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Linearity of Sets of Strange Functions

Frédéric Bayart

1. Introduction

In analysis, sometimes very strange phenomena appear. For instance, one should
mention continuous nowhere differentiable functions, everywhere divergent Fou-
rier series of functions in L1(T), or universal Taylor series. By experience, it is
known that as soon as such a pathological example is exhibited, it is most often
generic in the sense of Baire’s categories. Namely, in a well-chosen topological
space, all elements of a dense Gδ set share this pathological behavior.

More recently, the algebraic structure of these sets has been investigated (see
e.g. [Ro] or [AGM]). Let us recall the following definition (introduced in [GuQ]).

Definition 1. A set M in a linear topological space X is said to be spaceable if
M ∪ {0} contains a closed infinite-dimensional subspace of X.

In this paper, we give several examples of sets of functions with irregular behavior
that are spaceable. Our main tool is the use of basic sequences, a technique ini-
tiated in this context by Bernal-Gonzalez and Montes-Rodriguez [BeMo; Mo] in
the particular case of hypercyclic vectors. We recall some basic definitions and re-
sults, which are taken from [Di]. A sequence (xn)n≥1 of a Banach spaceX is called
a basic sequence if, for each x belonging to X0 = span(xn : n ≥ 1), there exists a
unique sequence of scalars (αn) such that x = ∑+∞

n=1 αnxn. The coefficient func-
tionals are defined by x∗

k

(∑+∞
n=1 αnxn

) = αk. They are continuous on X0 and can
be extended to X by the Hahn–Banach theorem. Two basic sequences (xn) and
(yn) are equivalent if the convergence of

∑
αnxn is equivalent to the convergence

of
∑

αnyn. We will intensively use the following result (see [Di, Thm. 9]).

Lemma 1. Let (xn) be a basic sequence inX, and let (yn) be a sequence inX sat-
isfying

∑‖x∗
n‖‖xn − yn‖ < 1. Then (yn) is a basic sequence equivalent to (xn).

This lemma explains our strategy for building large subspaces of functions with
strange behavior. First, we exhibit in the space a basic sequence of functions with
a very regular behavior. Next, we slightly disturb these functions, so that the new
functions behave very irregularly, yet with the new sequence remaining a basic se-
quence. Finally, we show that a good choice of the perturbations ensures that the
irregular behavior transfers to the subspace generated by the basic sequence. This
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strategy has been proved to be efficient in many different settings (we refer to the
following sections for precise statements and necessary definitions):

• in geometry of Banach spaces, to build subspaces of Gâteaux differentiable
functions whose derivatives are far away from each other;

• in complex analysis, and more precisely in the theory of universal Taylor series;
• in harmonic analysis, we prove that the set of functions of L1(T) with every-

where divergent Fourier series is spaceable;
• in operator theory, the set of supercyclic operators is spaceable in L(H ) for H

a Hilbert space.

2. Gâteaux-Smooth Functions

IfX is a real Banach space and f is a real-valued function defined onX and every-
where Frechet differentiable, Maly’s theorem (see [Ma]) asserts that the range
of f ′ is connected. On the other hand, Deville and Hayek [DH] have demon-
strated the existence of a continuous function f from �1 to R2 that is every-
where Gâteaux differentiable and whose derivatives are far away from each other:
‖f ′(x) − f ′(y)‖L(l1,R2) ≥ 1 for every x �= y ∈ �1. Moreover, they prove that it
is possible to choose such a function from �p to c0. We improve their result and
build, for any Banach space X, a closed subspace of Cb(X, c0) (the set of bounded
continuous functions from X to c0 equipped with the supremum norm) of such
functions.

Theorem 1. Given any real separable Banach space X, the set of Lipschitz con-
tinuous functions from X to c0 that are Gâteaux differentiable at each point of X,
and such that the range of the Gâteaux derivative consists of isolated points, is
spaceable in Cb(X, c0).

We begin with several lemmas; the first two can be found in [DH]. Observe that
the norm on R2 is the norm induced by c0.

