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On the Pfister–Leep Conjecture on Cd
0 -Fields

Hamza Ahmad

1. Introduction

In analogy to algebraically closed fields, a field k is called a Cd
0 -field if every sys-

tem of r homogeneous forms of degree d over k in n variables (n > r) has a
common nontrivial zero over k. For a prime p, a field k is called a p-field if [L : k]
is a power of p for every finite extension L/k.

In [3], Pfister proves the following theorem.

Theorem [3, Thm. 2]. If k is a p-field then, for any d not divisible by p, k is a
Cd

0 -field.

See also [4, Thm. 2]. A special case is as follows.

Corollary [3, Cor. 1]. If k is a p-field for some prime p �= 2, then k is a C2
0 -

field.

Pfister conjectured that the converse of this corollary is true.

Pfister’s Conjecture [3, Conjecture 3]. If k is a C2
0 -field, then k is a p-field

for some prime p �= 2.

In [2, Thms. 5.4 & 5.5], Leep proved this conjecture for fields of characteristic 0
or 2 and gave the following generalized version of Pfister’s conjecture to higher-
degree forms (see [2, 1.4]).

The Conjecture of Pfister–Leep. For a fixed d, if k is a Cd
0 -field then k is a

p-field for some prime p � d.

In this note we show (Corollary 3.2) that the Pfister–Leep conjecture is true if d

is a power of the characteristic of the field k. Note that if k is a C
qi

0 -field then k

is also a C
q

0 -field (because if {F1, . . . , Fr} is a system of forms of degree q, then
{F qi−1

1 , . . . , F qi−1

r } is an equivalent system of forms of degree q i). Therefore, we
need only consider the case when d is equal to the characteristic of k.
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2. A System of Forms

Let k be a fixed field and let d > 1 be a fixed integer. In this section, we define a
system of forms of degree d that will be used in the proof of the special case of
the conjecture. We take our variables to be Z, X1, X2 , . . . .

Define f : {2, 3, . . . } → {1, 2, . . . } and g : {2, 3, . . . } → {d, d 2, . . . } as follows.
For n ≥ 2, let n = a0 + a1d + · · · + ar d

r be the d-adic expansion of n, where
at ∈ {0,1, . . . , d − 1} for 0 ≤ t ≤ r and ar �= 0. Set g(n) = dr+1, and set

f(n) =




dr−1 if n = dr,

dr if n = ar d
r and ar > 1,

a0d + a1d
2 + · · · + ar−1d

r if n �= ar d
r.

Define the form φn of degree d as follows:

φn =




XnZ
d−1 − Xd

f(n) if n = dr,

Xd
n − Xar

g(n)Z
d−ar if n = ar d

r and ar > 1,

Xd
n − Xf(n)X

ar
g(n)Z

d−ar−1 otherwise.

Remark 2.1.

(i) Since n < dr+1 = g(n) and f(n) < dr+1, the form φn does not involve the
variables Xt , t > dr+1.

(ii) If n < dm then f(n) < dm and g(n) ≤ dm.

(iii) If n = ar d
r then dn = arg(n). If n �= ar d

r, then g(n) > n and dn =
f(n) + arg(n).

(iv) If n �= ar d
r and ar = d − 1, then n − f(n) = (d − 1)(g(n) − n) > 0.

Let n = at d
t + · · · + ar d

r be the d-adic expansion of n, where at �= 0, ar �= 0,
0 ≤ t ≤ r, and n ≤ dm. Define the “length” of n, l(n), by l(n) = r − t.

We note that if n �= ar d
r then l(f(n)) < l(n). In addition, if n �= ar d

r and
n < dm, it follows that f(n) = a0d + a1d

2 + · · · + ar−1d
r < dr+1 ≤ dm.

Lemma 2.2. Let m be an integer ≥ 1, and let z, x1, x2 , . . . be elements from a
field. If z = 0 and if the forms φ2 , . . . , φdm defined as before Remark 2.1 vanish
on (z, x1, x2 , . . . ), then xn = 0 for n < dm.

Proof. The proof is by induction on l(n). First assume l(n) = 0, so that n = ar d
r.

Since φdr = XdrZd−1 − Xd
f(dr ) vanishes on (0, x1, x2 , . . . ) for 1 ≤ r ≤ m, it fol-

lows that xdr−1 = xf(dr ) = 0. If n = ar d
r and 1 < ar < d, then the vanishing of

φn = Xd
n − Xar

g(n)Z
d−ar on (0, x1, x2 , . . . ) implies that xn = 0. This completes the

case l(n) = 0.

