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Residue Forms on Singular Hypersurfaces

ANDRZEJ WEBER

1. Introduction

The purpose of this paper is to point out a relation between the canonical sheaf and
the intersection complex of a singular algebraic variety. We focus on the hyper-
surface case. Let M be a complex manifold and let X C M be a singular hypersur-
face. We study residues of top-dimensional meromorphic forms with poles along
X. Applying resolution of singularities, we are sometimes able to construct resi-
due classes either in L2-cohomology of X or in the intersection cohomology. The
conditions that allow us to construct these classes coincide and can be formulated
in terms of the weight filtration. Finally, provided that these conditions hold, we
construct in a canonical way a lift of the residue class to the cohomology of X.

Let the manifold M be of dimension n + 1. If the hypersurface X is smooth then
we have an exact sequence of sheaves on M:

0 Q1 e QIFI(X) 25 i,Q) — 0.

Here Qf\}“ stands for the sheaf of holomorphic differential forms of the top de-
gree on M and 2 1’{,;“' (X)) is the sheaf of meromorphic forms with logarithmic poles
along X (i.e., with the poles of at most the first order). The mapi: X < M is the
inclusion. The morphism Res is the residue map sending w = ds/s A 5 to n|x if
s is a local equation of X. The residues of forms with logarithmic poles along a
smooth hypersurface were studied by Leray [Le] for forms of any degree. Later
such forms and their residues were applied by Deligne ([D], see also [GS]) to con-
struct the mixed Hodge structure for the cohomology of open smooth algebraic
varieties.

We will allow X to have singularities. As in the smooth case, the residue form
is a well-defined differential form on the nonsingular part of X. In general this
form may be highly singular at the singular points of X. We will ask the following
questions.

* Suppose M is equipped with a hermitian metric. Is the norm of Res(w) square
integrable? We note that this condition does not depend on the metric.

* Does the residue form Res(w) define a class in the intersection cohomology
IH"(X)?
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We recall that, by Poincaré duality, the residue defines a class in homology
HBM(X) (Borel-Moore homology, i.¢., homology with closed supports); see Sec-
tion 7. The possibility of lifting the residue class to intersection cohomology means
that Res(w) has mild singularities. The intersection cohomology I/H*(X), de-
fined in [GM], is a certain cohomology group attached to a singular variety. The
Poincaré duality map [X]N: H*(X) — Hdimg(x)—«(X) factors through /H*(X).
Conjecturally (the proof in [Oh] seems to be incomplete), intersection cohomol-
ogy is isomorphic to L?-cohomology. It has been known from the very beginning
of the theory of intersection cohomology that this conjecture is true if X has con-
ical singularities [C; CGM].
We study a resolution of singularities

w:M— M, pu'(X)=XUE,

where X is the proper transform of X and E is the exceptional divisor. The pull-
back p*w is a meromorphic form on M. It can happen that this pull-back has no
poles along the exceptional divisors. Then we say that @ has canonical singu-
larities along X. By definition, w has canonical singularities if and only if w €
adjy - QX,IH(X ), where adjx C Oy, is the adjoint ideal of [EL]. The set of forms
with canonical singularities can be characterized as follows.

THEOREM 1.1.  The following conditions are equivalent:

* w has canonical singularities along X ;

* the resid_ue form Res(w) € Q2 ;’(reg extends to a holomorphic form on any resolu-
tionv: X - X;

* the norm of Res(w) is square integrable for any hermitian metric on Xreg.

We shall divide the statement of Theorem 1.1 into Proposition 3.2, Theorem 4.1,
Corollary 5.2, and Theorem 6.1. Although our constructions use resolution of sin-
gularities, we are primarily interested in the geometry of the singular space X
itself. The resulting objects do not depend on the choice of resolution.

Our description of forms with canonical singularities agrees with certain results
concerning intersection cohomology. We stress that, on the level of forms, we ob-
tain a lift of residue to L2-cohomology for free. On the other hand, cohomological
methods enable one to construct a lift of the residue class to intersection coho-
mology. This time the lift is obtained, in essence, by applying the decomposition
theorem of [BBD]. This lift is not unique.

