range q ≤ P 1/2.

Combining Theorem 2 with Theorem 1 and (1.4) yields the following result.

Theorem 3. Let k ≥ 2, let ρ(k) be defined by (1.6) for k ≥ 3, and let ρ(2) =
1
8 . Suppose that α ∈ R and that there exist a ∈ Z and q ∈ N satisfying (1.7) with

Q =
{
P 3/2 if k = 2,

P (k2−2kρ(k))/(2k−1) if k ≥ 3.
Then, for any fixed ε > 0,

f(α) � P 1−ρ(k)+ε + qεP(logP)c

(q + P k|qα − a|)1/2
, (1.12)

where c > 0 is an absolute constant and the constant implied by “�” depends at
most on k and ε.

Theorems 2 and 3 enable us to make progress on several questions related to the
Waring–Goldbach problem. Using Theorem 3, we can deduce new estimates for
cardinalities of exceptional sets for sums of powers of primes. For example, re-
placing (1.4) by (1.12) in a recent work by Liu and Zhan [18] on sums of three
squares of primes, we obtain the following result.

Theorem 4. Let

N = {n∈ N : n ≡ 3 (mod 24), n �≡ 0 (mod 5)}.
Then, for any fixed ε > 0, all but O(x7/8+ε) integers n ∈ N ∩ (1, x] can be ex-
pressed as the sum of three squares of prime numbers.

Theorem 4 improves on [18, Thm. 1], in which the bound for the number of pos-
sible exceptions is O(x11/12+ε). Using our bounds for cubic Weyl sums, one can
also sharpen the estimates of Wooley [29] for exceptional sets for sums of cubes
of primes. The author [13] has proved the following theorem.

Theorem 5. Let 5 ≤ s ≤ 8 be an integer. Define θs and the sets Ns by

θ5 = 79/84, θ6 = 31/35, θ7 = 51/84, θ8 = 23/84;
N5 = {n∈ N : n ≡ 1 (mod 2), n �≡ 0, ±2 (mod 9), n �≡ 0 (mod 7)},

N6 = {n∈ N : n ≡ 0 (mod 2), n �≡ ±1 (mod 9)},
N7 = {n∈ N : n ≡ 1 (mod 2), n �≡ 0 (mod 9)},

N8 = {n∈ N : n ≡ 0 (mod 2)}.
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Then all but O(xθs ) integers n ∈ Ns ∩ (1, x] can be represented as the sum of s
cubes of prime numbers.

The respective exponents θs in Wooley [29] are as follows:

θ5 = 35/36, θ6 = 17/18, θ7 = 23/36, θ8 = 11/36.

Estimates for exceptional sets of the type just described depend on one’s abil-
ity to apply the Hardy–Littlewood circle method with a set of major arcs that is
significantly larger than the “standard” set of major arcs in the Waring–Goldbach
problem. Let

M = M(Q,P) =
⋃

1≤q≤Q

⋃
1≤a≤q
(a,q)=1

{α ∈ R : |qα − a| < QP−k}, (1.13)

and define

S ∗(q, a) =
q∑

x=1
(x,q)=1

e

(
axk

q

)
, v(β) =

∫ 2P

P

e(βy k)

log y
dy,

Sk,s(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

S ∗(q, a)s

φ(q)s
e

(
−an

q

)
, Jk,s(n) =

∫
R

v(β)se(−nβ) dβ.

Applications of the circle method to the Waring–Goldbach problem require ap-
proximations of the form∫

M

f(α)se(−nα) dα ≈ Sk,s(n)Jk,s(n)

with Q as large as possible. The standard approach toward such approximations
(see Hua [10, Chap. 7]) works when Q ≤ (logP)A for some fixed A > 0. Starting
with celebrated works by Vaughan [22] and Montgomery and Vaughan [20], this
traditional barrier has been broken in some special cases (see [16; 17; 20; 21]);
but so far the general result has withstood improvement. Using Theorem 2, we
can change that. The author [13, Prop. 1] has established the following general
theorem.

Theorem 6. Let k, s, n be integers with k ≥ 2, s ≥ 5, and P k � n � P k. Let
ε > 0 be fixed, and let M be defined by (1.13) with Q ≤ P 1/2−ε. Then, for any
A > 0,∫

M

f(α)se(−nα) dα = Sk,s(n)Jk,s(n) + O(P s−k(logP)−A), (1.14)

where the implied constant depends at most on A, k, s, and ε.

Remark 1.1. A comment is in order regarding the proofs of Theorems 1 and 2.
As usual in such matters, we reduce the estimation of sums over primes to the
estimation of multiple sums. However, instead of applying combinatorial identi-
ties such as Vaughan’s [23] or Heath-Brown’s [9], we use a sieve argument due to



On Weyl Sums over Primes and Almost Primes 247

Harman [6]. This makes the proofs of the theorems a little longer but has the bene-
fit that, in the process, we also obtain estimates for certain Weyl sums over almost
primes free of small prime divisors (see Lemmas 3.3 and 5.6). Such estimates are
of independent interest, since Weyl sums over almost primes arise naturally in ap-
plications in which we want to combine the circle method with sieve methods. For
example, the proof of Theorem 5 uses sieve ideas and Lemma 3.3, whereas the re-
spective “sieve-free” result relying on Theorem 3 provides the somewhat weaker
exponents

θ5 = 20/21, θ6 = 19/21, θ7 = 13/21, θ8 = 2/7.

Estimates for Weyl sums over almost primes were also crucial in the author’s work
[14] on the Waring–Goldbach problem for seventh powers.

Remark 1.2. After the work on this paper was completed, the author learned
that Professor Harman [7] has independently obtained Theorem 1 for k ≥ 5. His
proof also depends on an interaction between the methods in [1] and [11], but there
are some differences in the details. Furthermore, Harman and the author [8] have
obtained a further improvement on Theorem 4: by [8, Thm. 1], the number of ex-
ceptional integers counted in Theorem 4 is O(x6/7+ε).

Notation. Throughout the paper, the letter ε denotes a sufficiently small pos-
itive real number. Any statement in which ε occurs holds for each positive ε,
and any implied constant in such a statement is allowed to depend on ε. Implicit
constants are also allowed to depend on k. Any additional dependence will be
mentioned explicitly. The letter p, with or without indices, is reserved for prime
numbers; c denotes an absolute constant, not necessarily the same in all occur-
rences. Also, we use P to denote the “main parameter” and write L = logP.