Now assume l(n) ≥ 1, so that n �= ar d
r. Since l(f(n)) < l(n) and f(n) < dm,

the induction hypothesis implies xf(n) = 0. Since φn = Xd
n − Xf(n)X

ar
g(n)Z

d−ar−1

vanishes on (0, x1, x2 , . . . ) and since xf(n) = 0, it follows that xn = 0.
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Lemma 2.3. Let m be an integer ≥ 1, and let z, x1, x2 , . . . be elements from a field.
If z = 1 and the forms φ2 , . . . , φdm defined previously vanish on (z, x1, x2 , . . . ),
then

xn = εnxn
1 for n ≤ dm,

where εn is a d-power root of unity.

Remark 2.4. From the proof of this lemma we shall see that:

(i) εn = 1 if n = dr (in particular, for any n, εg(n) = 1 since g(n) is a d-power);
(ii) εn is a dth root of unity if n = adr, 1 < a < d; and

(iii) εn = εε
1/d
f(n), where ε is a dth root of unity if n �= adr, 1 ≤ a < d.

Proof of Lemma 2.3. The proof is by induction on l(n). We begin with the case
l(n) = 0, so that n = ar d

r.

If ar = 1, so that n = dr, we will prove by induction on r that xdr = xdr

1
for 0 ≤ r ≤ m. If r = 0, then x1 = x1

1. Now assume that r ≥ 1. Since φdr =
XdrZd−1 − Xd

f(dr ) = XdrZd−1 − Xd
dr−1 vanishes on (1, x1, x2 , . . . ), it follows that

xdr = xd
dr−1. The induction hypothesis implies that xdr = xd

dr−1 = (xdr−1

1 )d =
xdr

1 . If n = ar d
r (1 < ar < d), then the vanishing of φn = Xd

n − Xar
g(n)Z

d−ar on
(1, x1, x2 , . . . ) implies that xd

n = x
ar

g(n). Since n < dm, we have g(n) = dr+1 ≤
dm by Remark 2.1(ii) and xg(n) = x

g(n)

1 by the previous case. Hence xd
n = x

ar

g(n) =
x

arg(n)

1 = xdn
1 , by Remark 2.1(iii). Therefore xn = εnxn

1 , where εn is a dth root of
unity. This completes the case l(n) = 0.

Now assume that l(n) = r − t > 0, so that n �= ar d
r. Then n < dm and g(n) ≤

dm and hence xg(n) = x
g(n)

1 . Thus the vanishing of φn = Xd
n − Xf(n)X

ar
g(n)Z

d−ar−1

on (1, x1, x2 , . . . ) implies that xd
n = xf(n) x

arg(n)

1 . Since n �= ar d
r, we have

l(f(n)) < l(n) and f(n) < dm. Therefore, the induction hypothesis implies
that xf(n) = εf(n) x

f(n)

1 , where εf(n) is a d-power root of unity. Then

xd
n = xf(n) x

arg(n)

1 = εf(n) x
f(n)

1 x
arg(n)

1 = εf(n) x
f(n)+arg(n)

1 = εf(n) x
dn
1

by Remark 2.1(iii). Hence xn = εε
1/d
f(n) x

n
1 , where ε is a dth root of unity. Then

xn = εnxn
1 , where εn = εε

1/d
f(n) is a d-power root of unity.

3. The Main Result

In this section we will prove our main result, stated as follows.

Theorem 3.1. Let k be a field of characteristic d. Given a polynomial h over k

of degree dm (m ≥ 1) in one variable, there exists a system S of r (= dm−1) forms
of degree d in r + 1 variables such that h has a zero in k if and only if the system
S has a common nontrivial k-zero.

As a corollary, we have the following.
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Corollary 3.2. Let k be a field of characteristic d. If k is a Cd
0 -field, then:

(i) every polynomial in k[X] of d-power degree has a zero in k; and
(ii) k is a p-field for some prime p not dividing d.

Proof. Since k is a Cd
0 -field, the system S in Theorem 3.1 has a nontrivial k-zero.

Therefore, the polynomial h has a zero in k; hence (i) follows. Now (ii) follows
from (i) and the following proposition, which was proved by Leep for the case
d = 2; the proof of the general case is identical.

Proposition 3.3 [1, Prop. 4.4]. A field k is a p-field for some prime number p

not dividing d if and only if every polynomial in k[X] of d-power degree has a
zero in k.

Before starting the proof of Theorem 3.1, we need the following definitions.
Define the functions i : {d, d + 1, d + 2, . . . } → {1, 2, . . . } and j : {d, d + 1,

d + 2, . . . } → {1, d, d 2, . . . } as follows. For any integer n ≥ d, write the d-adic
expansion of n as n = a0 + a1d + · · · + ar d

r, where ar �= 0. Set j(n) = dr,

and set

i(n) =
{

ar d
r−1 if n = ar d

r,

a0 + a1d + · · · + ar−1d
r−1 if n �= ar d

r.