Lemma 2. Given � = (a ′, a, b, b ′)∈ R4 with a ′ < a < b < b ′ and η > 0, there
exists a C∞-function ϕ = ϕ�,η : R2 → R2 such that

(i) ‖ϕ(α,β)‖ ≤ η for all (α,β)∈ R2,
(ii) ϕ(α,β) = 0 whenever α /∈ [a ′, b ′ ],

(iii)
∥∥ ∂ϕ

∂α
(α,β)

∥∥ ≤ η for all (α,β)∈ R2,

(iv)
∥∥ ∂ϕ

∂β
(α,β)

∥∥ = 1 whenever α ∈ [a, b], and

(v)
∥∥ ∂ϕ

∂β
(α,β)

∥∥ ≤ 1 for all (α,β)∈ R2.

In particular, this C∞-function is (1 + η)-Lipschitz.

Lemma 3. Let X and Y be separable real Banach spaces, and for all n let
fn : X → Y be Gâteaux differentiable mappings. Assume that

(∑
fn

)
converges

pointwise on X and that, for all h,
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(∑ ∂fn

∂h
(x)

)
converges uniformly with respect to x.

Then the mapping f = ∑
n≥1 fn is Gâteaux differentiable on X and one has

f ′ = ∑
n≥1 f

′
n, where the convergence holds in L(X,Y ) for the strong operator

topology.

The third lemma deals with biorthogonal systems: this is a useful tool for replac-
ing bases in the Banach space setting.

Lemma 4 [OP]. If X is an infinite-dimensional separable Banach space, then
there is a sequence (up)p≥1 of X and a sequence (δq)q≥1 of X∗ such that:

(i) δq(up) = 1 if p = q, 0 otherwise;
(ii) span(up : p ≥ 1) = X;

(iii) δq(x) = 0 for any q implies that x = 0;
(iv) ‖up‖ = 1 for any p and supq‖δq‖ = C < +∞.

Observe in particular that (δq) is weak-star convergent to 0.
We are now able to prove Theorem 1. We denote by (en) the canonical basis of

c0 and by (up, δq) a biorthogonal system of X ×X∗.

Step 1: A basic sequence of good functions in Cb(X, c0).

We define Gj on X by Gj(x) = ej . Of course, Gj is everywhere differentiable,
with G′

j = 0. Moreover, observe that for any α1, . . . ,αn we have

‖α1G1 + · · · + αnGn‖∞ = sup
1≤j≤n

|αj |.

Therefore, (Gj )j≥1 is a basic sequence inCb(X, c0) that is equivalent to the canon-
ical basis of c0.

Step 2: A perturbation of these functions.
Let us fix �k = (a ′

k , ak , bk , b
′
k) an enumeration of all quadruples of rational

numbers, with a ′
k < ak < bk < b ′

k. By mj,k,n we denote, for j, k, n ≥ 1, the inte-
ger mj,k,n = 2kpn

j+1; here pj+1 is the (j + 1)th prime number. Observe that

mj,k,n ≥ max(j, k, n) and

mj,k,n = mj ′,k ′,n′ ⇐⇒ (j, k, n) = (j ′, k ′, n′).

Let (εj )j≥1 be a sequence of positive numbers with
∑

εj < 1/2 and let (ηj,k,n)j,k,n≥1

be another sequence of positive numbers with
∑

k,n≥1 ηj,k,n < εj . For j, k, n
greater than unity, Tj,k,n is the linear map from R2 to c0 defined by

Tj,k,n(α,β) = αe2mj,k,n + βe2mj,k,n+1.

These functions have disjointly supported ranges in c0. Finally we set, for x ∈X,

Fj(x) = Gj(x)+
∑
k,n≥1

Tj,k,n � ϕ�k,ηj,k,n(δn(x), δmj,k,n(x))

:= Gj(x)+
∑
k,n≥1

fj,k,n(x),
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where the function ϕj,k,n = ϕ�k,ηj,k,n is given by Lemma 2. According to con-
dition (i) of Lemma 2, ‖fj,k,n‖ ≤ ηj,k,n and so F is well-defined. In addition,
one has ‖Fj − Gj‖ ≤ εj , and by Lemma 1 it follows that (Fj ) is a basic sequence
in Cb(X, c0) that is equivalent to the canonical basis of c0. Let us denote by E

the closed linear span in Cb(X, c0) generated by the sequence (Fj ). Observe that
each Fj is Lipschitz continuous because each fj,k,n is Lipschitz with constant
C(1+ηj,k,n) ≤ 2C, where C is the constant that appears in Lemma 4, and because
these functions have disjointly supported ranges in c0. Therefore,

‖Fj(x)− Fj(y)‖ ≤ sup
k,n

‖fj,k,n(x)− fj,k,n(y)‖

≤ 2C‖x − y‖.
Step 3: Any function F in E \ {0} is Lipschitz continuous and Gâteaux differ-

entiable, and the application x �→ F ′(x) has discrete range in L(X, c0).