It is worthwhile to examine each of these two approaches. The crucial notion in
the cohomological approach is the weight filtration. We will sketch this construc-
tion as follows. Suppose that M is complete. Then H**!(M — X) is equipped
with the weight filtration, and all terms are of weight > k + 1. The homology
H,_(X) is also equipped with a mixed Hodge structure, which is of weight >
k — 2n. The homological residue map preserves the weight filtration:

res: H**'(M = X) —> Hop_ i (X)(—n —1).
Here (i) denotes the i-fold Tate twist; now H,,_;(X)(—n — 1) is of weight >

k 4+ 2. The intersection cohomology TH*(X) maps to Hy,—x(X)(—n). Since it is
pure, the image is contained in Wy (H»,—x(X)(—n)). We will show the following.
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THEOREM 1.2. Ifc € H*Y(M — X) is of weight < k + 2, then res(c) lifts to
intersection cohomology. In other words, we have a factorization of the residue
map

Wi HFH (M — X) —————— Wiga(Hop i (X)(—n — 1)).

—~ /

THX(X)(=1)

In fact, for an arbitrary complete algebraic variety, the image of intersection co-
homology coincides with the lowest term of the weight filtration in homology
(see [W4]).

We note that if w has canonical singularities along X then its cohomology class
is of weight < n 4 2. By Theorem 1.1, Res(w) defines a class in L2-cohomology.
Also, by Theorem 1.2, the residue of [w] can be lifted to intersection cohomology.
To completely clear up this situation we construct in Section 9 a canonical lift of
the residue class—not only to intersection cohomology, but even to cohomology
of X.

An attempt to relate holomorphic differential forms to intersection cohomology
was described by Kollar [KI, Sec. I1.4]. However, it seems that his solution is
not definite because he applies the (noncanonical) decomposition theorem. The
construction proposed in our Remark 9.4 is elementary and geometric. As a side
result of these considerations, we obtain our next theorem.

THEOREM 1.3.  Suppose an algebraic variety X is complete and of dimension n.
Let X be its resolution. Then H*(X; Q;) is a direct summand both in H"t*(X)

and in TH"™ 5 (X).

One can hope that a relation between holomorphic forms of lower degrees with
intersection cohomology will be explained as well.

Another approach to understanding the relation between the residues and inter-
section cohomology was presented by Vilonen [ Vi] in the language of D-modules.
His method applies to isolated complete intersection singularities.

Finally, in Sections 10 and 11 we briefly describe a relation between the oscillat-
ing integrals of [Ma] or [ V] and residue theory for isolated singularities. Namely,
if the order of a form at each singular point is greater than zero, then the residue
class can be lifted to intersection cohomology. Again, this condition coincides
with having canonical singularities.

This paper is a continuation of [W2], where the case of isolated singularities
was described. The approach here was partially motivated by a series of lectures
delivered by Tomasz Szemberg to the algebraic geometry seminar IMPANGA at
the Polish Academy of Science.

2. Residues as Differential Forms

Let w be a closed form with a first-order pole on X. Then the residue form Res(w)
can be defined at the regular points of X. The case when w is a holomorphic
(n + 1,0)-form is the most important for us:
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w= gdzo/\-n/\dz,,,
where the function s describes X. The space of such forms is denoted by Q,'\’fl (X).
Then the residue form is a holomorphic (7, 0)-form:
Res(w) € Q;reg

Here, by abuse of notation we use € to mean that Res(w) is a section of the sheaf
2%,..- The precise formula for the residue is derived as follows. Set s; = & we

9zi
then have
n
ds = Z s;dz;.
i=0

At the points where sy # 0, we write

1
dzo = (ds - E S dz,>
50 i=1

and

ds — dzi | ANdzyp A -+ ANdzy,
w= Sso(s ;s z) 21 z

ds
= — A dzl/\ -Adz,.
N S0
Thus Res(w) = (A%dzl A ANdzy)lx, € Q..
To see how Res(w) behaves in a neighborhood of the singularities, let us calcu-
late its norm in the metric coming from the coordinate system:

lg]

|Res(w)|x = ‘_ A Res(w )‘ -  |grad(s)|’

IdSI

We conclude that Res(w) has (in general) a pole at singular points of X.
The forms that can appear as residue forms are exactly the regular differential
forms defined by Kunz [Ku] for arbitrary varieties.