As usual in number theory, µ(n), φ(n), and τ(n) denote, respectively, the
Möbius function, the Euler totient function, and the number-of-divisors func-
tion. We write e(x) = exp{2πix} and (a, b) = gcd(a, b). We use χ(n) to denote
Dirichlet characters, sometimes referring to the function χ0 (defined by taking
χ0(n) = 1 for all n∈ N) as the “trivial character”. Also, we use m ∼ M and m �
M as abbreviations for the conditions M ≤ m < 2M and c1M ≤ m < c2M, and∑

χ mod q denotes summation over the Dirichlet characters mod q. Finally, if z ≥
2, we define

ψ(n, z) =
{

1 if (n, P(z)) = 1,

0 otherwise,
where P(z) =

∏
p<z

p. (1.15)

2. Auxiliary Results

When k ≥ 3, we define the multiplicative function wk(q) by

wk(p
ku+v) =

{
kp−u−1/2 if u ≥ 0 and v = 1,

p−u−1 if u ≥ 0 and v = 2, . . . , k.

This function enters our analysis through applications of the following result.
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Lemma 2.1. Let k be an integer with k ≥ 3 and let 0 < ρ ≤ 21−k. Also, let X ≥
2 and let I be any subinterval of [X, 2X). Then either∑

x∈I
e(αxk) � X1−ρ+ε (2.1)

or there exist a ∈ Z and q ∈ N such that

1 ≤ q ≤ Xkρ, (a, q) = 1, |qα − a| ≤ Xk(ρ−1), (2.2)

and ∑
x∈I

e(αxk) � qεwk(q)X

1 + Xk|α − a/q| + X1/2+ε. (2.3)

Proof. By Dirichlet’s theorem on Diophantine approximation, there exist a ∈ Z
and q ∈ N with

1 ≤ q ≤ Xk−1, (a, q) = 1, |qα − a| ≤ X1−k.

If q > X then Weyl’s inequality [24, Lemma 2.4] yields (2.1) with ρ = 21−k. By
the argument of [24, Thm. 4.2],

1

q

q∑
x=1

e

(
axk

q

)
� wk(q) (2.4)

whenever (a, q) = 1. If q ≤ X then we deduce (2.3) from (2.4) and [24, Lemmas
6.1 and 6.2]. Thus, at least one of (2.1) and (2.3) holds, and the lemma follows on
noting that, if conditions (2.2) fail, then (2.3) implies (2.1).

The following lemma is a slight variation of [1, Lemma 6]. The proof is the same.

Lemma 2.2. Let q and X be positive integers exceeding 1 and let 0 < δ < 1
2 .

Suppose that q � a and denote by S the number of integers x such that

X ≤ x < 2X, (x, q) = 1, ‖axk/q‖ < δ,

where ‖α‖ = minn∈Z|α − n|. Then

S � δqε(q + X).

Next we list some mean-value estimates for Dirichlet polynomials. We define the
Dirichlet polynomials

M(s,χ) =
∑
m�M

ξmχ(m)m−s, N(s,χ) =
∑
n�N

ηnχ(n)n
−s, (2.5)

R(s,χ) =
∑
r�R

δrχ(r)r
−s, K(s,χ) =

∑
r�K

χ(r)r−s, (2.6)

where the coefficients ξm, ηn, δr are complex numbers such that

|ξm| ≤ τ(m)c, |ηn| ≤ τ(n)c, |δr | ≤ τ(r)c.

Lemma 2.3. Suppose that M ≥ N ≥ 2 and that M(s,χ) and N(s,χ) are defined
by (2.5). Further, set P = MN and suppose that 1 ≤ q, T ≤ P c. Then



On Weyl Sums over Primes and Almost Primes 249

∑
χ mod q

∫ T

−T

∣∣MN
(

1
2 + it,χ

)∣∣ dt � Lc(P 1/2 + (qTM)1/2 + qT ).

Proof. This follows from the mean-value theorem for Dirichlet polynomials [19,
Thm. 6.4] and Cauchy’s inequality.

Lemma 2.4. Suppose that M ≥ N ≥ 2 and R ≥ 2 and that M(s,χ), N(s,χ),
and R(s,χ) are defined by (2.5) and (2.6). Further, set P = MNR and suppose
that 1 ≤ q, T ≤ P c and R ≤ P 8/35. Then∑

χ mod q

∫ T

−T

∣∣MNR
(

1
2 + it,χ

)∣∣ dt � Lc(P 1/2 + (qTM)1/2 + qTP 1/20). (2.7)

Proof. This is a variant of [2, Lemma 4]. If M ≥ P 9/20 then the upper bound
(2.7) follows from Lemma 2.3, so we may assume that M ≤ P 9/20. Let 7 denote
the right side of (2.7). Following the proof of [2, Lemma 4] without referring to
(3.2), (3.23) or (3.30) in [2], we obtain

L−c
∑

χ mod q

∫ T

−T

∣∣MNR
(

1
2 + it,χ

)∣∣ dt
� 71 + 72 + (qT )1/2(PM 5)1/12

+ (qT )3/4(PR7)1/16 + (qT )1/4(P(MR)3)1/8, (2.8)

where 71 = P 1/2 and 72 = qTP 11/20. By the hypotheses M ≤ P 9/20 and R ≤
P 8/35,

(qT )1/2(PM 5)1/12 ≤ (qT )1/2P 13/48 ≤ 7
1/2
1 7

1/2
2 ≤ 7,

(qT )3/4(PR7)1/16 ≤ (qT )3/4P 13/80 = 7
1/4
1 7

3/4
2 ≤ 7,

and
(qT )1/4(P(MR)3)1/8 ≤ (qT )1/4P 85/224 ≤ 7

3/4
1 7

1/4
2 ≤ 7.

Thus, (2.7) follows from (2.8).

Lemma 2.5. Suppose that K, T ≥ 2 and that K(s,χ) is defined by (2.6). Then∑′

χ mod q

∫ T

−T

∣∣K(
1
2 + it,χ

)∣∣4
dt � qTLc,

where L = log(2qTK) and
∑ ′ denotes summation over the nonprincipal char-

acters mod q. Also, if χ0 is the trivial character and K ≤ T 2, then∫ 2T

T

∣∣K(
1
2 + it,χ0

)∣∣4
dt � TLc.

Proof. The proof of this result is similar to the proof of [12, Lemma 5].

Lemma 2.6. Suppose that M ≥ N ≥ 2 and K ≥ 2 and that M(s,χ), N(s,χ),
and K(s,χ) are defined by (2.5) and (2.6). Further, set P = MNK and suppose
that 1 ≤ q, T ≤ P c. Then
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∑′

χ mod q

∫ T

−T

∣∣MNK
(

1
2 + it,χ

)∣∣ dt � Lc(P 1/2 + (qTM)1/2 + qTP 1/20),

where
∑ ′ denotes summation over the nonprincipal characters mod q or over

χ = χ0, the trivial character, according as q > 1 or q = 1.

Proof. The proof is similar to the proof of [2, Lemma 10] under hypothesis (3.39)
in [2], with Lemmas 2.4 and 2.5 playing the roles of Lemmas 4 and 9 in [2].

The next lemma is a simple tool that reduces the estimation of a bilinear sum to
the estimation of a similar sum subject to “nicer” summation conditions.