Let F = ∑
j≥1 αjFj be such a function, with αj → 0. Let us first prove that F

is Gâteaux differentiable on X. Fix x,h∈X. Then

∂fj,k,n

∂h
(x) = δn(h)Tj,k,n

(
∂ϕj,k,n

∂α
(δn(x), δmj,k,n(x))

)

+ δmj,k,n(h)Tj,k,n

(
∂ϕj,k,n

∂β
(δn(x), δmj,k,n(x))

)

:= δn(h)wj,k,n(x)+ δmj,k,n(h)vj,k,n(x), (1)

where ‖wj,k,n(x)‖ ≤ ηj,k,n (see Lemma 2(iii)) and ‖vj,k,n(x)‖ ≤ 1 and where
wj,k,n(x) and vj,k,n(x) are supported by span(e2mj,k,n , e2mj,k,n+1). Clearly, the series∑

j,k,n αj δn(h)wj,k,n(x) is normally convergent on X. Let us prove that the series∑
j,k,n αj δmj,k,n(h)vj,k,n(x) is uniformly convergent on X because it satisfies the

uniform Cauchy condition. Indeed, if A is any finite subset of N3 then∥∥∥∥
∑

j,k,n∈A
αjδmj,k,n(h)vj,k,n(x)

∥∥∥∥ ≤ ‖α‖∞ max
j,k,n∈A|δmj,k,n(h)|.

Since (δq) is weak-star convergent to 0, this becomes very small as soon as A
does not intersect a well-chosen finite subset of N3. Therefore, the uniform con-
vergence is proved.

Next, Lemma 3 implies that F is Gâteaux differentiable on X. Moreover, since
the ranges of the functions fj,k,n are disjointly supported, it is easy to check that
F is Lipschitz continuous (with constant ≤ 2C‖α‖∞). We achieve the proof by
showing that, if x �= y ∈X, then

‖F ′(x)− F ′(y)‖ ≥ ‖α‖∞
(

1 − 2
∑
l

εl

)
.

By Lemma 4, there exists an integer n with δn(x) �= δn(y). Let k be such that

δn(x)∈ [ak , bk] and δn(y) /∈ [a ′
k , b

′
k].
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Take j with |αj | = ‖α‖∞. It is plain that

‖F ′(x)− F ′(y)‖ ≥
∥∥∥∥ ∂F

∂umj,k,n
(x)− ∂F

∂umj,k,n
(y)

∥∥∥∥.
Now, the following equalities and inequalities hold.

• For any l ≥ 1,

∂Gl

umj,k,n
(x) = ∂Gl

umj,k,n
(y) = 0,

∥∥∥∥ ∂fj,k,n

∂umj,k,n
(x)

∥∥∥∥ = 1,

∥∥∥∥ ∂fj,k,n

∂umj,k,n
(y)

∥∥∥∥ = 0;

this follows from Lemma 2(ii) and (iv), Lemma 4(i), and (1).
• For (l, q, r) �= (j, k, n),∥∥∥∥ ∂fl,q,r

∂umj,k,n
(x)

∥∥∥∥ ≤ ηl,q,r and

∥∥∥∥ ∂fl,q,r

∂umj,k,n
(y)

∥∥∥∥ ≤ ηl,q,r .

Indeed, in this situation δml,q,r
(umj,k,n) = 0, as follows from Lemma 2(iii).

Combining these results yields

‖F ′(x)− F ′(y)‖ ≥ |αj | − 2‖α‖∞
∑
l,q,r

ηl,q,r

≥ ‖α‖∞
(

1 − 2
∑
l

εl

)
.