3. Residues and Resolution

We will analyze the residue form using resolution of singularities. Let u : M—>M
be alog resolution of (M, X) (i.e., a birational map) such that ;=X is a smooth divi-
sor with normal crossings and y is an isomorphism when restricted to M- T, ¢ sing-
Let X be the proper transform of X and let E be the exceptional divisor. The pull-
back of w to M is a meromorphic form with poles along X and E. In the following
definition we use the terminology of [K2].

DEeFINITION 3.1.  We say that w has canonical singularities along X if y*o has
no pole along the exceptional divisor, that is, if ©*w € Q 1’;1 (X).
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We remark that this notion does not depend on the resolution. Our methods of
studying residue forms are appropriate for tackling this class of singularities. We
begin with an easy observation.

PROPOSITION 3.2. If w has canonical singularities along X then, for any reso-
lution v: X — X, the pull-back of the residue form v* Res(w) is holomorphic
on X.

REMARK 3.3.  We do not assume that v extends to a resolution of the pair (M, X).

Proof of Proposition 3.2. Let u be a log resolution of (M, X). By assumption
we have p*w e Q”“(X) and so Res(u*w) is a holomorphic form on X. Hence
Res(w) € Q% Xree extends to a section of w2 ;‘( The latter sheaf does not depend on
the resolution of X. Indeed, let X be a smooth variety dornlnatlng both X and X.
Then Res(u*w) can be pulled back to X and pushed down to X (since [+ 2 X =
Q; if f is birational). The resulting form coincides with v* Res(w) outside the
singularities. UJ

4. Vanishing of Hidden Residues

We have observed that if w has canonical singularities then the residue form is
smooth on each resolution. Let us assume the converse: suppose Res(w) extends
to a holomorphic form on X. The extension is determined only by the nonsingu-
lar part of X. We will show that all the other “hidden” residues along exceptional
divisors vanish.

THEOREM 4.1.  If Res(u*w)|;_ g has no pole along E N X, then w has canonical
singularities along X.

Proof. Let E = Ule E; be a decomposition of E into irreducible components.
Assume that Res(p*w)|g, is nontrivial for 1 < i </ for some / < k. Blowing up
intersections E; N X , we can assume that E; N X = () fori < [. Let a; be the order
of the pole of u*w along E;. Define a quotient sheaf F:
!
0— QI e sz;;l(z a,E,-) —» F —> 0. (4.2)
i=1

LeEmMA 4.3.  The direct image . F vanishes.

Proof. We push forward the sequence (4.2) and obtain again the exact sequence,
since RI/JL*Q;%“ = 0 (by e.g. [K1]). But now the sections of

!
M*QX;{H ( Z aiEi)

i=1
are forms that are holomorphic on M — p(E). Therefore they are holomorphic
and hence . F = 0. O
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Proof of Theorem 4.1 (cont.). We tensor the sequence (4.2) with (’)(f( ). Because
the support of F is disjoint with X, we obtain a short exact sequence:

!
0 — QIF'(X) — %“(5( + Za,E,») — F — 0.
i=1

Applying u, yields, by Lemma 4.3, an isomorphism:

[
e (X) = u*sz;;l(f( + aiE,-).
i=l

This expression means that w cannot have a pole along exceptional divisors. [J

5. Adjoint Ideals

The adjoint ideals were introduced in [EL] for a hypersurface X C M. The adjoint
ideal adjxy C Oy, is the ideal satisfying

e (X) = adjx - 237(X).

The ideal adjx consists of the functions f for which u*(§d11 A ANdz,) €
Q"H(M*D) has no pole along the exceptional divisors; that is, f belongs to
Q”H(X ). Here s (as before) is a function describing X. In other words, the forms

w € adjy - Q”“(X ) are exactly the forms with canonical singularities along X.
Moreover, the sequence of sheaves

0 — Q! — adjx - Q' (X) —> p. Q% — 0 5.1

is exact [EL, 3.1]. (This follows from the vanishing of RIM*Q;‘;I+1.) The adjoint
ideal does not depend on the resolution.

COROLLARY 5.2. The residue form Res(w) € Q )”(reg extends to a section of 11,2 ;
if and only if € adjy - Q7 (X).