Lemma 2.7. Let 8 : N → C satisfy |8(x)| ≤ X, let M,N ≥ 2, and define the
bilinear form

B(M,N) =
∑
m∼M

∑
n∼N

m<n

ξmηn8(mn),

where |ξm| ≤ 1 and |ηn| ≤ 1. Then

B(M,N) � L

∣∣∣∣ ∑
m∼M

∑
n∼N

ξ ′
mη

′
n8(mn)

∣∣∣∣ + 1, (2.9)

where |ξ ′
m| ≤ |ξm|, |η ′

n| ≤ |ηn|, and L = log(2MNX). The same estimate holds
if we replace the summation condition m < n in the definition of B(M,N) with
U ≤ mn < U ′.

Proof. Suppose that B(M,N) is subject to the condition m < n (the alternative
case can be dealt with in a similar fashion). We recall the truncated Perron formula

1

2πi

∫ b+iT1

b−iT1

uw

w
dw = E(u) + O

(
ub

T1|log u|
)

, (2.10)

where b > 0 and E(u) is 0 or 1 according as 0 < u < 1 or u > 1. By (2.10) with
b = L−1 and T1 = (MNX)2,

B(M,N) = 1

2πi

∫ b+iT1

b−iT1

∑
m∼M

∑
n∼N

ξmηn8(mn)

(
n

m + 1/2

)w
dw

w
+ O(1),

whence (2.9) follows upon choosing

ξ ′
m = ξm(m + 1/2)−w0 and η ′

n = 1
2ηnn

w0

for a suitable w0 with Rew0 = b.

3. Multilinear Weyl Sums, I

In this section we obtain upper bounds for the multilinear Weyl sums appearing in
the proof of Theorem 1. Our first result—a Type II sum estimate—is a variant of
[11, Lemma 3.1] and [29, Lemma 2.1].
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Lemma 3.1. Let k ≥ 3 and let 0 < ρ < (2k + 2)−1. Suppose that α ∈ R and that
there exist a ∈ Z and q ∈ N such that (1.7) holds with Q subject to

P 4kρ ≤ Q ≤ P k−2kρ. (3.1)

Let M ≥ N ≥ 2, let |ξm| ≤ 1 and |ηn| ≤ 1, and define

g(α) =
∑
m∼M

∑
n∼N

mn∼P

ξmηne(α(mn)k).

Then

g(α) � P 1−ρ+ε + wk(q)
1/2P 1+ε

(1 + P k|α − a/q|)1/2

provided that
max(P 2kρ,P (k−1+4kρ)/(2k−1)) ≤ M ≤ P 1−2ρ. (3.2)

Proof. We follow the proof of [11, Lemma 3.1]. Let I(n1, n2) be the (possibly
empty) interval [M, 2M) ∩ [P/n1, 2P/n2) and define

T1(α) =
∑

N≤n1<n2<2N

∣∣∣∣ ∑
m∈I(n1,n2 )

e(α(nk
2 − nk

1 )m
k)

∣∣∣∣.
By Cauchy’s inequality and an interchange of the order of summation,

|g(α)|2 � PM + MT1(α). (3.3)

Define σ by Mσ = P 2ρL−1 and denote by N the set of pairs (n1, n2) with nj ∼
N for which there exist b ∈ Z and r ∈ N such that

1 ≤ r ≤ Mkσ, (b, r) = 1, |r(nk
2 − nk

1 )α − b| ≤ Mk(σ−1). (3.4)

By (3.2) we may suppose that σ < 21−k. We can then apply Lemma 2.1 with ρ =
σ to the inner summation in T1(α). This yields

T1(α) � NP 1−2ρ+ε + T2(α), (3.5)

where

T2(α) =
∑

(n1,n2 )∈N

wk(r)M

1 + Mk|(nk
2 − nk

1 )α − b/r| .

We now change the summation variables in T2(α) to

d = (n1, n2), n = n1/d, h = (n2 − n1)/d.

We obtain

T2(α) �
∑
dh≤N

∑
n

wk(r)M

1 + Mk|hd kR(n,h)α − b/r| , (3.6)

where R(n,h) = ((n+ h)k − nk)/h and the inner summation is over n satisfying

n ∼ Nd−1, (n,h) = 1, (nd, (n + h)d )∈ N.

For each pair (d,h) appearing in the summation on the right side of (3.6), Di-
richlet’s theorem on Diophantine approximation yields b1 ∈ Z and r1 ∈ N with
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1 ≤ r1 ≤ MkP−2kρ, (b1, r1) = 1, |r1hd
kα − b1| ≤ P 2kρM−k. (3.7)

Because R(n,h) ≤ 3kN k−1, combining (3.2), (3.4), and (3.7) yields

|b1rR(n,h) − br1| ≤ r1M
k(σ−1) + rR(n,h)P 2kρM−k

≤ L−k + 33kP k−1+4kρM−(2k−1)L−k < 1.

Hence,
b

r
= b1R(n,h)

r1
, r = r1

(r1,R(n,h))
. (3.8)

Combining (3.6) and (3.8), we obtain

T2(α) �
∑
dh≤N

M

1 + MkNk−1
1 |hd kα − b1/r1|

∑
n∼N1
(n,h)=1

wk

(
r1

(r1,R(n,h))

)
, (3.9)

where N1 = Nd−1. By [11, eq. (3.11)],∑
n∼N1
(n,h)=1

wk

(
r1

(r1,R(n,h))

)
� r ε1wk(r1)N1 + r ε1 ;

hence we may deduce from (3.9) that

T2(α) � T3(α) + P 1+ε, (3.10)

where

T3(α) =
∑
dh≤N

r ε1wk(r1)MN1

1 + MkNk−1
1 |hd kα − b1/r1|

.

We now write H for the set of pairs (d,h) with dh ≤ N for which there exist
b1 ∈ Z and r1 ∈ N subject to

1 ≤ r1 ≤ P 2kρ, (b1, r1) = 1, |r1hd
kα − b1| ≤ NP k(2ρ−1). (3.11)

We have
T3(α) � T4(α) + NP 1−2ρ+ε, (3.12)

where

T4(α) =
∑

(d,h)∈H

r ε1wk(r1)MN1

1 + MkNk−1
1 |hd kα − b1/r1|

.

For each d ≤ N, Dirichlet’s theorem on Diophantine approximation provides b2 ∈
Z and r2 ∈ N with

1 ≤ r2 ≤ 1
2P

k(1−2ρ)N−1, (b2 , r2) = 1, |r2d
kα − b2| ≤ 2NP k(2ρ−1). (3.13)

Combining (3.11) and (3.13) yields

|b2 r1h − b1r2| ≤ r2NP
k(2ρ−1) + 2r1hNP

k(2ρ−1)

≤ 1
2 + 2N 2P k(4ρ−1) < 1,

whence
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b1

r1
= hb2

r2
, r1 = r2

(r2 ,h)
.

