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On Fermat Curves and Maximal Nodal Curves

Mutsuo Oka

1. Introduction

Let f(x) = a(x − α1) · · · (x − αn), a > 0, be a real polynomial with n distinct
real roots; it has [(n − 1)/2] maxima and (n − 1) − [(n − 1)/2] minima. Thom
has studied the space of real polynomials and showed, for example, that any given
polynomial f can be deformed into a special polynomial that has the same max-
ima and minima [8]. A typical such polynomial is the Chebyshev polynomial.

A nodal curve C is an irreducible plane curve of degree n that contains only
nodes (= A1 singularities). A nodal curve is called a maximal nodal curve if it is
rational and nodal; by Plücker’s formula, it must contain (n−1)(n−2)

2 nodes to be
maximal. In the space of polynomials of two variables, a maximal nodal curve can
be understood as a generalization of a Chebyshev polynomial. In [6] the author
constructed a maximal nodal curve of join type f(x) + g(y) = 0 using a Cheby-
shev polynomial f(x) and a similar polynomial g(y) that has one maximal value
and two minimal values.

In this paper we present another extremely simple way, for a given integern > 2,
to construct a beautifully symmetric and maximal nodal curve Dn as a by-product
of the geometry of the Fermat curve xn+1 + y n+1 + 1 = 0. A smooth point P of
a plane curve C is called a flex point of flex-order k ≥ 3 if the tangent line TP at
P and C intersect with intersection multiplicity k. The maximal nodal curve Dn,
which we construct in this paper, contains three flexes of flex-order n, and it is
symmetric with respect to the permutation of three variables U,V,W. By a special
case of Zariski [10] and Fulton [2], π1(P

2 − C) = Z/nZ if C is a maximal nodal
curve of degree n. The examples Dn provide an alternate proof. Zariski [10] ob-
served that the fundamental group of the complement of an irreducible curve C of
degree n is abelian if C has a flex of flex-order either n or n − 1. Since the mod-
uli of maximal nodal curves of degree n is irreducible (by Harris [3]), the claim
follows.

For the construction, we start from the Fermat curve Fn : xn + y n +1 = 0 and
study singularities of the dual curve F̌n. The Fermat curve and the dual curve F̌n

have canonical Z/nZ × Z/nZ actions, so the defining polynomial of F̌n is written
as h(un, vn) = 0 for a polynomial h(u, v) of degree n − 1. The curve h(u, v) = 0
defines our maximal nodal curve Dn−1. Geometrically this is the quotient of the
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dual curve F̌n by the action just described. Moreover, the curve Dn−1 is explicitly
parameterized as

Dn−1 : u(t) = t n−1, v(t) = (−1 − t)n−1.

This idea can be extended to a Brieskorn curve xn + y n−1 + 1 = 0. We show
that the same operation gives us a one cuspidal maximal nodal curve of degree n

when we assume Bi-tangent Conjecture I in Section 4.

2. The Gauss Map and the Dual Curves

2.1. Gauss Map and Dual Curves

We consider an irreducible plane curve C of degree n, C : f(x, y) = 0 ⊂ C
2. Its

homogenization F(X,Y,Z) = 0 defines the projective curve C of degree n in P
2,

where F(X,Y,Z) = f(X/Z,Y/Z)Zn. For a smooth point P = (a, b, c) ∈ C, the
tangent line is defined by FX(P )X +FY (P )Y +FZ(P )Z = 0, where FX,FY ,FZ

are derivatives in the corresponding variables. The dual projective plane P̌
2 has

the dual coordinates U,V,W. In the dual projective plane P̌
2, we usually work in

the affine space {W �= 0} with the coordinates (u, v), where u = U/W, v = V/W.

The Gauss map associated with C is defined by

GF : C → P̌
2, GF(P ) = (FX(P ) : FY (P ) : FZ(P )).

We also use the notation Gf instead of GF when we are working in the affine space.
Thus, in the affine coordinates (x, y), P = (x, y) ∈ C is mapped into Gf (P ) =
(fx(x, y) : fy(x, y) : −xfx(x, y) − yfy(x, y)). The image of C is again a projec-
tive curve, called the dual curve of C, which we denote by Č. The class formula
states that the degree ň of the dual curve Č is given by

ň = n(n − 1) −
∑

P∈"(C)

(µ(C,P) + m(C,P) − 1) (1)

where"(C) is the singular locus ofC and whereµ(C,P) andm(C,P) are, respec-
tively, the Milnor number and the multiplicity of C at P [4; 9]. If C is nonsingular,
then ň = n(n − 1).

2.2. Cyclic Action

We assume that there exists a polynomial g(x, y) such that f(x, y) = g(xm, y s )

for some positive integers m, s ≥ 2. Under this assumption, we consider the action
on P

2 of the product of cyclic groups Zm,s := Z/mZ × Z/sZ , which is defined
as follows. Let ω' := exp{2πi/'} and identify the cyclic group Z/'Z with the
multiplicative subgroup of C

∗ generated by ω'. The action is defined by

ψ : Zm,s × P
2 → P

2, (γ, (x, y)) �→ (xωj
m, yωk

s ), where γ = (ωj
m,ωk

s ).

In the homogeneous coordinates, this action is written as

(γ, (X : Y : Z)) �→ (Xωj
n : Yωk

s : Z).
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Clearly, C is stable under this action. For simplicity we use the notation P γ in-
stead of ψ(γ,P). Write the defining polynomial of the dual curve Č as f̌ (u, v),
and take P = (x, y) ∈C and γ = (ωj

m,ωk
s ) ∈ Zm,s . Define the action of Zm,s on

the dual projective plane similarly:

ψ̌(γ, (u, v)) = (ωj
mu,ωk

s v) or ψ̌(γ, (U : V : W)) = (ωj
mU : ωk

s V : W).

Then, by an easy computation,

Gf (P ) = (mxm−1gx(x
m, y s ) : sy s−1gy(x

m, y s )

: −mxmgx(x
m, y s ) − sy sgy(x

m, y s )),

Gf (P
γ ) = (m(ωj

mx)m−1gx(x
m, y s ) : s(ωk

s y)
s−1gy(x

m, y s )

: −mxmgx(x
m, y s ) − sy sgy(x

m, y s ))

= Gf (P )1/γ.

Thus we have our first proposition.

Proposition 1. The dual curve is invariant by the Zm,s-action. This implies that
f̌ (u, v) can be written as h(um, vs ) using some polynomial h(u, v).