Proof. The implication = follows from the Theorem 4.1. The converse follows
from the exact sequence (5.1). O

It turns out that every form has canonical singularities (i.e., adjx = Oy) if and
only if X has rational singularities [K2, Sec. 11].

6. L2-Cohomology

Let us assume that the tangent space of M is equipped with a hermitian met-
ric. For example, if M is a projective variety then one has the restriction of the
Fubini—Study metric from projective space. The nonsingular part of the hyper-
surface X also inherits this metric. Consider the complex of differential forms
that have square-integrable pointwise norm (and the same holds for differential).
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Its cohomology is an important invariant of the singular variety called the L2-
cohomology [CGM]. This is why we are led to the question: When is the norm
of the residue form square integrable? Moreover, for the forms of type (n,0) on
the n-dimensional manifold, the condition of integrability does not depend on the
metric. This is because fX|n|2 dvol(X) is equal (up to a constant) to fx nAm.

THEOREM 6.1. The residue form Res(w) has the square-integrable norm if and
only if w has canonical singularities.

Proof. Instead of asking about integrability on X ., we ask about integrability on
X. Now local computation shows that, if @ has a pole, then its norm is not square
integrable. O

REMARK 6.2. Note that the class of the residue form does not vanish—provided
that w has a pole along X. This is because Res(w) can be paired with its conju-
gate Res(w) in cohomology.

REMARK 6.3. The connection between integrability conditions and multiplicities
was studied by Demailly [De].

REMARK 6.4. For homogeneous singularities (which are conical), integrals of the
residue forms along conical cycles converge provided that (a) the cycle is allow-
able in the sense of intersection homology and (b) |Res(w)| € L?(X).

7. Residues and Homology

Suppose for a moment that X C M is smooth. Let Tubx be a tubular neighbor-
hood of X in M. We have a commutative diagram:

MIN

H*M—X) ——— HM, (M, X)(—n—1)

| !

MIN
HH MM - X) — 0 HBM L (X)(—n — 1)

H**(Tuby, Tuby — X) +——— H*(X)(=D).

In the diagram, H3M denotes Borel-Moore homology (i.e., homology with closed
supports). All coefficients are in C. The entries of the diagram are equipped with
the Hodge structure. The map 7 is the Thom isomorphism, and the remaining
maps in the bottom square are also isomorphisms by Poincaré duality for X and
M. The residue map
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res=1t"'od: H"(M — X) > H* ' (X)

is defined to be the composition of the differential with the inverse of the Thom
isomorphism. By [Le] we have

1
res([w]) = ﬁ[Res(a))]

for a closed form with first-order pole along X. (We use lowercase for the ho-
mology class res(c) € HYM ,_ (X) to distinguish it from the differential form
Res(w) € Q%.)

When X is singular there is no tubular neighborhood of X nor Thom isomor-
phism, but we can still define a homological residue as

res: H*(M — X) — HyM,_ (X)(—n — 1),
res(c) = [M]1Nde = d([M]Ne).

If X were nonsingular then this definition would be equivalent to the previous one,
because & — [X]NE& is a Poincaré duality isomorphism and the diagram on page
559 commutes.

REMARK 7.1.  We should mention the work of Herrera ([H1]; see also [HL]), who
defined a residue current for a meromorphic (k 4+ 1)-form. This current is sup-
ported by the divisor of poles, and for a closed form it defines a homology class
in H3M, (X).

In general there is no hope of lifting the residue morphism to cohomology. For
M = C"*!, the morphism res is the Alexander duality isomorphism and [X]N
may not be onto. Instead we ask if the residue of an element lifts to the intersec-
tion homology of X. The intersection homology groups, defined by Goresky and
MacPherson [GM], are the groups that “lie between” homology and cohomology;
that is, we have the factorization

HHX) — 0 gBM (x)(—n).

2n—sx

N

IH*(X)
In fact, for complete X the map [X]N factors through
P B
HY(X)/ Wit HY(X) > THN(X) —> Wi(Hap(X)(=n)).