Therefore, on writing Z = MkNk−1
1 |d kα − b2/r2|, we deduce that

T4(α) ≤
∑
d≤N

∑
h<N1

r ε2MN1

1 + Zh
wk

(
r2

(r2 ,h)

)
�

∑
d≤N

r ε2wk(r2)MN 2L

d 2(1 + ZNd−1)
.

Here we have used the estimate∑
d∼D

wk

(
r

(r, dj )

)
� r εwk(r)D (1 ≤ j ≤ k), (3.14)

which can be established similarly to [11, Lemma 2.3]. Hence

T4(α) � T5(α) + NP 1−2ρ+ε, (3.15)

where

T5(α) =
∑
d∈D

wk(r2)NP
1+ε

d 2(1 + P kd−k|d kα − b2/r2|)
and where D is the set of integers d ≤ P 2ρ for which there exist b2 ∈ Z and r2 ∈ N
with

1 ≤ r2 ≤ P 2kρL−1, (b2 , r2) = 1, |r2d
kα − b2| ≤ P k(2ρ−1)L−1. (3.16)

Combining (3.16) and the hypotheses (1.7) and (3.1), we deduce that

|r2d
ka − b2q| ≤ r2d

kQ−1 + qP k(2ρ−1)L−1

≤ P 4kρQ−1L−1 + QP k(2ρ−1)L−1 ≤ 2L−1 < 1,

whence
b2

r2
= d ka

q
, r2 = q

(q, d k)
.

Thus, recalling (3.14), we have

T5(α) � NP 1+ε

1 + P k|α − a/q|
∑

d≤P 2ρ

wk

(
q

(q, d k)

)
d−2 � wk(q)NP

1+ε

1 + P k|α − a/q| .
(3.17)

The lemma now follows from (3.2), (3.3), (3.5), (3.10), (3.12), (3.15), and (3.17).

The next lemma provides an estimate for trilinear sums usually referred to as Type
I /II sums.

Lemma 3.2. Let k ≥ 3 and 0 < ρ < 21−k. Suppose that α ∈ R and that there
exist a ∈ Z and q ∈ N such that (1.7) holds with Q given by (1.8). Let M,N,X ≥
2, let |ξm| ≤ 1 and |ηn| ≤ 1, and define

g(α) =
∑
m∼M

∑
n∼N

∑
x∼X

mnx∼P

ξmηne(α(mnx)k).
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Then

g(α) � P 1−ρ+ε + wk(q)P
1+ε

1 + P k|α − a/q|
provided that

M ≤ P (k−(2k+1)ρ)/(2k−1), MN ≤ P 1−2k−1ρ, MN 2 ≤ P 1−2ρ. (3.18)

Proof. Define σ by Xσ = PρL−1 and denote by M the set of pairs (m, n) with
m ∼ M and n ∼ N for which there exist b1 ∈ Z and r1 ∈ N with

1 ≤ r1 ≤ Xkσ, (b1, r1) = 1, |r1(mn)kα − b1| ≤ Xk(σ−1). (3.19)

Noting that (3.18) implies σ < 21−k, we apply Lemma 2.1 to the summation over
x and obtain

g(α) � T1(α) + P 1−ρ+ε, (3.20)

where

T1(α) =
∑

(m,n)∈M

wk(r1)X

1 + Xk|(mn)kα − b1/r1| .

For each m ∼ M, we apply Dirichlet’s theorem on Diophantine approximation to
find b ∈ Z and r ∈ N with

1 ≤ r ≤ XkP−kρ, (b, r) = 1, |rmkα − b| ≤ P kρX−k. (3.21)

By (3.18), (3.19), and (3.21),

|b1r − bnkr1| ≤ rXk(σ−1) + r1n
kP kρX−k

≤ L−k + 24kP k(2ρ−1)(MN 2)kL−k ≤ 24k+1L−k < 1,

whence
b1

r1
= nkb

r
, r1 = r

(r, nk)
.

Thus, by (3.14),

T1(α) �
∑
m∼M

X

1 + (NX)k|mkα − b/r|
∑
n∼N

wk

(
r

(r, nk)

)

�
∑
m∼M

rεwk(r)NX

1 + (NX)k|mkα − b/r| . (3.22)

Let M′ be the set of integers m ∼ M for which there exist b ∈ Z and r ∈ N with

1 ≤ r ≤ P kρL−1, (b, r) = 1, |rmkα − b| ≤ P k(ρ−1)MkL−1. (3.23)

By (3.22),
T1(α) � T2(α) + P 1−ρ+ε, (3.24)

where

T2(α) =
∑

m∈M′

r εwk(r)NX

1 + (NX)k|mkα − b/r| .

We now consider two cases depending on the size of q in (1.7).
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Case 1: q ≤ P k(1−ρ)M−k. In this case, we estimate T2(α) as in the proof of
Lemma 3.1. Combining (1.7), (1.8), (3.18), and (3.23), we obtain

|rmka − bq| ≤ qP k(ρ−1)MkL−1 + rmkQ−1 ≤ 3kL−1 < 1.

Therefore,
b

r
= mka

q
and r = q

(q,mk)
,

and, by (3.14),

T2(α) � qεNX

1 + P k|α − a/q|
∑
m∼M

wk

(
q

(q,mk)

)
� wk(q)P

1+ε

1 + P k|α − a/q| . (3.25)

Case 2: q > P k(1−ρ)M−k. In this case, we estimate T2(α) by the method of [1,
Lemma 10]. By a standard splitting argument,

T2(α) �
∑
d|q

∑
m∈Md (R,Z)

wk(r)NX1+ε

1 + (NX)k(RZ)−1
, (3.26)

where
1 ≤ R ≤ P kρL−1, P k(1−ρ)M−kL ≤ Z ≤ P kM−k, (3.27)

and Md(R,Z) is the subset of M′ containing integers m subject to

(m, q) = d, r ∼ R, |rmkα − b| < Z−1.

We now estimate the inner sum on the right side of (3.26). We have∑
m∈Md (R,Z)

wk(r) �
∑
r∼R

wk(r)S0(r), (3.28)

where S0(r) is the number of integers m ∼ M with (m, q) = d for which there
exists b ∈ Z such that

(b, r) = 1 and |rmkα − b| < Z−1. (3.29)

By (1.7), (3.27), and (3.29),
S0(r) ≤ S(r), (3.30)

where we write S(r) for the number of integers m subject to

m ∼ Md−1, (m, q ′) = 1, ‖ard k−1mk/q ′‖ < δ,

with q ′ = qd−1, δ = Z−1 + 2k+1RMk(qQ)−1, and ‖θ‖ = minn∈Z|θ − n|. When
(q, rd k) < q, we appeal to Lemma 2.2 and, on noting that (3.18) implies M ≤
P k(ρ−1)M−k < q, arrive at

S(r) � δqεd−1(M + q) � δq1+ε. (3.31)

Combining (3.30) and (3.31) yields

S0(r) � δq1+ε. (3.32)

Since for each m ∼ M there is at most one pair (b, r) satisfying (3.29) and r ∼ R,
we have
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∑
r∼R