Remarks. (a) Since the ranges of the derivatives of the functions fj,k,n are dis-
jointly supported in c0, it follows for any x in X that∥∥∥∥

n∑
j=1

αjF
′
j (x)

∥∥∥∥ = max
1≤j≤n

|αj |‖f ′
j,k,n(x)‖.

Now, by (1),

‖f ′
j,k,n(x)‖ = sup

‖h‖=1

∥∥∥∥∂fj,k,n∂h
(x)

∥∥∥∥ ≤ 2C.

On the other hand, we also have

‖f ′
j,k,n(x)‖ ≥

∥∥∥∥ ∂fj,k,n

∂umj,k,n
(x)

∥∥∥∥ ≥ 1.

Therefore, E is also a closed subspace of bounded functions from X to c0, with
bounded Gâteaux derivative and equipped with the norm ‖F‖ + ‖F ′‖.

(b) A careful look at the proof shows that the following result is actually true:
Given any 0 < k < 1, there exists a closed infinite-dimensional subspace of
Cb(X, c0) such that, for any nonzero function F in this subspace, (i) F is Lip-
schitz continuous and Gâteaux-differentiable and (ii) ifL(F ) is the Lipschitz con-
stant of F then, for any x �= y in X,

‖F ′(x)− F ′(y)‖ ≥ k
L(F )

C
,

where C is a constant that depends only on the geometry of the Banach space.
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3. Taylor Series

Let H(D) be the space of holomorphic functions in the unit disk D, endowed with
the topology of uniform convergence on compacta. For K a subset of C and for F
a continuous function on K, we use ‖F‖C(K) to denote the sup norm of F on K.

Nestoridis proved in 1996 (see [N]) the existence of a function f = ∑
n≥0 anz

n

inH(D) that is universal in the following sense: Given any compact setK ⊂ C \D

with connected complement and any function g continuous on K and holomor-
phic inside K, there exists a subsequence of the Taylor series of f that converges
uniformly to g on K. Actually, this is true for all functions (except 0) in a closed
subspace of H(D).

Theorem 2. There exists a closed infinite-dimensional subspaceF ofH(D) such
that, for any f = ∑+∞

n=0 anz
n ∈ F \ {0}, for every compact set K in C \ D with

connected complement, and for any function g continuous on K and holomorphic
in the interior of K, there exists an increasing sequence (nk) of positive integers
such that

Snk (f )(z) =
nk∑
n=0

anz
n → g(z) uniformly on K.

Proof. We begin with a refinement of Mergelyan’s theorem that essentially says
we can choose a polynomial with arbitrarily high valuation.

Lemma 5. Let K be a compact set in C \ D with connected complement, L a
compact subset of D, and g a function continuous on K and analytic inside K.
For any ε ≥ 0 and N ≥ 1, there exists a polynomial P(z) = ∑q

n=N anz
n such

that:

‖P ‖C(L) < ε;
‖P − g‖C(K) < ε.

Proof. Set R > 1 and 0 < r < 1 such that K ⊂ B(0,R) and L ⊂ B(0, r). By
Mergelyan’s theorem, there exists a polynomial Q(z) = ∑q

0 bnz
n such that:

‖Q‖C(B̄(0,r)) <
ε

2N
× rN

RN
;

‖Q− g‖C(K) <
ε

2
.

By Cauchy’s estimates, for k ≤ N one has |bk| ≤ ε/2NRk. We set P(z) =∑q

n=N bnz
n. Observe that, for z∈B(0,R),

|P(z)−Q(z)| ≤
N−1∑

0

|bk|Rk

≤ ε

2
.

Therefore, P satisfies the conclusion of Lemma 5.
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We now proceed with the proof of Theorem 2. Fix a sequence (Km) of compact
subsets of C \D with connected complement such that, for every compact setK ⊂
C \D with connected complement, there exists an m∈ N with K ⊂ Km (see [N]).
Let (Ql) be an enumeration of all polynomials with coefficients in Q + iQ and let
ϕ,ψ : N∗ → N∗ be two functions such that, given any couple (m, l ) in N∗ × N∗,
there exist infinitely many j with (ϕ(j),ψ(j)) = (m, l ). Let us finally fix (rj ) an
increasing sequence in ]1/2,1[ that is converging to 1. We use induction to build
sequences of polynomials (fj,k) for k ≤ j.