The injectivity of « and surjectivity of B are proved in [W4]. The composition
Ba need not be an isomorphism. For example, if X admits an algebraic cel-
lular decomposition, then its cohomology is pure (i.e., W,_1H*(X) = 0 and
Wi (Hyp—x (X)(—n)) = Hyy— 1 (X)(—n)) but the Poincaré duality map [ X ]N does
not have to be an isomorphism. We will analyze the arguments of [W4] for the
particular situation of a hypersurface.
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8. Hodge Theory

According to Deligne ([D]; see also [GS]), any algebraic variety carries a mixed
Hodge structure. Suppose the ambient variety M is complete. To construct the
mixed Hodge structure on M — X one finds a log resolution of (M, X), denoted

by u: M — M (see Section 3). Then one defines A’fog = A*]‘a(log(u_'X)), the

complex of C*°-forms with logarithmic poles along w™'X. Its cohomology com-
putes H*(M — u~'X) = H*(M — X). The complex Ajqg 1s filtered by the weight
filtration

0= Wi_1Al,, C WAl C -+ C Wy A, = A,

which we describe in what follows. Let z¢, zi, ..., 2, be local coordinates in which
the components of ;1 ~'X are given by the equations z; = 0 for i < m. The space

Wite A{‘Og is spanned by the forms

dZ i dZ iy

— A A— A,

i Ziy
where i; < m and n € A’}; ¢ is a smooth form on M. The weight filtration
in A’fog induces a filtration in cohomology. The quotients of subsequent terms
Wis e HY(M — X)/ Wiy o1 H*(M — X) are equipped with pure Hodge structure of
weight k + £.

Our goal is to tell whether the residue of a differential form or the residue of a
cohomology class can be lifted to intersection cohomology. The Hodge structure
on intersection cohomology has not yet been constructed in the setup of differen-
tial forms. Nonetheless, there are alternative constructions in which intersection
homology has weight filtration. If X is a complete variety, then /H *(X) is pure.
This property is fundamental in [BBD] and in Saito’s theory [Sa].

The homology of X is also equipped with the mixed Hodge structure. Since X
is complete we have

Wi—1(Hapn—x(X)(—n)) = 0, War(Han—k(X)(—=n)) = Hop— i (X)(—n).
By the purity of intersection cohomology,
im(IH (X) — Hau—(X)) C Wi(Hap—i(X)(=n)).
The residue map
res: H'\(M — X) > Hop_ i (X)(—n — 1)
preserves the weights. In particular, it vanishes on
Wi H (M — X) = im(H' (M) — H*'\(M — 17'X)).

Suppose we have a class ¢ € W, H**'(M — X). Then res(c) is of weight k + 2
in Hp,—4(X)(—n —1). It is reasonable to ask if res(c) belongs to the image of the
map IHXN(X) — Hop_i (X).
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THEOREM 8.1.  Suppose that M is complete. Then the residue of each class c €
Wipa HSY(M — X)) can be lifted to intersection cohomology.

Proof. Let u: M — M be a log resolution of (M, X). We consider the residue
res(p*c) € Hap i (' X)(=n — 1).

LeEmMA 8.2. The homology class res(u*c) is a lift of res(c) to

Hauok ('X) (=1 — D
that is,
M (res(uc)) = res(c).

Proof. 3 3
wa(res(p’c)) = pa(IM1Ndpc) = (1[M]) Ndc = res(c). U

Proof of Theorem 8.1 (cont.). Now assume that ¢ has weight k + 2. Then p*c is
represented by a form @ with logarithmic poles of weight k + 2. The residue of
w consists of forms Res;(w) on each component E; C WX (we set Eg = X ).
These forms have no poles along the intersections of components. This means that
res(u*c) comes from Y [Res;(w)] € @, H*(E;) = IH*(1'X). By [BBFGK]
(see [W3] for a short proof), we can close the following diagram with a map 6 of
intersection cohomology groups:

Y .[Resi(w)] € THNp™'X) —— Hop_x('X) > res(u*c)

l@ J/ﬂ*
IHY(X) ——— Hy ((X) 3> res(c).

Here ¢ is the natural transformation from intersection cohomology to homology.
The class G(Zi [Resi(a))]) is the desired lift of res(c). O

REMARK 8.3. The completeness assumption can be removed from Theorem 8.1,
and it is clear that the orders of poles at infinity do not matter.