S0(r) ≤
∑
m∼M

(m,q)=d

1 � Md−1 + 1; (3.33)

we also have the bounds∑
r∼R

wk(r)
j �

{
R−1+ε if k = 3 and j = 4,

R−1+1/k if k ≥ 4 and j = k,
(3.34)

which follow from [11, Lemma 2.4]. We now apply Hölder’s inequality and then
appeal to (3.32), (3.33), and (3.34). We obtain

∑
r∼R

(q,rd 3)<q

w3(r)S0(r) � (δq1+ε)1/4

( ∑
r∼R

w3(r)
4

)1/4( ∑
r∼R

S0(r)

)3/4

� δ1/4q1/4+εR−1/4M 3/4. (3.35)

Similarly, if k ≥ 4 then

∑
r∼R

(q,rd k )<q

wk(r)S0(r) � (δq1+ε)1/k

( ∑
r∼R

wk(r)
k

)1/k( ∑
r∼R

S0(r)

)1−1/k

� δ1/kq1/k+εR(1−k)/k2
M(k−1)/k. (3.36)

On the other hand, by (3.33) it follows that∑
r∼R

(q,rd k )=q

wk(r)S0(r) � R−1/k(Md−1 + 1) � Mq−1/k + 1, (3.37)

noting that the sum on the left side is empty unless Rd k � q. Combining (3.28)
and (3.35)–(3.37), we deduce that∑

m∈Md (R,Z)

w3(r) � δ1/4q1/4+εR−1/4M 3/4 + Mq−1/3 + 1 (3.38)

and that ∑
m∈Md (R,Z)

wk(r) � δ1/kq1/k+εR(1−k)/k2
M(k−1)/k + Mq−1/k + 1 (3.39)

for k ≥ 4.
Substituting (3.38) into (3.26) then yields

T2(α) � M 3/4NX1+ε

1 + (NX)3(RZ)−1

(
Q

RZ
+ M 3

Q

)1/4

+ P 1+εq−1/3 + NX1+ε

� (PQM 2)1/4+ε + P 1+ε(M 2Q−1)1/4 + MPρ+ε + NX1+ε.

The choice of Q and the hypothesis (3.18) of the lemma ensure that the first three
terms on the right side of the last inequality are � P 1−ρ+ε; furthermore, in con-
junction with the hypothesis q > P 3−3ρM−3 of the present case, the definition of
Q in (1.8) implies that NX � P 1−ρ. Therefore, if k = 3 then

T2(α) � P 1−ρ+ε. (3.40)
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If k ≥ 4 then, by (3.26) and (3.39),

T2(α) � M(k−1)/kNX1+εR1/k2

1 + (NX)k(RZ)−1

(
Q

RZ
+ Mk

Q

)1/k

+ P 1+εq−1/k + NX1+ε

� (P ρQMk−1)1/k+ε + P 1+ε(P ρMk−1Q−1)1/k + MPρ+ε + NX1+ε;
now using (1.8) and (3.18), we find that (3.40) holds in this case as well.

The desired estimate follows from (3.20), (3.24), (3.25), and (3.40).

The following lemma uses the sieve of Eratosthenes–Legendre together with Lem-
mas 3.1 and 3.2 to derive an upper bound for a bilinear Weyl sum with coefficients
supported on numbers not divisible by small primes.

Lemma 3.3. Let k ≥ 3 and 0 < ρ < (2k + 2)−1. Suppose that α ∈ R and
that there exist a ∈ Z and q ∈ N such that (1.7) holds with Q given by (1.8). Let
z,M,N ≥ 2, let |ξm| ≤ 1, and let ψ(n, z) be defined by (1.15). Also, write

g(α) =
∑
m∼M

∑
n∼N

mn∼P

ξmψ(n, z)e(α(mn)k).

Then

g(α) � P 1−ρ+ε + wk(q)
1/2P 1+ε

(1 + P k|α − a/q|)1/2
,

provided that

z ≤ z0 = min(P (k−(8k−2)ρ)/(2k−1),P 1−(2k+2)ρ) (3.41)

and
M ≤ min(P (k−(2k+1)ρ)/(2k−1),P 1−(2k−1+2)ρ). (3.42)

Proof. Let I(m, d) denote the interval

[Nd−1, 2Nd−1) ∩ [P(md)−1, 2P(md)−1).

Using the properties of the Möbius function, we can write g(α) in the form

g(α) =
∑
d|P(z)

∑
m∼M

∑
n∈I(m,d )

ξmµ(d )e(α(mnd)k)

=
{ ∑
d≤P 2ρ

+
∑

d>P 2ρ

}
= · · · = g1(α) + g2(α), say.

Note that the hypothesis (3.42) of the lemma implies hypothesis (3.18) of Lemma
3.2 with (m, n, x) = (m, d, n), so a simple splitting-up argument yields

g1(α) � P 1−ρ+ε + wk(q)P
1+ε

1 + P k|α − a/q| .
Therefore, it suffices to show that

g2(α) � P 1−ρ+ε + wk(q)
1/2P 1+ε

(1 + P k|α − a/q|)1/2
. (3.43)
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We write

g2(α) =
{ ∑
d≤z0P 2ρ

+
∑

d>z0P 2ρ

}
= · · · = g2,1(α) + g2,2(α), say. (3.44)

By Lemma 2.7,

g2,1(α) � L

∣∣∣∣ ∑
d|P(z)

∑
m∼M

∑
n∼P/(md )

ξmηnδde(α(mnd)k)

∣∣∣∣ + 1

with |ηn| ≤ 1 and |δd | ≤ 1. Thus, Lemma 3.1 with (m, n) = (mn, d) yields

g2,1(α) � P 1−ρ+ε + wk(q)
1/2P 1+ε

(1 + P k|α − a/q|)1/2
. (3.45)

We now turn our attention to g2,2(α). Each d appearing in the summation has a
factorization d = p1 · · ·pr subject to

pr < · · · < p1 < z, p1 · · ·pr > z0P
2ρ.

Hence there is a unique integer r1 (1 ≤ r1 < r) such that

P 2ρ ≤ p1 · · ·pr1 ≤ z0P
2ρ < p1 · · ·pr1+1.

On writing p = pr1 , p ′ = pr1+1, d1 = p1 · · ·pr1−1, and d2 = pr1+2 · · ·pr , we
obtain

g2,2(α) =
∑
p,p ′

∑
d1,d2

∑
m,n

ξmµ(d1)µ(d2)ψ(d1,p)e(α(mnpp ′d1d2)
k),

where m ∼ M, n∈ I(m,pp ′d1d2), and p,p ′, d1, d2 are subject to

p ′ < p < z, d1 | P(z), d2 | P(p ′), d1p ≤ z0P
2ρ < d1pp

′.