Note that h(u, v) is not the defining polynomial of the dual curve of g(x, y) = 0
in general. However, we have the following fundamental result.

Theorem 2 (Birationality Theorem). Let C(g) := {(x, y); g(x, y) = 0} ⊂ P
2

and D := {(u, v);h(u, v) = 0} ⊂ P̌
2. Then there exists a canonical birational

mapping ,m,s : C(g) → C(h).

Proof. It is well known that the Gauss map Gf : C → Č is a birational map whose
inverse is Gf̌ : Č → C provided deg f > 1. Let πm,s : P

2 → P
2 and π̌m,s : P̌

2 →
P̌

2 constitute the branched covering map defined by:

πm,s(X : Y : Z) = (Xm : Y sZm−s : Zm), πm,s(x, y) = (xm, y s );
π̌m,s(U : V : W) = (Um : V sWm−s : Wm), π̌m,s(u, v) = (um, vs ).

By definition, the restrictions πm,s |C and π̌m,s |Č define the surjective mappings
πm,s : C → C(g) and πm,s : Č → C(h). Because πm,s((x, y)γ ) = πm,s(x, y) and
π̌m,s((u, v)γ ) = π̌m,s(u, v) for any γ ∈ Zm,s , we can identify πm,s and π̌m,s with
the quotient mapping under the respective Zm,s-action. Let us consider the multi-
valued section of πm,s :

λ : C(g) → C, λ(x, y) = (x1/m, y1/s ).

By the previous considerations we can see that the composition ,m,s := π̌m,s �
Gf �λ : C(g) → C(h) is a well-defined, single-valued rational mapping that does
not depend on the choice of λ (i.e., the choice of branches x1/m, y1/s ). In fact, the
composition is given by
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,m,s(x, y) =
(

mmxm−1gx(x, y)m

(−mxgx(x, y) − sygy(x, y))m
,

s sy s−1gy(x, y)s

(−mxgx(x, y) − sygy(x, y))s

)
.

Similarly we consider a section λ̌ : C
2 → C

2, λ̌(u, v) = (u1/m, v1/s ), of π̌m,s and
the composition .m,s = πm,s � Gf̌ � λ̌ : C(h) → C(g),

.m,s(u, v) =
(

mmum−1(hu(u, v))m

(−muhu(u, v) − svhv(u, v))m
,

s svs−1(hv(u, v))s

(−muhu(u, v) − svhv(u, v))s

)
.

It is easy to see that ,m,s and .m,s satisfy .m,s �,m,s = idC(g) and ,m,s �.m,s =
idC(h), since the Gf̌ and Gf are mutually inverse. For example, the equality
.m,s � ,m,s = idC(h) is shown as follows. Put (x ′, y ′) := λ(x, y) and (u, v) :=
Gf (x

′, y ′). Then

.m,s � ,m,s(x, y)

= πm,s � (Gf̌ � λ̌ � π̌m,s)(u, v) = πm,s � Gf̌ ((u, v)γ ) ∀γ ∈ Zm,s

= πm,s � (Gf̌ (u, v))1/γ = πm,s((x
′, y ′)1/γ ) = πm,s(x

′, y ′) = (x, y).

The equality ,m,s � .m,s = idC(g) is shown in the exact same way.

Thus we have a square of plane curves where the horizontal mappings are bira-
tional maps:

C : f(x, y) = 0
Gf−−→ Č : f̌ (u, v) = 0�πm,s

�π̌m,s

C(g) : g(x, y) = 0
,m,s−−−→ C(h) : h(u, v) = 0.

2.3. Singularities of the Dual Curves

We recall basic properties for the dual curve that we shall use later; for further de-
tails, see [1; 4; 7; 9]. The singularities on the dual curve are produced in one of
the following ways.

First case—singularity from the singular points of C. Suppose that P is a singu-
lar point of C. Then Gf (P ) is a singular point of Č. The exceptional case is when
the topological equivalence class of (C,P) is Bk,k−1 for k ≥ 3 or Bk,k for k ≥ 2.
The Gauss image of P is a flex point of flex-order k. Here Bn,m, n ≥ m > 0, de-
notes the class of the Pham–Brieskorn singularity: xn +ym + (higher terms) = 0,
where (x, y) are our affine coordinates. We remark that the image of (C,P) splits
into ν distinct germs if (C,P) has several tangent cones, say ν. This observation
may be generalized as follows (see [7]).

Proposition 3. The dual singularity of Bn,m (n > m) is equal to Bn,n−m.

Remark 4. In this proposition, the Puiseux order of Bn,m is n/m in the termi-
nology of [7]. Note that, when we study dual curves, we cannot take an arbitrary
analytic coordinate change and are allowed only to take “projective coordinate
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changes,” which are restrictions of linear coordinates in an affine chart of P
2. For

example, in the case n > 2m, the singularity xn + (x 2 + y)m = 0 (with Puiseux
order 2) is topologically equivalent to Bn,m (see [7]) yet the dual singularity is not
equivalent to Bn,n−m, since (x, y+x 2) is not an admissible change of coordinates.

Recall from Section 1 that a smooth point P of C is called a flex point of flex-order
k ≥ 3 if the tangent line TP at P intersects C with intersection multiplicity k.

Thus, in our notation the Bk,1 singularity xk + y + (higher terms) = 0 is a flex
point of flex-order k for k ≥ 3. To understand the dual singularity systematically,
it is better to consider a flex Bn,1 as a singular point. The locus of the flex points
are described by Hess(F )(X,Y,Z) = F(X,Y,Z) = 0, where Hess(F )(X,Y,Z)

is the Hessian of F :

Hess(F )(X,Y,Z) =
∣∣∣∣∣∣
FXX FXY FXZ

FYX FYY FYZ

FZX FZY FZZ

∣∣∣∣∣∣.
Hence by Bézout’s theorem we have

#(flex points) = 3n(n − 2),

where the number is counted with multiplicity. Note that singular points are con-
sidered as flex points in this formula.

Second case: There is another singularity that is produced from a special point
of C. There are two such special points, flex points (already described) and points
with multi-tangent lines.