Step 1. Define g1,1(z) = 2z + P(z), where P is given by Lemma 5 with K =
Kϕ(1), L = B̄(0, r1), g = Qψ(1), N = 2, and ε = 1/23. The Taylor series of g1,1

approaches Qψ(1) on Kϕ(1). We now correct its value on Kϕ(2) for further expan-
sions by setting f1,1(z) = g1,1(z) + Q(z), where Q is given by Lemma 5 with
K = Kϕ(2), L = B̄(0, r1), g = −g1,1, N = deg(P )+ 1, and ε = 1/23.

Step j − 1 to step j. Assume that polynomials (fj−1,k) have been built in the
previous step for k ≤ j − 1. Let Nj,1 = max1≤k≤j−1 deg(fj−1,k) + 1. We define
an intermediate polynomial gj,1 by setting gj,1(z) = fj−1,1(z)+ P(z), where P is
given by Lemma 5 for K = Kϕ(j), g = Qψ(j) − fj−1,1, L = B̄(0, rj ), N = Nj,1,
and ε = 1/2j+2. In order to prepare step j + 1, we now correct the value of the
Taylor series by setting

fj,1(z) = gj,1(z)+Q(z),

where Q is given by Lemma 5 for K = Kϕ(j+1), g = −gj,1, L = B̄(0, rj ), N =
deg(P )+ 1, and ε = 1/2j+2. Therefore, the following inequalities are satisfied:

‖fj,1 − fj−1,1‖C(B̄(0,rj ))
≤ 1

2j+1
; (2)

‖fj,1‖C(Kϕ(j+1)) ≤ 1

2j+1
. (3)

Moreover, Sn(fj,1) = Sn(fj−1,1) for n < Nj,1. Taking Nj,2 = deg(fj,1) + 1, we
apply the same construction to deduce fj,2 from fj−1,2 , and inductively we build
polynomials fj,k (1 ≤ k ≤ j −1) satisfying inequalities similar to (2) and (3). Fi-
nally, if Nj,j is an integer greater than the degree of all polynomials fj,k (1 ≤ k ≤
j − 1), then fj,j is deduced from 2Nj,j zNj,j by following the same process.

Condition (2) ensures that the sequence (fj,k)j≥k converges uniformly on any
compact subset of D to a function fk ∈H(D). Let E be the vector space consist-
ing of all series

∑∞
1 αkfk that converge uniformly on compacta of D, and let F

be the closure of E in H(D). Clearly F is a closed infinite-dimensional subspace
of H(D), and we need only prove that it consists of universal functions.

We begin with the case of a series h = ∑∞
1 αkfk in E, where

∑|αk|2 < +∞.

Take ε > 0, Km a compact set in the family described at the beginning of the
proof, and (Ql) a polynomial with coefficients in Q + iQ. Without loss of gener-
ality, assume that α1 = 1 (if α1 = 0, we take the least integer k such that αk �= 0;
the proof is exactly the same). Let j be such that (ϕ(j),ψ(j)) = (m, l ), and let
N be the degree of the polynomial gj,1 built at step j. Then, for z∈Km,
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|SN(h)(z)−Ql(z)| ≤ |gj,1(z)−Ql(z)| +
∣∣∣∣
j−1∑
k=1

αkfj−1,k(z)

∣∣∣∣

≤ 1

2j
+

( +∞∑
1

|αk|2
)1/2( j−1∑

1

|fj−1,k(z)|2
)1/2

≤ 1

2j
+ ‖α‖2 × j1/2

2j

(the last inequality follows from (3)). Letting j go to infinity, one obtains

‖SN(h)−Ql‖C(Km) ≤ ε.

This shows that
∑+∞

1 αkfk is universal in the sense of Nestoridis. Note that the
integer N does not depend specifically on h; it depends only on ‖α‖2 and the con-
dition α1 = 1.

In order to transfer the universal behavior to all elements of F, we use the the-
ory of basic sequences as in [BeMo]. First of all, let H = L2

(
1
2 T

)
. If g be-

longs to H(D) then it clearly belongs to H with ‖g‖H ≤ ‖g‖C(B̄(0,1/2)). Hence, by
construction,

‖fk − 2Nk,k zNk,k‖2
H ≤

∑
j>k

1

4j

≤ 1

3 × 4k
.