Therefore, using Lemma 2.7 to remove the summation conditions

p ′ < p, d1pp
′ > z0P

2ρ, and npp ′d1d2 ∼ N,

we have

g2,2(α) � L3

∣∣∣∣ ∑
P 2ρ≤u≤z0P 2ρ

∑
uv∼P

ξ̃uη̃ve(α(uv)
k)

∣∣∣∣ + L2

with coefficients |ξ̃u| � uε and |η̃v| ≤ 1 (and where the new variables are u =
mnp ′d2 and v = pd1). Applying Lemma 3.1 with (m, n) = (u, v), we deduce that

g2,2(α) � P 1−ρ+ε + wk(q)
1/2P 1+ε

(1 + P k|α − a/q|)1/2
. (3.46)

Combining (3.44)–(3.46) completes the proof of (3.43) and establishes the lemma.

4. Proof of Theorem 1

Let z0 denote the right side of (3.41) and let z1 = 2P 1/3. We apply Buchstab’s
combinatorial identity in the form
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ψ(n, z1) = ψ(n, z2) −
∑

z2≤p<z1
n=pj

ψ(j,p) (2 ≤ z2 < z1). (4.1)

Applying (4.1), we obtain

f(α) =
∑
n∼P

ψ(n,
√

2P )e(αnk)

=
∑
n∼P

ψ(n, z0)e(αn
k) −

∑
z0≤p<

√
2P

∑
j∼Pp−1

ψ(j,p)e(α(jp)k). (4.2)

Lemma 3.3 applies to the first sum on the right side of this identity. On the other
hand, the second sum on the right side of (4.2) is equal to∑

z0≤p≤z1

∑
j∼Pp−1

ψ(j,p)e(α(jp)k) +
∑

z1<p<
√

2P

∑
j∼Pp−1

ψ(j,p)e(α(jp)k).

The first of these sums can be estimated by Lemma 3.1, and the second can be
rewritten as

g(α) =
∑

z1<p<
√

2P

∑
j∈I(p)

ψ(j, z1)e(α(jp)
k),

where I(p) is the interval max(p,P/p) ≤ j < 2P/p. Another appeal to (4.1) then
yields

g(α) =
∑

z1<p<
√

2P

∑
j∈I(p)

ψ(j, z0)e(α(jp)
k)

−
∑

z1<p1<
√

2P
z0≤p2<z1

∑
jp2∈I(p1)

ψ(j,p2)e(α(jp1p2)
k).

Since these two sums can be estimated by Lemmas 3.3 and 3.1, respectively, this
completes the proof.

5. Multilinear Weyl Sums, II

In this section we derive bounds for exponential sums from the large sieve. As
mentioned in the Introduction, this idea goes back to Linnik [15], who used the
large sieve to prove zero-density estimates for Dirichlet L-functions and then ap-
plied the latter to deduce bounds for exponential sums. We use a variant of Linnik’s
method that was introduced by Vaughan [23] and has also been used by Harman
[5]; it derives exponential sum estimates directly from large sieve inequalities for
Dirichlet polynomials. We start with two lemmas that relate upper bounds for ex-
ponential sums to mean-value estimates for Dirichlet polynomials.

Lemma 5.1. Let k ∈ N and α ∈ R and suppose that α = a/q + β, where a ∈ Z ,
q ∈ N, and (a, q) = 1. Define

g(α) =
∑
n∼P

ξne(αn
k)
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with coefficients ξn subject to |ξn| ≤ τ(n)c, and suppose there exists a z ≥ 2 such
that ξn = 0 unless (n, P(z)) = 1. Then

g(α) � q−1/2+ε(|g(β)| + A(β)) + qεLcP z−1, (5.1)

where

A(β) =
∑′

χ mod q

∣∣∣∣∑
n∼P

ξnχ(n)e(βn
k)

∣∣∣∣. (5.2)

Here
∑ ′ denotes summation over the nonprincipal characters modulo q.

Proof. We have
g(α) = g1(α) + O(g2), (5.3)

where
g1(α) =

∑
(n,q)=1

ξne(αn
k), g2 =

∑
(n,q)>1

|ξn|.

Using the properties of the coefficients ξn, we obtain

g2 ≤
∑
d|q
d>z

∑
n∼P

n≡0 (mod d )

τ (n)c � qεLcP z−1. (5.4)

On the other hand, by the orthogonality of the Dirichlet characters modulo q,

g1(α) = 1

φ(q)

∑
χ mod q

Sχ(q, a)
∑
n∼P

ξnχ(n)e(βn
k), (5.5)

where

Sχ(q, a) =
q∑

x=1

χ̄(x)e

(
axk

q

)
.

By [26, Prob. VI.14] we have

Sχ(q, a) � q1/2+ε (5.6)

and so, separating the contribution from the principal character, we deduce from
(5.5) that

g1(α) � q−1/2+ε(|g(β)| + g2 + A(β)). (5.7)

Clearly, (5.1) follows from (5.3), (5.4), and (5.7).

Lemma 5.2. Let k ∈ N, β ∈ R, and q ∈ N, and suppose that q ≤ P c. Define

g(β,χ) =
∑
m∼M

∑
n

mn∼P

ξmηnχ(mn)e(β(mn)k)

and
G(s,χ) =

∑
m�M

∑
n�N

ξmηnχ(mn)(mn)−s,

where ξm and ηn are complex numbers subject to |ξm| ≤ τ(m)c, |ηn| ≤ τ(n)c, and
N = PM−1. Then
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∑
χ

g(β,χ) � L max
2≤T≤P 5

√
PT0

T0 + T

∑
χ

∫ T

−T

∣∣G(
1
2 + it,χ

)∣∣ dt + qT0P
−1+ε, (5.8)

where T0 = P k|β| + 1 and
∑

χ denotes summation over a set of characters mod-
ulo q.

Proof. Applying (2.10) with b = 1
2 and T1 = P 5, we obtain

∑
y1≤mn<y2

ξmηnχ(mn) = 1

2πi

∫ 1/2+iT1

1/2−iT1

G(s,χ)
y s

2 − y s
1

s
ds + O(P−2+ε)

whenever P ≤ y1 < y2 ≤ 2P and minn∈Z|n − yj | ≥ P−2. Therefore, by partial
summation,

g(β,χ) = 1

2πi

∫ 1/2+iT1

1/2−iT1

G(s,χ)h(s) ds + O(T0P
−1+ε), (5.9)

where

h(s) = h(s;β) =
∫ 2P

P

y s−1e(βy k) dy.

We now observe that

h(σ + it) � P σ min(1, |t |−1/2)

and that, unless kπ|β|P k ≤ |t | ≤ 2k+2kπ|β|P k, we also have

h(σ + it) � P σ min(T −1
0 , |t |−1).

Hence

h
(

1
2 + it

) �
√
PT0

T0 + |t | ,

and (5.8) follows from (5.9) by a standard splitting argument.