A smooth point P ∈ C gives a multi-tangent line if the tangent line TP is also
tangent to C at some other point Q ∈ C, so TQ = TP . The most common type is
a bi-tangent line. If P is a bi-tangent point (so there is another point Q ∈C such
that I(C, TP ;Q) = 2 and any other intersections C ∩ TP are transverse), then its
image by the Gauss map is a node (i.e. A1). If it has q-tangent points then the
image is topologically equivalent to a Brieskorn singularity Bq,q . This singularity
has q smooth local branches intersecting transversely.

Assuming that C is smooth, that flex points of C are generic (i.e., having flex-
order 3), and that C has only bi-tangent lines, by the classical formula we have

#(bi-tangents)

= (ň − 1)(ň − 2)

2
− 3n(n − 2) − (n − 1)(n − 2)

2
, ň = n(n − 1). (2)

For more general situation where C may have singularities or multi-tangent lines,
this formula should be understood using δ-genus as

(ň − 1)(ň − 2)

2
−

∑
Q∈"(Č)

δ(Č,Q) = (n − 1)(n − 2)

2
−

∑
P∈"(C)

δ(C,P), (3)

which simply follows from the fact that Gauss map is a birational mapping and
hence the genus of Č is equal to the genus of C.
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2.4. Local (or Global) Parameterization

To investigate further, we recall the local parameterization of the dual curve Č near
Gf (P ) ∈ Č, which is induced from that of (C,P). We assume that C is locally
irreducible at P and that C is parameterized as

x = x(t), y = y(t), |t | ≤ 1,

where x and y are the affine coordinates x = X/Z and y = Y/Z. Then, at Gf (P ),
the local branch that is the image of the local irreducible germ (C,P) has the
parameterization

U(t) = y ′(t), V(t) = −x ′(t), W(t) = x ′(t)y(t) − x(t)y ′(t) (4)

(see e.g. [7]). If Č is locally irreducible at Gf (P ) then (4) describes the local germ
(Č,Gf (P )). Equivalently, in the affine coordinates (u, v) = (U/W,V/W ), the pa-
rameterization is given as

u(t) = y ′(t)
x ′(t)y(t) − x(t)y ′(t)

, v(t) = −x ′(t)
x ′(t)y(t) − x(t)y ′(t)

. (5)

If C is a rational curve with global parameterization (x(t), y(t)), then (4) or (5) is
also a global parameterization.

Remark 5. Recall that the defining polynomial of the dual curve can be com-
puted via an easy determinant calculation [7].

2.5. Flexes and Cusps Seen from Parameterization

Suppose that our curveC = {f(x, y) = 0} is globally parameterized as (x(t), y(t)),
t ∈ C ∪ {∞}. A global parameterization is a birational mapping P

1 → C. We say
that P = (a, b) ∈ C is an injective point with respect to the parameterization if
the inverse image of P in P

1 is a single point. There exist only finite noninjective
points.

If P = (α,β) is a flex point of flex-order k then

(fx(α,β), fy(α,β)) �= (0, 0), I(C, TP ;P) = k,

where TP is the tangent line of C at P. For the parameterizations P(t) = (x(t),
y(t)), this is equivalent to

P(t0) : flex of flex-order k ⇐⇒




(x ′(t0), y ′(t0)) �= (0, 0),

φ(j)(t0) = 0, j ≤ k − 1, φ(k)(t0) �= 0,

P is an injective point,

(6)

where φ(t) = y ′(t0)x(t) − x ′(t0)y(t).

Similarly assume that P(t0) is a cusp Bk,k−1 singularity of C. This is equiva-
lent to
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P(t0) is Bk,k−1 ⇐⇒




(x(j)(t0), y(j)(t0)) = (0, 0), j ≤ k − 2,

(x(k−1)(t0), y(k−1)(t0)) �= (0, 0), φ(k)(t0) �= 0,

P is an injective point,

(7)

where φ(t) = y(k−1)(t0)x(t) − x(k−1)(t0)y(t).

2.6. Degree Computation from Parameterization

Assume that we have a rational curve C that is globally parameterized as

x(t) = p1(t)

q1(t)
, y(t) = p2(t)

q2(t)
, t ∈ C ∪ {∞}.

Then the degree of C is given as the degree of the numerator of the rational func-
tion (ax(t) + by(t) + c) for a generic choice of a, b, c ∈ C.

Example 6. Consider the rational curve

Dn,m,r : u(t) = nnt n+r−2

(m + mt − nt)n
, v(t) = mm(−1 − t)m+r−2

(m + mt − nt)m

(n > m > 1, r ≥ 1).

Then one can easily see that the degree is given by max(n + r − 2, n).

3. Geometry of Fermat Curves

In this section we study the Fermat curve of degree n:

Fn : F(X,Y,Z) = Xn + Y n + Zn = 0.

We denote the degree of the dual curve F̌n by ň. Note that ň = n(n−1). There is
an obvious Zn,n that acts on Fn and F̌n.

Flexes. Note that Fn has 3n flexes of flex-order n at

P1,j := (0 : ξj : 1), P2,j := (ξj : 0 : 1), P3,j := (1 : ξj : 0), j = 0, . . . , n−1,

where ξj = exp
{
(2j + 1)

√−1/n
}
. The tangent line at P1,j is defined by y = ξj ,

and it produces a Bn,n−1 singularity on F̌n at (U : V : W) = (0 : 1 : −ξj ). The
situation is exactly the same for other flexes through a permutation of coordinates.

Bi-tangents. Now we consider bi-tangent (or multi-tangent) lines on Fn. The
dual curve F̌n has genus (n−1)(n−2)

2 and 3n Bn,n−1 singularities coming from flex
points. Then, by formula (2), the number τ of the bi-tangent lines should be

τ = (ň − 1)(ň − 2)

2
− 3n × (n − 1)(n − 2)

2
− (n − 1)(n − 2)

2

= n2(n − 2)(n − 3)

2
.

In fact, we will explicitly show the following.
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Proposition 7. The Fermat curve Fn has n2(n − 2)(n − 3)/2 bi-tangent lines.