Observe that if a meromorphic (n 4 1)-form w has canonical singularities along
X then u*w has no pole along the exceptional divisors. Hence p*w belongs to the
logarithmic complex and is closed, and we have

* n+l1
wWaoe W,,+2A10g .

Conversely, a closed (n + 1)-form that belongs to the top piece of the Hodge fil-

tration F ”“A{'OJ; must be meromorphic. We obtain a surjection

QU (u'X) —> F"MH"™ (M - X).
A meromorphic form has canonical singularities if and only if it belongs to

Wi A’fogl, since by Theorem 4.1 it has no poles along the exceptional divisors.
Hence we have a surjective map,
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QX)) —> F"™'W, o H" (M — X).

In this way we have solved positively the problem of lifting to IH"(X) the resi-
due classes of forms that have canonical singularities. Nevertheless, it is possible
to do much more. We will find a lift to cohomology H"(X) in a canonical way.

9. Residues in Cohomology

In this section we ignore the Tate twist.

Suppose that a meromorphic (n + 1)-form w has canonical singularities along
X. We will show how to construct a lift of the residue class res(w) € H,(X) to
H"(X). Itis enough to define an integral

res(w): H,(X) — C.

For the construction we need the following (probably well-known) fact.

PROPOSITION 9.1.  Let X be a variety of pure dimension. Let TCflg(X) C Cy(X)
be the subcomplex of geometric chains that are semialgebraic and satisfy the

conditions
dim(¢§ N Xgipe) < dimé,

dim(9¢ N Xging) < dim 9§.
The inclusion of complexes induces an isomorphism of homology.

REMARK 9.2. To show that the support condition does not spoil the homology,
one can proceed as in [Ha] by computing inductively local cohomology.

For a cycle £ € TC¥(X) let us define

— 1
(3.8 = 5 / Res(i'0)
w

where

j*€ = closure(u™' (€ — Xsing))
is the strict transform of the cycle £. Note that ©*£ is a semialgebraic chain,
which does not have to be a cycle. Alternatively, we may define (res(w),&) =
2%1' fg Res(w) and say that the integral always converges for & € TC,flg(X ). We
must prove that our definition does not depend on the choice of a cycle. Suppose
that &’ is another cycle such that & — & = 9. Again we assume that both & and

1 belong to TCM8(X). Set
A =p'E — g —oun.

The residue form Res(u*w) is closed and so, by the Stokes theorem,

2mi

1
= —,/Res(u*a)).
27i A

(res(w), &) — (res(w),&') = L(/ Res(u*w) —/ RCS(M*G))>
753 urE’
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The chain A is contained in the exceptional locus of 1|z, which is of dimension
n — 1. The form Res(u*w) is of type (n,0) and therefore it vanishes on A. Thus
we have defined res(w) € (H,(X))* = H"(X).

We have to show that res(w) is a lift of res(w) € H,(X). In fact we will ar-
gue that it is a lift of res(u*w) € H,(u~'X). By our assumption, res(u*w) comes
from @, H"(E;). By Theorem 4.1, the residues Res;(;+*w) vanish along the ex-
ceptional divisors. It is enough to show that

— 1 1
(5(0). 1)) = 5 (Reso(w'@).§) = 5 [ Reso(u’e)
2mi 2mi Je
for a cycle & € C,(X). We may assume that & is semialgebraic and that
dim(§ N p' (Xsing) <1 — 1.

Then p*u.& = &, and the formula follows from the definition of res(w).
We have proved our next theorem.

THEOREM 9.3.  If w is a meromorphic form of the top degree and if it has canoni-
cal singularities, then there exists a canonical lift of res(w) to cohomology H"(X).

REMARK 9.4. By the same procedure one can define a map
v HYX, Q%) — H'H(X)
such that p* o ¢ is the canonical map HN(X, Q") — H"(X). By [BBFGK],

the map u*: H*(X) - H *(X) factors through IH *(X). On the level of derived
category D(X) we have a chain of maps

R/L*Q'f[—n] ~ u,A"*[—-n] - Cx — ICx - Ru,.Cy

factorizing the natural Ry, €2 [ n] — Ru.Cy. This proves Theorem 1.3. Note
that a map to intersection cohomology or rather a dual one,

ICx — DR;L*SZ;([—n] ~ Ru.Oz,

was described in [K1, Sec. I1.4.8], where the decomposition theorem of [BBD] is
applied. Our map is constructed surprisingly easily and in a canonical way.