Therefore (fj ) is a basic sequence of L2
(

1
2 T

)
that is equivalent to the canonical

basis of �2. Now, if h belongs toF then there is a sequence (hr ) ofE that converges
to h. By continuity of ‖·‖H with respect to the maximum norm on B̄(0,1/2), this
sequence of series converges also to h in L2

(
1
2 T

)
. Therefore, h has a representa-

tion as a series
∑+∞

k=1 αkfk in L2
(

1
2 T

)
, perhaps not convergent in H(D). Let us

write hr = ∑+∞
k=1 α

r
kfk , with αr ∈ �2 and αr → α in �2. Take ε > 0, Km, and

Ql as before. We suppose again that α1 = 1, and it is obvious that we may con-
sider that αr

1 = 1 for all r ∈ N. Since (αr ) is convergent in �2, the sequence of its
norms is bounded by M. If j is such that (ϕ(j),ψ(j)) = (m, l ), then our previous
calculation yields

∃Nj : ∀r ∈ N, ∀z∈Km, |SNj (hr)(z)−Ql(z)| ≤ 1

2j
+M × j1/2

2j
.

We definitively fix j such that 1/2j + M × j1/2/2j ≤ ε/2. Now, by taking the
limit in the (finite) sum of the Taylor series, one obtains r with

∀z∈Km, |SNj (h)(z)− SNj (hr)(z)| ≤ ε

2
.

This completes the proof that h is universal (Theorem 2).
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4. Divergence

4.1. Fourier Series

The existence of integrable functions with everywhere divergent Fourier series is a
pathological but generic phenomenon. It is also algebraically generic in the sense
of spaceability.

Theorem 3. LetM be the set of functions ofL1(T)whose Fourier series diverges
everywhere on T. Then M is spaceable.

Proof. Let uk(t) = ei2
k t. By Paley’s inequality (see e.g. [Du]), (uk) is a basic

sequence of L1(T) that is equivalent to the canonical basis of �2. We build by in-
duction a sequence of “bad polynomials” whose spectra are mutually disjoint and
fill the holes between the 2k. More precisely, we build two sequences of integers
n(j, k) and m(j, k), a sequence of trigonometric polynomials R(j, k) defined for
j ≥ 1 and 1 ≤ k ≤ j, and an increasing sequence of positive integers (lj )j≥1 such
that, for any 1 ≤ k < k ′ ≤ j,

2lj < n(j, k) ≤ m(j, k) < n(j, k ′) ≤ m(j, k ′) < 2lj+1, (4)

Sp(R(j, k)) ⊂ [n(j, k),m(j, k)], (5)

‖R(j, k)‖1 ≤ 1

2j+2
, (6)

∀t ∈ [0, 2π], sup
n(j,k)≤n≤m(j,k)

|Sn(R(j, k), t)| ≥ j, (7)

where Sn
(∑

l∈Z ale
ilt

) = ∑
|l|≤n ale

ilt and Sp
(∑

l∈Z ale
ilt

) = {l ∈ Z : al �= 0}.
Indeed, for j = 1, let Q be a trigonometric polynomial such that:

• ‖Q‖1 ≤ 1/4;
• for all t ∈ [0, 2π], supN |SN(Q, t)| ≥ 1.

Such a polynomial appears in the course of the proof of Kolmogorov’s theorem.
If Sp(Q) ⊂ [−a, a], we fix l1 large enough so that 2l1 > 2a + 1. Now the poly-
nomial R(1,1)(t) = exp[i(2l1 + a + 1)t]Q(t) works, with n(1,1) = 2l1+1 and
m(1,1) = 2l1+2a+1 < 22 l1. Given the construction through rank j −1, let us fix Q
a trigonometric polynomial and a an integer such that:

• ‖Q‖1 ≤ 1/2j+2;
• for all t ∈E, supN |SN(Q, t)| ≥ j ;
• Sp(Q) ⊂ [−a, a].