Proof. Let ω := exp
{
2π

√−1/(n − 1)
}
. In general, the computation of bi-tangent

lines is not so easy as that of flex points. Suppose that P = (a, b) and Q = (a ′, b ′)
are bi-tangent points in Fn. The tangent line at P is given by an−1x +bn−1y +1 =
0. Thus Gf (P ) = (an−1 : bn−1 : 1), and the assumption implies that

an + bn + 1 = (a ′)n + (b ′)n + 1 = 0, an−1 = (a ′)n−1, bn−1 = (b ′)n−1. (8)

Thus we can write a ′ = aωk and b ′ = bωj for some integers 0 < j, k < n−1 and
an(ωk −ωj) = (ωj −1). We assume that P �= Q and P,Q∈ C

2, so we may also
assume that j �= k and k, j �= 0. Thus, putting βj,k := (ωj −1)/(ωk −ωj) yields

an = βj,k , bn = −1 − βj,k , a ′ = aωk, b ′ = bωj

for some 1 ≤ j, k ≤ n − 1, k �= j. For any 0 < j < n − 1, put jc = n − 1 − j.

Observe that ω−j = ωjc. Put αj,k := (ωk − 1)/(1 − ωj). Then

βj,k = ωj − 1

ωk − ωj
= α(j−k)c,jc .

Claim 8. The complex numbers βj,k or equivalently αj,k (1 ≤ j, k ≤ n − 1,
j �= k) are all distinct.

Assuming the claim, we can choose n2 distinct solutions in (a, b) of the equa-
tions an = βj,k and bn = −1 − βj,k when j, k are fixed. Thus, altogether we get
n2(n − 1)(n − 2) possible solutions. Let BT be the set of such points (a, b). Fix
(a, b) ∈ BT such that an = βj,k and an + bn + 1 = 0. Our discussion here and
Claim 8 mean that the partner tangent point is given by (a ′, b ′) = aωk, b ′ = bωj.

Note also that (a ′, b ′) ∈ BT since a ′ = βjc,kc
. Hence the number of bi-tangent

lines is n2(n − 1)(n − 2)/2, as expected.

Proof of Claim 8. Using elementary Euclidean geometry on the unit circle, it is
easy to see that

arg(1 − ωj) = π

(
j

n − 1
− 1

2

)
.

Thus we obtain arg(−αj,k) = (j − k)π/(n−1), and therefore αj,k = α',m implies
j − k ≡ ' − m modulo 2(n − 1), which in turn implies that j − k = ' − m. Put
s = k − j = ' − m. Now αj,k = α',m implies that (1− ωs )(ωj − ωm) = 0. This
is the case if and only if j = m and k = '.

3.1. Geometry of the Dual Fermat Curve F̌n

Let f̌ (u, v) = 0 (with F̌(U,V,W) its homogenization) be the defining affine (resp.
homogeneous) polynomial of the dual curve, where u, v are affine coordinates de-
fined by u = U/W and v = V/W. Since Fn is a symmetric polynomial with Zn,n

action, it follows that F̌(U,V,W) is a symmetric polynomial of degree n(n − 1)
with Zn,n action. (Recall that Zn,n = Z/nZ × Z/nZ.) In particular, we can write
f̌ (u, v) = h(un, vn) for some symmetric polynomial h(u, v) of degree n − 1. We
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have already observed that ň = n(n−1) and that there are 3n Bn,n−1 singularities
and n2(n − 2)(n − 3)/2 nodes (i.e., A1-singularities). On each coordinate axis
U = 0, V = 0, and W = 0, there are exactly n Bn,n−1 singularities. The tangent
line at P1,j is defined by y = ξj , and its Gauss image is a Bn,n−1 singularity at (U :
V : W) = (0 : 1 : −ξj ). In order to get further information about the singularity
Bn,n−1, we consider the parameterization of (Fn,P1,j ) given by

x(t) = t, y(t) = ξj(1 + t n)1/n, z(t) ≡ 1, |t | ≤ ε � 1,

where (1+ t n)1/n is the branch that takes 1 at t = 0. By the binomial formula, we
have (1+ t n)1/n = 1+ (1/n)t n + (higher terms). Thus, by (4), F̌n is parameterized
near (U,V,W) = (0,1, −ξj ) as

U(t) = ξj(t
n−1 + (higher terms)),

V(t) = −1,

W(t) = ξj

(
1 − n − 1

n
t n + (higher terms)

)
.

Now using the coordinates (u, vj ), where u = U/W, v = V/W, and vj := v + ξ−1
j ,

the three previous equalities imply that the local equation is written as

f̌ (u, vj − ξ−1
j ) = un + cjv

n−1
j + (higher terms), cj �= 0.

This is a Bn,n−1 singularity, and the tangent cone at P̌1,j is defined by v + ξ−1
j = 0.

3.2. Construction of Maximal Nodal Curves

A curve D of degree d is called maximal nodal if it is an irreducible rational curve
whose singularities are only A1s. It is maximal in the sense that a curve of de-
gree d having further singularities would be necessarily reducible. Then D has
(d − 1)(d − 2)/2 nodes (i.e., A1s). Any modulus of such a curve is known [3]
to be an irreducible variety, and it is also known [2; 10; 11] that the fundamental
group π1(P

2 − D) is abelian.
We will give an explicit construction of such a maximal nodal curve as an appli-

cation of the Fermat curve. Let F̌(U,V,W) be the defining polynomial of F̌n and
write it as F̌(U,V,W) = H(U n,V n,Wn), with H(U,V,W) a polynomial of de-
gree n −1. Then we consider the curve of degree n −1 defined by H(U,V,W) =
0 and denote it as Dn−1. We claim that Dn−1 is a maximal nodal curve of degree
n − 1. In fact, the rationality follows from Theorem 2 and the rationality of the
line L : x + y + 1 = 0. Since F̌n has n2(n − 1)(n − 2)/2 nodes outside of the
union of coordinate axes, it follows that UVW = 0 and that the axes are invari-
ant by the (Z/nZ)2 action. We consider n2-fold branched coverings π̌n,n : P

2 →
P

2 as before. The image of n2(n − 2)(n − 3)/2 nodes is now (n − 2)(n − 3)/2
nodes on Dn−1. Thus Dn−1 is maximal nodal.

Now, in order to study the image by πn,n of Bn,n−1 singularities on UVW =
0, we use the parameterization of Dn−1. Because L has a canonical parameteriza-
tion, x(t) = t and y(t) = −1− t, the parameterization of the curve Dn−1 is given
as (u(t), v(t)) = ,n,n(x(t), y(t)), where
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,n,n(x, y) =
(
(−1)n

xn−1

(x + y)n
, (−1)n

y n−1

(x + y)n

)
. (9)

Hence this parameterization is explicitly given as

Dn−1 : u(t) = t n−1, v(t) = (−1 − t)n−1.