The next lemma provides preliminary estimates for sums of the form appearing on
the right side of (5.1) by combining Lemma 5.2 with Lemmas 2.4 and 2.6. Define

g(β,χ) =
∑
m∼M

∑
n∼N

∑
r

mnr∼P

ξmηnδrχ(mnr)e(β(mnr)k), (5.10)

where the coefficients ξm, ηn, δr are complex numbers with

|ξm| ≤ τ(m)c, |ηn| ≤ τ(n)c, |δr | ≤ τ(r)c.

Also, through the remainder of this section,
∑ ′ has the same meaning as in

Lemma 2.6: it represents summation over the nonprincipal characters modulo q

or a single term with χ = χ0 according as q > 1 or q = 1.

Lemma 5.3. Let k ∈ N, β ∈ R, and q ∈ N, and suppose that q ≤ P and q|β| ≤
P 1−k. Let g(β,χ) be defined by (5.10), and suppose that max(M,N) ≤ P 11/20

and either MN ≥ P 27/35 or δr = 1 for all r. Then
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∑′

χ mod q

|g(β,χ)| � Lc(PC(β)−1/2 + qP 11/20C(β)1/2), (5.11)

where C(β) = P k|β| + 1.

Proof. By Lemma 5.2,

∑′

χ mod q

|g(β,χ)| � L
√
PC(β)

C(β) + T

∑
χ

∫ T

−T

∣∣G(
1
2 + it,χ

)∣∣ dt + P ε, (5.12)

where 2 ≤ T ≤ P 5 and

G(s,χ) =
∑
m�M

∑
n�N

∑
r�P(MN)−1

ξmηnδrχ(mnr)(mnr)−s.

When MN ≥ P 27/35, we can bound the right side of (5.12) by Lemma 2.4; when
δr = 1, we can apply Lemma 2.6.

Lemma 5.4. Let k ∈ N, β ∈ R, and q ∈ N, and suppose that q ≤ P and q|β| ≤
P 1−k. Also, let g(β,χ) be defined by (5.10) with δr = ψ(r, z), and suppose that

z ≤ P 23/140 and max(M,N) ≤ P 11/20.

Then (5.11) holds.

Proof. We consider two cases depending on the sizes of M and N. By symmetry,
we may assume that N ≤ M.

Case 1: MN ≥ P 27/35 or M ≥ P 9/20. If the former condition holds, we apply
Lemma 5.3 with δr = ψ(r, z). Otherwise, we write n′ = nr and apply Lemma 5.3
with (m, n, r) = (m, n′,1).

Case 2: M ≤ P 9/20 and MN ≤ P 27/35. We have∑′

χ mod q

|g(β,χ)| � L
∑′

χ mod q

∣∣∣∣ ∑
m,n,r,d

ξmηnµ(d )χ(mnrd )e(β(mnrd )k)

∣∣∣∣, (5.13)

where m, n, r, d are subject to

d | P(z), d ∼ D, m ∼ M, n ∼ N, mnrd ∼ P.

We now consider two subcases depending on the size of D.

Case 2.1: ND ≤ P 11/20. In this case we estimate the right side of (5.13) by
Lemma 5.3 with (m, n, r) = (m, nd, r).

Case 2.2: ND ≥ P 11/20. Our argument is similar to that used in the proof of
Lemma 3.3. Suppose that d occurs on the right side of (5.13). We observe that d
has at least two prime divisors, since otherwise we would have

DN < zN ≤ z(MN)1/2 ≤ zP 27/70 ≤ P 11/20.

Decomposing d into prime factors yields d = p1 · · ·pj , where

pj < · · · < p1 < z, p1N ≤ P 11/20 < p1 · · ·pjN.
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Hence there is a unique i (1 ≤ i < j) such that

p1 · · ·piN ≤ P 11/20 < p1 · · ·pi+1N;
consequently, d has a unique factorization d = pp ′d1d2 in which

p < p ′, (d1, P(p ′)) = 1, d2 | P(p), p ′d1 ≤ P 11/20 < pp ′d1.

Thus, the sum over d on the right side of (5.13) can be rearranged in the form∑
p<p ′

∑
d1|P(z)

∑
d2|P(p)

µ(d1)µ(d2)ψ(d1,p ′)χ(pp ′d1d2)e(α(mnrpp ′d1d2)
k),

where p,p ′, d1, d2 are subject to

p ′d1 ≤ N11/20 < pp ′d1, pp ′d1d2 ∼ D, rpp ′d1d2 ∼ R, mnrpp ′d1d2 ∼ P.

Using Lemma 2.7 to simplify the summation conditions, we obtain

L−c
∑′

χ mod q

|g(β,χ)| �
∑′

χ mod q

∣∣∣∣ ∑
u∼M ′

∑
v∼N ′

∑
p

uvp∼P

ξ̃uη̃v θpχ(uvp)e(α(uvp)
k)

∣∣∣∣ + 1,

where the new summation variables are u = mrd2 and v = p ′d1, the coefficients
satisfy |ξ̃u| ≤ τ(u)c, |η̃v| ≤ τ(v)c, and |θp| ≤ 1, and M ′ and N ′ are subject to

N ′ � P 11/20, M ′ � P 9/20, M ′N ′ � Pz−1.

The desired estimate then follows from Lemma 5.3 with (m, n, r)= (u, v,p).

Lemma 5.5. Let k ∈ N, β ∈ R, and q ∈ N, and suppose that q ≤ P and q|β| ≤
P 1−k. Let ξm be complex numbers with |ξm| ≤ τ(m)c, and define

g(β,χ) =
∑
m∼M

∑
n

mn∼P

ξmψ(n, z)χ(mn)e(β(mn)k),

where ψ(n, z) is given by (1.15). Then (5.11) holds provided that

M ≤ P 11/20, z ≤ √
2P/M. (5.14)

Proof. We use Buchstab’s identity (4.1) to write g(β,χ) as a linear combination
of exponential sums for which (5.11) can be established by means of Lemma 5.3
or Lemma 5.4. We may assume that z > P 23/140, for otherwise the result is an
immediate corollary to Lemma 5.4.

Set z0 = P 23/140. Applying (4.1) twice yields

g(β,χ) = g1(β,χ) − g2(β,χ) + g3(β,χ),

where

gi(β,χ) =
∑
m∼M

∑
n

mn∼P

ξmηn,iχ(mn)e(β(mn)k) (i = 1, 2, 3);
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here

ηn,1 = ψ(n, z0), ηn,2 =
∑
n=pj

z0≤p<z

ψ(j, z0), and ηn,3 =
∑

n=p1p2 j

ψ(j,p2),

with the primes p1,p2 in ηn,3 subject to

z0 ≤ p2 < p1 < z, p1p
2
2 ≤ 2PM−1. (5.15)

The desired estimates for g1(β,χ) and g2(β,χ) follow from Lemma 5.4. We de-
compose g3(β,χ) further. Write

g3(β,χ) =
( ∑

p1p2≤P 11/20

+
∑

p1p2>P 11/20

) ∑
m,j

· · · = g4(β,χ) + g5(β,χ), say.