Let lj be a sufficiently large integer such that lj > lj−1 and 2lj > j(2a + 1). We
then define R(j, k), n(j, k), and m(j, k) by setting

• R(j,1)(t) = exp[i(2lj + a + 1)t]Q(t),
• n(j,1) = 2lj + 1, and
• m(j,1) = 2lj + 2a + 1

if k = 1 and, if 2 ≤ k ≤ j, by using induction to set
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• R(j, k)(t) = exp[i(m(j, k − 1)+ 1)t]Q(t),
• n(j, k) = m(j, k − 1)+ 1,
• m(j, k) = m(j, k − 1)+ 2a + 1.

Then m(j, j) ≤ 2lj + j(2a + 1) < 2lj+1 and so conditions (4)–(7) are fulfilled.
Finally, we set:

vk = uk +
∑
j≥k

R(j, k)

and observe that
‖vk − uk‖ ≤

∑
j≥k

‖R(j, k)‖ ≤ 1

2k+1
.

Now let (u∗
k ) be the coefficient functionals corresponding to the basic sequence

(uk). Clearly, one has ‖u∗
k‖ ≤ 1 and therefore

∑+∞
k=1‖u∗

k‖‖uk − vk‖ ≤ ∑+∞
k=1 < 1.

Thus, (vk) is a basic sequence. Denote by F the closed linear span generated by
(vk) and pick any f ∈F \ {0}, which may be written f = ∑+∞

k=1 αkvk. Since f is
not equal to zero, there exists a coefficient αk that is not zero. Next observe that,
for k �= k ′ and j ≥ k,

Sp(vk ′) ∩ [n(j, k),m(j, k)] = ∅.
By (7), for j ≥ k and t ∈ [0, 2π] we have

sup
n(j,k)≤n≤m(j,k)

|Sn(f , t)− Sn(j,k)−1(f , t)| = |αk| sup
n(j,k)≤n≤m(j,k)

|Sn(R(j, k), t)|
≥ |αk|j.

Hence, the Fourier series (Sn(f , t))n≥0 is everywhere unboundedly divergent.

Remark. This method of proof applies to many examples where we have diver-
gent series.

(1) Let E ⊂ T be a set of Lebesgue measure 0. The set of functions of C(T)
whose Fourier series is everywhere unboundedly divergent onE is spaceable. This
is reminiscent of Du Bois–Reymond’s example, and the proof is almost the same.
The theory of Sidon sets (see [LR]) replaces Paley’s inequality to prove that ei2

k t

is a basic sequence in C(T) that is equivalent to the canonical basis of �1. The
following lemma from [KaK] is used to build the sequence of bad polynomials:
Given F and a finite union of intervals of T with Lebesgue measure a (0 < a <

1/π), there exists a trigonometric polynomialQwith norm 1 inC(T) and such that

sup
n∈N

|Sn(Q, t)| ≥ 1

π
log

1

aπ
when t ∈F.

Since E is negligible, we can find a sequence of sets (Fj ) such that: Fj is a finite
union of intervals; its measure aj satisfies

1

π
log

1

ajπ
≥ 2j+1j ;

and each point of E belongs to infinitely many Fj . The trigonometric polynomial
Q used at step j is now given by the previous lemma, with F = Fj .

(2) The same holds for Fefferman’s example of a function in L2(T2) whose
Fourier series is everywhere divergent on T2.



Linearity of Sets of Strange Functions 301

4.2. Dirichlet Series

Let us now turn to the case of H∞, the space of Dirichlet series f(s) = ∑∞
1 ann

−s

with convergence and boundedness of f in the half-plane C+ = {s ∈ C :
�(s) > 0}; H∞ is a Banach space with the norm

‖f ‖∞ = sup{|f(s)| : s ∈ C+}.
Recall that a Dirichlet polynomial is a Dirichlet series with a finite number of
nonzero coefficients

∑N
1 ann

−s and that, if f(s) = ∑
n≥1 ann

−s, then the spec-
trum of f is defined by

Sp(f ) = {n ≥ 1 : an �= 0}.
In [BKoQ], it is proved that there exists a Dirichlet series f(s) = ∑∞

1 ann
−s ∈

H∞ such that
∑∞

1 ann
it diverges for each t ∈ R. In the course of the proof, we

build a sequence of Dirichlet polynomials Qk(s) = ∑Nk

n=1 an(k)n
−s and a se-

quence of intervals Xk such that

‖Qk‖∞
k→∞−−−→ 0,

Xk ⊂ Xk+1,
+∞⋃
k=1

Xk = R,

∀t ∈Xk , sup
1≤l≤Nk

∣∣∣∣
l∑

n=1

an(k)n
it

∣∣∣∣ ≥ δ;

here δ > 0 is an absolute constant. The techniques used in the previous section
can be developed here to prove that there exists a closed subspace F of H∞ such
that, for each f = ∑

n≥1 ann
−s ∈F \{0}, the series

∑
n≥1 ann

it is everywhere di-
vergent. In this context Paley’s inequality is replaced by Bohr’s inequality, which
we recall here as a lemma (see [Q] for a proof ).