It is also clear from this parameterization that the degree of Dn−1 is n − 1. Now
we consider the flex points. Note that u(t) = 0 if and only if t = 0. Using the
criterion (6), we see that

u(j)(0) = 0, j < n − 1, un−1(0) �= 0, v ′(0) �= 0

implies that (0, (−1)n−1) (or, in homogeneous coordinates, (0 : (−1)n−1 : 1)) is a
flex point of flex-order n − 1. Similarly we can see that ((−1)n : 0 : 1) and (1 :
(−1)n : 0) are flex points of flex order n − 1. The flex point (1 : (−1)n : 0) corre-
sponds to the image lim t→∞(x(t), y(t),1).

The curve Dn−1 has no other flexes. This can be checked using the criterion
(6), but we present here another proof. Consider the equation H(U,V,W) =
Hess(H ) = 0. In fact, the contribution from each A1 to the intersection multiplic-
ity of H(U,V,W) = Hess(H )(U,V,W) = 0 (it is called the flex defect in [7]) is
6, and the contribution from the flex Bn−1,1 is of course n − 3 [7]. Consequently,

3(n − 1)(n − 3) − 3 × (n − 3) − (n − 2)(n − 3)

2
× 6 = 0.

Thus we have proved our next theorem.

Theorem 9. The curveDn−1 is a maximal nodal curve, and it is parameterized as

Dn−1 : u(t) = t n−1, v(t) = (−1 − t)n−1.

It has three flexes of flex-order n − 1 on each coordinate axis whose tangent lines
are the coordinate axes. The defining polynomial h(u, v) of Dn−1 is given by

h(u, v) = Resultant(u − u(t), v − v(t), t).

Fundamental Group. Now we consider the fundamental group π1(P
2 −Dn−1)

using the pencil {u = η}η∈C. The line u = 0 is a flex tangent of intersection mul-
tiplicity n − 1. Therefore, π1(P

2 − Dn−1) = Z/(n − 1)Z follows from Zariski’s
argument [10]. This observation and the irreducibility of the moduli space of max-
imal nodal curves of given degree (see [3]) gives an explicit proof of the following
well-known assertion: the fundamental group of the complement of an irreducible
maximal nodal curve is abelian (this is usually known as a result of Zariski and
Fulton [2]).

3.3. Operation Tm

Now we consider the following important operation for a fixed natural number
m∈ N. For a given curve C = {h(u, v) = 0} in P̌

2, we first take the dual curve Č

and then the pull-back π−1
m,m(Č) and then take the dual curve again and push down

by π̌m,m. Write the curve obtained as Tm(C). Note that T1 is simply the identity.
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Theorem 10. We have the equality Tm(Dn−1) = Dn+m−2. Thus {Dj ; j = 2, . . . ,
∞} is a sequence that is stable by Tm.

Proof. First, Ďn−1 has the parameterization

Ďn−1 : x(t) = t 2−n, y(t) = (−1 − t)2−n,

and its pull-back by πm,m is parameterized as

x(t) = t (2−n)/m, y(t) = (−1 − t)(2−n)/m.

This parameterization is multi-valued because the pull-back is not rational. The
parameterization of the dual curve is given as

u(t) = t × t (n−2)/m, v(t) = (−1 − t) × (−1 − t)(n−2)/m,

so the push-down by πm,m is parameterized as

u(t) = t n+m−2, v(t) = (−1 − t)n+m−2,

which is nothing but Dn+m−2.

4. Geometry of Brieskorn Curves

In this section, we consider the Brieskorn curve

Fn,m : f(x, y) = xn + ym + 1 = 0 or F(X,Y,Z) = Xn + Y mZn−m + Zn = 0

and study the dual curve F̌n,m. For simplicity we assume that n > m ≥ 2 and
gcd(n,m) = 1. The defining polynomial f̌ (u, v) is written as f̌ (u, v) = h(un, vm)

by Proposition 1. We define the rational curve Dn,m of degree n as the image
π̌n,m(F̌n,m):

Dn,m : h(u, v) = 0.

If m < n − 1 then the Brieskorn curve Fn,m has an irreducible singularity at
Q∞ = (0 : 1 : 0), which is defined as xn

1 + zn−m
1 + zn

1 = 0 (x1 = X/Y, z1 = Z/Y )

and is topologically equivalent to Bn,n−m. If m = n − 1, then Bn,1 is not a singu-
lar point but rather a flex point of intersection multiplicity n. First we observe the
following.

Proposition 11. The singularity Q∞ is transformed via a Gauss map into the
Brieskorn singularity Bn,m at the origin O = (0, 0) of F̌n,m:

Bn,m : un + λvm + (higher terms) = 0 for some λ �= 0.

Proof. First observe that the tangent cone z = 0 at Q∞ intersects Fn,m only at Q∞
with intersection number n. Thus (F̌n,m,O) is the image of (Fn,m,Q∞). Hence
the assertion can be proved easily by starting from the parameterization of Fn,m at
Q∞ given by

x1(t) = t n−m, z1(t) = ξt n + (higher terms), ξ = (−1)1/(n−m),

where x1 = X/Y and z1 = Z/Y. Thus the Gauss image is parameterized as
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U(t) = dz1

dt
(t) = ξnt n−1 + · · · ,

V(t) = z1(t)
dx1

dt
(t) − x1(t)

dz1

dt
(t) = −ξmt 2n−m−1 + · · · ,

W(t) = −dx1

dt
(t) = −(n − m)t n−m−1.

We therefore have the affine parameterization

u(t) = − n

n − m
ξt m + · · · , v(t) = m

n − m
ξt n + · · · ,

and eliminating t then yields the defining equation of the type un + cvm + (higher
terms) = 0, which shows that (F̌n,m,O) ∼= Bn,m with the tangent cone v = 0.

The genus of Fn,m is given by (n−1)(m−1)
2 , and the degree ň of the dual curve F̌n,m

is given by ň = nm as

ň = n(n − 1) − ((n − 1)(n − m − 1) + (n − m) − 1) = nm.

It is easy to see that Fn,m has m flexes of flex-order n at P1,j := (0, ξj ), ξj :=
exp

{
(1+ 2j)π

√−1/m
}
, whose tangent line is y − ξj = 0 for j = 1, . . . ,m. These

flexes give Bn,n−1 singularities at P̌1,j := (0 : −1/ξj : 1), j = 0, . . . ,m − 1. On
the axis y = 0, we have flexes of flex-order m (if m ≥ 3) at P2,k := (λk : 0 : 1)
with tangent line x − λk = 0, where λk = exp

{
(1 + 2k)π

√−1/n
} = 0 for 1 ≤

k ≤ n. Observe that the Hessian is given by

Hess(f ) := cXn−2Y m−2Z2n−2m−2((m − 1)nZm − (n − m)Y m), c �= 0.