Consider g4(β,χ). Using (4.1) once more, we obtain

g4(β,χ) = g6(β,χ) − g7(β,χ),

where g6(β,χ) and g7(β,χ) are obtained from g4(β,χ) by replacing ηn,3 with

ηn,6 =
∑

n=p1p2 j

ψ(j, z0) and ηn,7 =
∑

n=p1p2p3j

ψ(j,p3);

the prime p3 in ηn,7 is subject to

z0 ≤ p3 < p2 , p1p2p
2
3 ≤ 2PM−1.

The sum g6(β,χ) is covered by Lemma 5.4, and we will show that g7(β,χ) can
be dealt with by Lemma 5.3. Indeed, either

P 9/20 ≤ p1p2 ≤ P 11/20 and jp3M ≤ 2P 11/20

or

p1p2 < P 9/20, jM ≤ 2Pz−3
0 ≤ P 11/20, and p3 <

√
p1p2 < P 9/40.

We can apply Lemma 5.3 with (m, n, r) = (mjp3,p1p2 ,1) in the former case
and with (m, n, r) = (mj,p1p2 ,p3) in the latter case. (Also, we must appeal to
Lemma 2.7 in order to remove the “unwanted” summation conditions.)

We now turn to g5(β,χ). By (4.1),

g5(β,χ) = g8(β,χ) − g9(β,χ),

where g8(β,χ) and g9(β,χ) are defined similarly to g6(β,χ) and g7(β,χ). We
can estimate g8(β,χ) by Lemma 5.4 (note that p1p2 ≥ P 11/20 and the second
inequality in (5.15) yield p2M ≤ 2P 9/20). On the other hand, the summation vari-
ables in g9(β,χ) satisfy

j < 2P/(Mp1p2p3) < 2P 9/20z−1
0 < z2

0,

so j = p4 ≥ p3 and we can replace the coefficient ψ(j,p3) by ψ(j, z0) whenever
j ≥ p3. Furthermore,

p1M < 2P/(p2p3j) < 2Pz−3
0 < P 11/20 and (p2p3)

2 ≤ p1p2p
2
3 ≤ 2PM−1,
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so any subsum of g9(β,χ) in which the constraints onm,p1,p2 ,p3 make the sum-
mation condition j ≥ p3 superfluous can be dealt with via Lemma 5.4. (We can use
Lemma 2.7 to remove troublesome summation conditions involvingm,p1,p2 ,p3;
however, using that lemma to remove j ≥ p3 would alter the coefficientsψ(j, z0),
which we need in order to apply Lemma 5.4.) In particular, Lemma 5.4 applies to
the subsum of g9(β,χ) with p1p2p3M ≤ P 27/35, since in this case

p3 ≤ √
2P/p1p2 ≤ P 9/40 < P 8/35 ≤ j.

Finally, in the remainder of g9(β,χ) we have

p1M ≤ 2Pz−3
0 ≤ P 11/20, p2p3 ≤ √

2P/M ≤ P 11/20, j ≤ 2P 8/35,

and we can refer to Lemma 5.3 with (m, n, r) = (mp1,p2p3, j).

We are finally in position to state the main result of this section. Combining Lem-
mas 5.1 and 5.5, we obtain the following estimate for bilinear Weyl sums over
almost primes.

Lemmas 5.6. Let k ∈ N and α ∈ R, and suppose that there exist a ∈ Z and q ∈ N
satisfying (1.10) with Q ≤ P. Let ξm be complex numbers with |ξm| ≤ τ(m)c, and
define

g(α) =
∑
m∼M

∑
n

mn∼P

ξmψ(mn, z)e(α(mn)k)

with ψ(n, z) given by (1.15). Suppose that conditions (5.14) hold. Then

g(α) � qεLc(PC(α)−1/2 + C(α)1/2P 11/20 + Pz−1), (5.16)

where C(α) = q + P k|qα − a|.
Remark 5.1. Sometimes one needs a slight variation of Lemma 5.6 in which z,
instead of being fixed, depends on m. Let ξm and ηn be complex numbers as be-
fore, and let z(m) be defined by z(m) = m or by z(m) = Zm−1 with Z ∈ R.

Suppose that the sequences (ξm) and (ηn) are supported on integers free of prime
divisors < z and that z(m) ≥ z for all m ∼ M. We claim that the exponential sum

g(α) =
∑
m∼M

∑
n∼N

∑
r

mnr∼P

ξmηnψ(r, z(m))e(α(mnr)k)

satisfies (5.16) provided that

MN ≤ P 11/20 and z(m) ≤ √
2P/MN.

The proof of this estimate is similar to the proof of Lemma 5.6. Only a few
“cosmetic” changes are needed owing to the interdependence between m and r.

For example, in the proof of the respective variant of Lemma 5.4, in place of (5.13)
we have a bound of the form∑′

χ mod q

|g(β,χ)| � L
∑′

χ mod q

∣∣∣∣ ∑
m∼M

∑
d|P(z(m))

ξmµ(d )A(m, d)

∣∣∣∣,



266 Angel V. Kumchev

where A(m, d) represents the double sum over n and r. Since∑
d|P(z(m))

µ(d )A(m, d) = −
∑

p<z(m)

∑
d|P(p)

µ(d )A(m,pd),

an appeal to Lemma 2.7 gives∑
m,d

ξmµ(d )A(m, d) � L

∣∣∣∣ ∑
m∼M

∑
p<z0

∑
d|P(p)

ξ ′
mθpµ(d )A(m,pd)

∣∣∣∣,
where z0 = maxm z(m). The sum on the right side of this inequality can then be
handled in the same fashion as that on the right side of (5.13).

6. Proof of Theorems 2, 3, and 4

We are finally in position to complete the proofs of Theorems 2–4.

Proof of Theorem 2. Apply Lemma 5.6 with M = 1 and z = √
2P .

Proof of Theorem 3. If a and q satisfy (1.10) with Q = P 2kρ(k), then Theorem 2
yields the bound

f(α) � P 4/5+ε + qεP(logP)c

(q + P k|qα − a|)1/2
,

which is even stronger than (1.12). On the other hand, if a and q satisfy (1.7) but
not (1.10) with Q = P 2kρ(k), then the estimate

f(α) � P 1−ρ(k)+ε

follows from Theorem 1 or (1.4) according as k ≥ 3 or k = 2.

Proof of Theorem 4. We fix k = 2. Let M be the set of α ∈ [0,1] for which there
exist integers a and q satisfying (1.10) with Q = P 1/3−ε, and let m = [0,1] \ M.

By the argument in [18], the desired bound will follow if we show that

max
α∈m

|f(α)| � P 7/8+ε. (6.1)

By Dirichlet’s theorem on Diophantine approximation, for every α ∈ R there exist
integers a and q satisfying (1.7) with Q = P 3/2. Since for α ∈ m we also have

q + P 2|qα − a| > P 1/3−ε,

the desired bound (6.1) follows from Theorem 3.
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