For complete X we obtain the following side result.

THEOREM 9.5. Suppose an algebraic variety X is complete and of dimension n.
Let X be its resolution. Then H*(X; Q;Z() is a direct summand both in H"t*(X)

and in IH"T*(X). The inclusion is adjoint to the strict transform of cycles.
The statement for intersection cohomology also follows from [K1, Sec. 11.4.9].

REMARK 9.6. In [H2] Herrera studies residues of meromorphic forms that can
be written as w = £ A n + 6. For the forms of top degree this condition is more
restrictive then havmg canonical singularities. For example, if n > 2 and if X has
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isolated simple singularities, then all forms @ € Q"*!(X) have canonical singu-
larities (see Section 11) but cannot necessarily be written as above. For the forms
considered by Herrera, the residue res(w) = n|x is well-defined as an element of
a suitable complex of forms on the singular variety X. The space M is allowed to
be singular. For nonsingular M, this result is rather tautological.

10. Isolated Singularities

Residue forms for hypersurfaces with isolated singularities are strongly related
to oscillating integrals. The first references for this theory are [Ma] and [V]. In
[AGYV, Secs. 10—15] the reader can find a review, samples of proofs, and other pre-
cise references to original papers. Connections between oscillating integrals and
the theory of singularities of pairs are explained in [K2, Sec. 9].

Suppose 0 € C"*! is an isolated singular point of s. Let X, = s~'(t) N B, for
0 < |t] < & be the Milnor fiber with the usual choice of 0 < § <« ¢ <« 1. For a
given germ at O of a holomorphic (n + 1)-form n € Q%ﬂ‘, o define a quotient of
forms by

=Res( L )esz;.
X, s—t !

Let ¢; C X, be a continuous multivalued family of n-cycles in the Milnor fibers.
Then the function

n

ds

l
¢ ds
is a holomorphic (multivalued) function. By [Ma] or [AGYV, Sec. 13.1], the func-
tion [ Z’ (¢) can be expanded in a series as

(1) =) aat*(logn)"

o,k

I;(t) =

where the numbers « are rationals greater than —1 and the k are natural numbers
or 0. By considering all the possible families of cycles we obtain the geometric
section S(n) of the cohomology Milnor fiber. (Recall that the cohomology Mil-
nor fiber is a flat vector bundle equipped with Gauss—Manin connection.) Its fiber
over t is H"(X,). If we fix ty # O then

S() =Y Agxt*(logt)

o,k

with A, € H"(X,,). The smallest exponent o occurring in the expansion of S(n)
is called the order of 1. The smallest possible order among all the forms 7 is the
orderof dzg A -+ - Adz,.

ProOPOSITION 10.1.  Suppose that X has isolated singularities. Let w € QJ’WH(X )
be a meromorphic form with a first-order pole along X. If the order of sw is greater
than zero at each singular point, then the residue class of w lifts to intersection
cohomology of X.
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REMARK 10.2. For simple singularities with n > 2, the order of any form is
greater than zero.

Proof of Proposition 10.1. The proof is based on the following easy local homo-
logical computation [W2, 2.1].

ProposITION 10.3.  If X has isolated singularities, then a differential n-form on
Xyeg defines an element in intersection cohomology if and only if it vanishes in
cohomology when restricted to the links of the singular points.

Each cycle ¢y in the link can be extended to a family of cycles in the neighboring
fibers. We can approximate the value of the integral |, «, Res(w) by the oscillating
integral of n = sw. If all the exponents in I{” (¢) are greater than zero, then the
limit integral for # = O vanishes. Therefore [Res(w)] = 0 in the cohomology of
each link. UJ

REMARK 10.4. Proposition 10.1 is a special case of the Theorem 8.1, although
the formulation of the proposition is in terms of oscillating integrals. By [AGYV,
Sec. 13.1, Thm. 1], the order of sw is greater than zero if and only if w has canoni-
cal singularities. Then [w] € W, o H"'(M — X) and Theorem 8.1 applies.