Thus we have nm flexes outside of the coordinate axes, which are the intersec-
tion of

F(X,Y,Z) = (m − 1)nZm − (n − m)Y m = 0.

In fact, by an explicit computation of the Hessian, these flexes are located at{
(a : b : 1); an = −m(n − 1)

n − m
, bm = n(m − 1)

n − m

}
. (10)

These flex points give nm A2 singularities on F̌n,m (assuming the imminent Bi-
tangent Conjecture).

Now we are ready to prove the main result of this section. First we consider the
following conjecture, which states that there exist neither k-tangent lines with k ≥
3 nor bi-tangent lines that constitute the tangent line of a flex point.

Bi-tangent Conjecture I. The dual curve F̌n,m has only A1 and A2 singular-
ities outside of the coordinate axes UVW = 0 if gcd(n,m) = 1.

This conjecture is checked (via Maple) to be true for n ≤ 20. Assuming Bi-tangent
Conjecture I, by the genus formula it follows that the number of A1 singularities
on F̌n,m, denoted #nodes(F̌n,m), is given by

#nodes(F̌n,m) = 1
2nm(nm − n − m − 1).
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This is the number of bi-tangent lines if F̌n,m has no other singularities besides A1

and A2 on UVW �= 0.

Theorem 12. Assume that n > m ≥ 2 and gcd(n,m) = 1.

(1) The dual curve F̌n,m has m copies of Bn,n−1 singularities on u = 0, has n

copies of Bm,m−1 singularities on v = 0, and intersects transversely with the
line at infinity.

(2) Assuming Bi-tangent Conjecture I, the singularities of F̌n,m on UVW �= 0
are nm A2 and nm(nm − n − m − 1)/2 nodes.

4.1. Geometry of the Rational Curve Dn,m

Now we study the rational curve Dn,m in detail, using its parameterization. The
line x + y + 1 = 0 is parameterized as

x(t) = t, y(t) = −1 − t.

Thus Dn,m is parameterized by the composition πn,m �Gf � λ(t,−1− t), which is

Dn,m : u(t) = nnt n−1

((m − n)t + m)n
, v(t) = mm(−1 − t)m−1

((m − n)t + m)m
.

The equation h(u, v) = 0 of Dn,m is simply given as the resultant in the parame-
ter t of two polynomials u((m − n)t + m)n − nnt n−1 and v((m − n)t + m)m −
mm(−1 − t)m−1. This is the easiest way to obtain h(u, v). We consider also the
following family of rational curves Dn,m,r for r ≥ 1:

Dn,m,r : u(t) = nnt n+r−2

((m − n)t + m)n
, v(t) = mm(−1 − t)m+r−2

((m − n)t + m)m
. (11)

We have Dn,m,1 = Dn,m. The basic property of these rational curves is the stability
under the operation Tm, as follows.

Theorem 13. We have the equality Ts(Dn,m,r ) = Dn,m,r+s−1.

Proof. This is immediate from a direct computation. First, the dual curve Ďn,m,r

and the pull-back π−1
s,s(Ďn,m,r ) are parameterized as:

Ďn,m,r :

{
x(t) = (m + mt − nt)nn−nt−n−r+3,

y(t) = m−m(−1 − t)−m−r+3(m + mt − nt)m;

π−1
s,s(Ďn,m,r ) :

{
x(t) = ((m + mt − nt)nn−nt−n−r+3)1/s,

y(t) = (m−m(−1 − t)−m−r+3(m + mt − nt)m)1/s.

Hence the push-down of the dual curve of π−1
s,s(Ďn,m,r ) is parameterized by

u(t) = nnt n+r+s−3

((m − n)t + m)n
, v(t) = mm(−1 − t)m+r+s−3

((m − n)t + m)m
,

as asserted.
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Now we study the geometry of Dn,m,r under the assumptions that n > m ≥ 2 and
gcd(n,m) = 1. We shall use dn,m,r to denote the degree of Dn,m,r . Then dn,m,r is
given by

dn,m,r = max(n + r − 2, n).

Behavior of Dn,m,r on Coordinate Axes. We have u = 0 if and only if t = 0.
Since v ′(0) �= 0 and u(j)(0) = 0 for j ≤ n+ r −3, we see that (0 : (−1)m−r−2 : 1)
is a flex point of flex-order n + r − 2. Similarly, v = 0 if t = −1, and this gives a
flex point ((−1)n+r−2 : 0 : 1) of flex-order m + r − 2. We will see that these flex
points are in fact injective points of Dn,m,r .

Now we consider the intersection with the line at infinity, W = 0. First,
t = m/(n − m) gives an intersection. Using the affine coordinates (v1,w1) =
(V/U,W/U) yields

v1 = mm(−1 − t)m+r−2(m − nt + mt)n−m

nnt n+r−2
, w1 = (m − nt + mt)n

nnt n+r−2
.

Hence this gives a Brieskorn singularity Bn,n−m at (1 : 0 : 0) with the tangent cone
w1 = 0. In the case of m = n − 1, this is a flex of flex-order n. Another possi-
bility is when t goes to infinity. If r = 1 (and thus the degree of Dn,m,1 is n) then
lim t→∞(u(t) : v(t) : 1) is (0 : 0 : 1), and this is a smooth point of Dn,m. Note
that this is the image by πn,m of Bn,m singularities at O = (0, 0)∈ F̌n,m. Assume
that r = 2. Then lim t→∞(u(t) : v(t) : 1) is

( nn

(m−n)n
: (−m)m

(m−n)m
: 1

)
and is a sim-

ple point. Assume that r > 2; then the limit lim t→∞(u(t) : v(t) : 1) = P∞ :=( nn

(m−n)n
: (−m)m

(m−n)m
: 0

)
, which is also a simple point. Furthermore, for r ≥ 3 the

tangent line at this point is W = 0 and intersects Dn,m,r with intersection number
r − 2, so this is a flex point of flex-order r − 2 if r ≥ 5. Thus we have shown that

Dn,m,r ∩ {U = 0} =
{ {(0 : (−1)m+r−2 : 1), (0 : 0 : 1)}, r = 1,

{(0 : (−1)m+r−2 : 1)}, r ≥ 2,

Dn,m,r ∩ {V = 0} =
{ {((−1)n+r−2 : 0 : 1), (1 : 0 : 0), (0 : 0 : 1)}, r = 1,

{((−1)n+r−2 : 0 : 1), (1 : 0 : 0)}, r ≥ 2,

Dn,m,r ∩ {W = 0} =
{ {(1 : 0 : 0)}, r ≤ 2,{

(1 : 0 : 0),
( nn

(m−n)n
: (−m)m

(m−n)m
: 0

)}
, r ≥ 3,

and all these points are injective points of the curve Dn,m,r .