Lemma 6. Let (qj )j≥1 be a sequence of distinct prime numbers. Then, for any
N ≥ 1 and any a1, . . . , aN ∈ C,

∥∥∥∥
N∑
n=1

anq
−s
n

∥∥∥∥∞
=

N∑
n=1

|an|.

Theorem 4. Let M be the subset of H∞ of the Dirichlet series

f(s) =
+∞∑
n=1

ann
−s

such that the series
∑+∞

n=1 ann
it is everywhere divergent on R. ThenM is spaceable.

Proof. We just sketch the proof. As in the proof of Theorem 3, one may build by
induction on j a sequence R(j, k) of bad “Dirichlet polynomials”, two sequences
of integers n(j, k) and m(j, k), and an increasing sequence (qj ) of prime numbers
such that
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qj < n(j, k) ≤ m(j, k) < n(j, k ′) ≤ m(j, k ′) < qj+1,

Sp(R(j, k)) ⊂ [n(j, k),m(j, k)],

‖R(j, k)‖∞ ≤ 1

2j+2
,

∀t ∈ [−j, j ], sup
n(j,k)≤n≤m(j,k)

|Sn(R(j, k), t)| ≥ j ,

where in this context Snf(s) means
∑n

1 ak k
−s once f has been given by f(s) =∑∞

1 ak k
−s. If we use vk to denote q−s

k + ∑
j≥k R(j, k), then Lemmas 1 and 6 en-

sure that (vk) is a basic sequence of H∞. The rest of the proof follows exactly that
of Theorem 3.

5. Supercyclic Operators

If X is a Banach space, then an operator T on X is called:

• hypercyclic provided there exists an x ∈ X such that {T nx : n ≥ 0} is dense
in X;

• supercyclic provided there exists an x ∈X such that {λT nx : n ≥ 0, λ ∈ C} is
dense in X.

Because a hypercyclic operator has norm greater than 1, the set of hypercyclic op-
erators is never spaceable. On the other hand, the following theorem holds.

Theorem 5. The set of supercyclic operators on a separable Hilbert space H is
spaceable.

Proof. We may assume that H = H 2(D). By a theorem of Mazur (see e.g. [Di]),
we can find a basic sequence (ϕk)k≥1 in H∞

0 (D) = {f ∈H∞(D) : f(0) = 0}.
For ϕ ∈H∞

0 (D)\{0}, denote byMϕ the induced multiplier onH 2(D)—namely,
Mϕ(f ) = ϕf. One may find λ > 0 such that λϕ(D)∩T �= ∅. By a result of Gode-
froy and Shapiro [GoS], the operator (λMϕ)

∗ = M ∗
λ̄ϕ

is hypercyclic on H 2(D).

Therefore, the operator M ∗
ϕ is supercyclic. Observe now that, for any N ≥ 1 and

any complex numbers a1, . . . , an,

∥∥∥∥
N∑
k=1

akM
∗
ϕk

∥∥∥∥ = ∥∥M∑
N
k=1 akϕk

∥∥ =
∥∥∥∥

N∑
k=1

akϕk

∥∥∥∥∞
.

This implies that (Mϕ∗
k
) is a basic sequence in L(H 2), and clearly the closed Ba-

nach space generated by the sequence (M ∗
ϕk
) solves the problem.

Remarks. (1) The proof actually gives a slightly stronger result: We have proved
that the set of operators for which there exists a scalar multiple that is hypercyclic
is spaceable (there exist supercyclic operators whose scalar multiples are never
hypercyclic).

(2) The result stated here holds for a complex Hilbert space. We do not know if
it remains true for a real Hilbert space or for an arbitrary Banach space.
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