11. Quasihomogeneous Isolated Hypersurface Singularities

More precise information about the exponents occurring in the oscillating integrals
can be obtained for isolated quasihomogeneous singularities. All the simple singu-
larities are of this form. The resulting statement for the residue forms is expressed
in terms of weights. The weights of polynomials considered here should not be
confused with the weights in the mixed Hodge theory; rather, they are related to
the Hodge filtration. The relation is subtle and will not be discussed here. Let
ap,ai, ..., a, € Nbe the weights attached to coordinates in which the function s is
quasihomogeneous. For a meromorphic form of the top degree, we compute the
weight as follows:

v<§d20 A A dZn) =v(g) —v(s) + Zvi-

i=0

THEOREM 11.  Suppose that X has isolated singularities given by quasihomoge-
neous equations in some coordinates. Let w € QX,IH(X ) be a meromorphic form
with a first-order pole along X. Suppose w has no component of weight 0 at each
singular point. Then the residue class of w lifts to intersection cohomology of X.

Proof. In order to apply Proposition 10.3 we will first show that res(w)|, = 0. It
suffices to check that w is exact in a neighborhood of the singular points. The cal-
culation is local, so we may assume that M = C"*'and w € Q%ﬂ] (X) is rational.
Suppose that w is quasihomogeneous,

w:gdzOAn-/\dz,,,
s
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with g quasihomogeneous of degree v(g). Then g/s is quasihomogeneous of de-
gree v(g) — v(s). This means that

"9
S X8 g () =),

i=0 9z

Let us define a form
n
_8 Z(—l)’d,-z,- dzo AV Adz,.
s =

Then

n

Z:(MM) fymAmAwn

=0 l

=<v(g)—v(S)+Za,) 2dzo A - Adzy.

Therefore, if v(w) = v(g) — v(s) + Y., a; # 0 then
_ 1
S u(g) v+ X ai
ReEMARK 11.2.  Conversely, if @ # 0 is quasihomogeneous of degree O then the

residue form restricted to the link L of the singular point is nonzero, res(w)|; #
0. To see this, consider the quotient

L/S' C P(ay,...,a,)

dn. O

in the weighted projective space. Here L is the link of the singular point; it is ho-
meomorphic to the intersection of X with the unit sphere. The circle acts on C"*!
diagonally with weights a;. Integrating along the fibers of the quotient map, one
obtains a holomorphic form that we call the second residue:

ResP(w) = / Res(w) #0€ Q7 /;]
Sl

Although L/S' is not smooth, it may have only quotient singularities and the
Hodge theory applies. Hence [ [ Res(w)] # 0 € H"~'(L/S"). We will illustrate
this construction by an example.

REMARK 11.3.  Fix a real number p > 1. If v(w) > 0 then one can construct on
X g a conelike metric adapted to the quasihomogeneous coordinates such that ||
is integrable in the pth power. By [W1], L”-cohomology is isomorphic to inter-
section cohomology for a perversity g with 2n/p — 1 < g(2n) < 2n/p; for large
p, it is isomorphic to cohomology of the normalization of X. This way (again) we
obtain an explicit lift to cohomology.

ExampLE 11.4 (Elliptic Singularity). Consider a singularity of type Pg in a form

3 2 3 2
§(zo,21,22) = 2] + Pzoz1 + 925 — 2025,
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where p and g are real numbers such that the polynomial z3 + pz + g does not
have double roots. Let

1
w = —dzo Ndzi Ndz,.
N

Then

1
Res(w) = —5 dzo N dzy

2022
for zgz, # 0. The second residue is equal to

d d
Res@(e) = &L = il

2 JZtputq

If we integrate Res®(w) along the real part of the elliptic curve L/S' C P?, we
obtain the classical elliptic integral.

REMARK 11.5. It would be enough to show that Res®(w) is nonzero as a form; be-
cause it is holomorphic, it cannot vanish in cohomology. Counting the homogenity
degree, it is immediate to check that the second residue of the form %dz oAdziNdz,
is nontrivial for any homogeneous polynomial s of degree 3. The coefficients of s
need not be real. Even so, we find it interesting to see exactly what kind of num-
bers can appear as values of the second residue.
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