Next we consider the cusp point of Dn,m,r on UVW �= 0. Computing u′(t) =
v ′(t) = 0, we find that for r �= 2 there is a unique cusp at tcusp := m(n+r−2)

(n−m)(r−2) . (For
Dn,m,1, this is the image of nm cusps on F̌n,m.) Strictly speaking, this implies that
the local image of |t − tcusp| ≤ ε is a cusp. We cannot prove that (u(tcusp), v(tcusp))

is an injective point of Dn,m,r with respect to the foregoing parameterization for
arbitrary n,m, r. However, Maple calculations suggest that this will be true in gen-
eral. For r = 2, there is no cusp on UVW �= 0. Maple computation leads to the
following conjecture.

Bi-tangent Conjecture II. On Dn,m,r ∩ {UVW �= 0}, the possible singulari-
ties are A2 (if r �= 2) and A1.
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This conjecture implies the previous version by taking r = 1 as Dn,m,1 = Dn,m.

As before let #nodes(Dn,m,r ) be the number of nodes on Dn,m,r . Since Dn,m,r is
a rational curve, under Bi-tangent Conjecture I we have

#nodes(Dn,m,r )

=
{ (n+r−3)(n+r−4)

2 − (n−1)(n−m−1)
2 − 1 + δr,2 , r ≥ 2,

nm−n−m−1
2 , r = 1, Dn,m,1 = Dn,m.

Here δi,j = 1 or 0 for i = j and i �= j, respectively.

Theorem 14. (1) Assume that n > m ≥ 2 and gcd(n,m) = 1. Then Dn,m,r is a
rational curve of degree max(n+ r −2, n), and it has a flex of flex-order n+ r −2
at (0 : (−1)m−1 : 1) with the tangent line U = 0 and a flex of flex-order m+ r − 2
at ((−1)n−1 : 0 : 1) with the tangent line V = 0; it also has a Bn,n−m singularity
at (1 : 0 : 0). The fundamental group π1(P

2 − Dn,m,r ) is abelian.
(2) Assuming Bi-tangent Conjecture II, the singularities of Dn,m,r on UVW �=

0 are (n+r−3)(n+r−4)
2 − (n−1)(n−m−1)

2 −1+ δr,2 nodes and one A2 (resp., no A2) for
r �= 2 (resp., r = 2).

The assertion for the fundamental group in part (1) of the theorem has also been
shown by Nori [5, Prop. 6.5].

Corollary 15. Assuming Bi-tangent Conjecture I, we have several special
curves.

1. Dn,n−1 = Dn,n−1,1 is a rational curve of degree n with one A2 cusp and
(n − 3)n/2 nodes.

2. Dn,n−1,2 is a rational curve of degree n that is maximal nodal.
3. Dn,m,2 with gcd(n,m) = 1 is a rational curve of degree n with one Bn,n−m sin-

gularity and (n − 1)(m − 1)/2 nodes.

5. Remarks on Bi-tangent Lines on FFFn,m

In this section we study bi-tangent lines of Fn,m in some detail. We consider the
affine equation f = xn + ym + 1 and take a point P = (a, b)∈ C

2 − {xy = 0}.
The tangent line is given by nan−1(x − a) + mbm−1(y − b) = 0, and this im-
plies that

Gauss(P ) = (nan−1 : mbm−1 : (m − n)an + m).

Thus, if P ′ = (a ′, b ′) is a partner of the bi-tangent line with P, then

an + bm + 1 = 0, a ′ = at, b ′ = bτ, t n−1 = τ m−1, (12)

(n − m)an(t n−1 − t n) = m(t n−1 − 1), (13)

ant n − (an + 1)t n−1τ + 1 = 0. (14)

There are obvious solutions. If t = 1, then τ m−1 = 1 and we have an + 1 = 0 and
b = 0. Hence this corresponds to the flexes on y = 0. Assume that t n−1 = 1 and
t �= 1; then a = 0 and τ = 1, which corresponds to flexes on x = 0.
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For t n−1 �= 1, (12)–(14) can be written as

an + bm + 1 = 0, a ′ = at, b ′ = bτ,

an = ψ1(t), τ = ψ2(t), ϕn,m(t) = 0,
(15)

where ψ1,ψ2 ,ϕn,m are defined as follows:

ψ1(t) := m(t n−1 − 1)

(n − m)(t n−1 − t n)
,

ψ2(t) := mt(t n−1 − 1) + (n − m)(1 − t)

(m − n)t n + nt n−1 − m
,

ϕn,m(t) := t n−1{(m − n)t n + nt n−1 − m}m−1

− {mt(t n−1 − 1) + (n − m)(1 − t)}m−1.

We can easily see that the polynomialϕn,m(t) can be divided by (t−1)m−1(t n−1−1),
and by letting

ϕ ′
n,m := ϕn,m

(t − 1)m+1(t n−1 − 1)

it follows that ϕ ′
n,m(t) is a recursive polynomial over Z of degree nm−n−m−1.

For a fixed root t of ϕn,m(t) = 0, we have nm choices of (a, b) that yield mutually
different tangent lines. Thus the number of the unordered pairs (P,P ′) coincides
with nm(nm − n − m − 1)/2.

There are two points to be checked.

(A) There do not exist any ν-tangent lines with ν ≥ 3 tangents.
(B) There exists no bi-tangent line for which one of the tangent points is a flex

point.

Condition (A) is equivalent to the following conjecture.

Conjecture A. ϕn,m is a reduced polynomial whose roots are different from
(n − 1)-roots of unity, and the mapping

ψ1: {t;ϕ ′
n,m(t) = 0} → C

is injective.

Next we consider condition (B). Assume that P = (a, b) with an = −m(n−1)
n−m

and

bm = n(m−1)
n−m

(a flex point). Then, by (12) we have −t nn + t n − 1 + t n−1n = 0.
Dividing by (t − 1)2, we obtain that the equivalent condition is as follows.

Conjecture B. The polynomial θn(t) := nt n−1 + (n − 1)t n−2 + · · · + 1 is co-
prime with ϕ ′

n,m(t).

This conjecture holds if the next one does.

Conjecture B′. The polynomial θn(t) is irreducible over Q.

Though we have no particular reason for this conjecture, the irreducibility of θn(t)
is checked for n ≤ 500 by Maple 7.
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If Conjecture B′ is true then Conjecture B follows immediately, since the lead-
ing coefficient of ϕ ′

n,m is ±1 and so cannot be divided by θn. The conjecture A+B
is equivalent to Bi-tangent Conjecture I for F̌n,m. We are unable to prove these
conjectures in general, but an explicit computation shows the assertion is true, for
example, for Dn,n−1,1, n ≤ 50.

Remark 16. The case gcd(n,m) ≥ 2 induces some nondegenerate cusp singu-
larities in an affine coordinate chart. For example, D6,3,1 is defined by the homo-
geneous polynomial

F(U,V,W) = − 1

64
UW 5 − 1

32
U 2W 4 − 1

64
U 3W 3 − VW 5

− 31

16
UVW 4 − 23

16
U 2VW 3 + 5V 2W 4 − 209

8
UV 2W 3

+ 3

16
U 2V 2W 2 − 10V 3W 3 − 20UV 3W 2 + 10V 4W 2

− 3

4
UV 4W − 5V 5W + V 6.

We can see that {W = 0} ∩ D6,3,1 = {(1 : 0 : 0)}, and using the affine coordinates
v1 = V/U and w1 = W/U then yields

F(v1,w1) = (−w1 + 4v2
1 )

3 + (higher terms).

After a change of coordinates (v2 ,w2) = (v1,w1 −4v2
1 ), we see that F(v2 ,w2) =

− 1
64w

3
2 − 432v7

2 + (higher terms), which is topologically equivalent to B3,7.

6. Examples

Here we present some examples of Dn,m,r . We use fn,m,r (u, v) to denote the defin-
ing polynomial of Dn,m,r .

Example 1 (degree = 4)
D4 = D5,5,1, a maximal nodal quartic with three A1:

f551 := 1 − 124vu + 6v2 + 6u2 − 124vu2 − 124uv2 − 4v3u

+ 6v2u2 − 4vu3 − 4u3 − 4v3 + v4 + u4 − 4u − 4v.

D4,3,2 , a maximal nodal quartic with three A1:

f432 := 48vu + 6v2 + 3u2 + 12vu2 − 30uv2 − u3 + 4v3 + v4 − 3u + 4v + 1.

D4,3,1, a quartic with A2 + 2 A1:

f431 := − 27

256
u − v − 27

128
u2 − 27

4
uv2 + v4 − 3v3 + 3v2

− 27

256
u3 − 27

16
vu2 − 27

16
vu.
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Example 2 (degree = 5, quintics)
D5 = D6,6,1, a maximal nodal quintic with six A1:

f661 := 1 − 605vu + 10v2 + 10u2 + 1905vu2 + 1905uv2 − 605v3u

+ 1905v2u2 − 605vu3 + 5u4v + 10u3 + 10v3 + 5v4 + 5u4

+ u5 + 5u + 5v + 5v4u + 10u2v3 + v5 + 10v2u3.

D5,4,2 , a maximal nodal quintic with six A1:

f542 := −260vu − 10v2 − 6u2 + 340vu2 − 620uv2 − 140v3u − 110v2u2

− 20vu3 − 4u3 + 10v3 − 5v4 − u4 − 4u + 5v − 1 + v5.

D5,4,1, a rational curve with A2 + 5 A1:

f541 := 768

3125
u2 − 416

125
vu − 256

3125
u + 4v2 + v + 4v4 + v5 + 256

3125
u4 − 256

125
vu3

+ 384

25
v2u2 − 32v3u + 6v3 − 768

3125
u3 − 128

125
vu2 + 1216

25
uv2.

D5,3,1, a rational curve of degree 5 with A4 + A2 + 2 A1:

f531 := 216

3125
u2 − 234

125
vu − 108

3125
u − 4v2 + v − 4v4 + v5 − 18

5
v3u + 6v3

− 108

3125
u3 + 189

125
vu2 − 72

5
uv2.

D5,3,2 , a rational curve of degree 5 with A4 + 3 A1:

f532 := −90vu + 10v2 + 3u2 + 30vu2 + 135uv2 − 15v3u + u3

+ 10v3 + 5v4 + 3u + 5v + v5 + 1.

Example 3 (degree = 6)
D6 = D7,7,1, a maximal nodal curve with ten A1:

f771 := 1 − 2736vu + 15v2 + 15u2 + v6 + 15v4u2 − 20586vu2 − 20586uv2

− 20586v3u + 131727v2u2 − 20586vu3 − 2736u4v − 20u3 − 20v3

+ u6 + 15v4 + 15u4 − 6u5 − 6u − 6v − 6vu5 − 6v5u + 15v2u4

− 20v3u3 − 2736v4u − 20586u2v3 − 6v5 − 20586v2u3.

D6,5,2 , a maximal nodal curve with ten A1:

f652 := 1230vu + 15v2 + 10u2 + v6 + 4680vu2 − 7530uv2 + 6230v3u

+ 14955v2u2 + 1830vu3 + 30u4v − 10u3 + 20v3 + 15v4 + 5u4

− u5 − 5u + 6v − 630v4u + 910u2v3 + 6v5 + 1 − 285v2u3.



On Fermat Curves and Maximal Nodal Curves 477

D6,5,1, a rational curve with A2 + 9 A1:

f651 := − 3125

46656
u − 2375

648
vu − 3125

7776
u3 − 3125

11664
u2 − 30625

1296
vu2

− 2375

9
uv2 + 5v2 − 10v3 − v + 10v4 − 5v5 + v6 + 131875

432
v2u2

− 3125

11664
u4 + 3125

162
vu3 − 68375

108
v3u − 6875

54
u2v3 − 3125

46656
u5

− 3125

1296
u4v − 3125

108
v2u3 − 875

6
v4u.
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