Now, for n ≥ 0, define the monomials Yn (of degree d) as

Yn =




Xn
1 Zd−n if 0 ≤ n < d,

Xd
i(n) if d ≤ n = ar d

r,

Xi(n)X
ar
j(n)Z

d−ar−1 if d < n �= ar d
r.

Given a polynomial h = Xdm + cdm−1X
dm−1 + · · · + c1X + c0 with coefficients

ci from k, let φh (a form of degree d) be

φh = Ydm + cdm−1Ydm−1 + · · · + c1Y1 + c0Y0.

Remark 3.4.

(i) Note that i(n) < dr = j(n). Also, if d ≤ n < dm then r < m, hence i(n) <

dm−1 and j(n) ≤ dm−1. In particular, for h of degree dm, the form φh in-
volves only the variables Z, X1, . . . , Xdm−1.

(ii) Let n ≥ d. If n = ar d
r then di(n) = n, and if n �= ar d

r then we have n =
i(n) + arj(n).

(iii) If h has degree d, then φh is the homogenization of h.

Proof of Theorem 3.1. Let k be a field of characteristic d. Throughout the proof,
for n > 0 let n = a0 + · · · + ar d

r (ar �= 0) be the d-adic expansion of n. For any
elements z, x1, x2 , . . . , xdm−1 of k and for n = 0, . . . , dm, let

yn =




xn
1 zd−n if 0 ≤ n < d,

xd
i(n) if d ≤ n = ar d

r,

xi(n) x
ar

j(n)z
d−ar−1 if d < n �= ar d

r.
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Take S to be the system consisting of the dm−1 forms φh, φ2 , . . . , φdm−1. These
forms have degree d. By Remarks 2.1(i) and (ii) and Remark 3.4(i), the system
involves the dm−1 + 1 variables Z, X1, . . . , Xdm−1.

Claim: The system S has a nontrivial k-zero if and only if the polynomial h has
a k-zero.

If m = 1 then, as noted in Remark 3.4(iii), S = {φh} is just the homogenization
of h and hence the claim is proved in this case. So we may assume m > 1.

First, assume that the system φh, φ2 , . . . , φdm−1 has a nontrivial common zero
(z, x1, x2 , . . . , xdm−1) over k. Then z cannot be zero. Otherwise, if z = 0 then (by
Lemma 2.2) xn = 0 for 1 ≤ n < dm−1. By Remark 3.4(i), d ≤ n < dm implies
i(n) < dm−1. Hence xi(n) = 0 for d ≤ n < dm, which implies that yn = 0 for
0 ≤ n < dm. Therefore, the vanishing of φh on (z, x1, x2 , . . . , xdm−1) implies 0 =
ydm = xd

i(dm). But i(dm) = dm−1, so xdm−1 = 0. Thus z = 0 leads to the trivial
solution—a contradiction.

We may therefore assume that z = 1. We’ll show that x1 is a zero of h. Note
that, since the characteristic of k is d, all the d-power roots of unity are equal to 1.
By Lemma 2.3, xn = xn

1 for 1 ≤ n ≤ dm−1. Hence, for 0 ≤ n ≤ dm,

yn =




xn
1 if 0 ≤ n < d

x
di(n)
1 if d ≤ n = ar d

r

x
i(n)+ar j(n)

1 if d < n �= ar d
r

= xn
1 (by Remark 3.4(ii)).

Since φh vanishes on (1, x1, . . . , xdm−1), we have

0 = ydm + cdm−1ydm−1 + · · · + c0y0

= xdm

1 + cdm−1x
dm−1
1 + · · · + c0

= h(x1).

Hence x1 is a zero of h.

Conversely, assume that there exists an α ∈ k such that h(α) = 0. Put z = 1
and xn = αn for n ≥ 1. We verify that (z, x1, . . . , xdm−1) is a common zero of the
forms φh, φ2 , . . . , φdm−1. As before, by Remark 3.4(ii) we have

yn =



αn if 0 ≤ n < d

αdi(n) if d ≤ n = ar d
r

αi(n)+ar j(n) if d < n �= ar d
r

= αn.

Therefore,

0 = h(α) = αdm + cdm−1α
dm−1 + · · · + c0

= ydm + cdm−1ydm−1 + · · · + c0y0

and hence φh vanishes on (z, x1, . . . , xdm−1).
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To verify that φn vanishes on (z, x1, . . . , xdm−1) for 1 < n ≤ dm−1, first assume
that n = dr. Then f(n) = dr−1 and therefore xnz

d−1 − xd
f(n) = αn − αdf(n) =

αdr − αd(dr−1) = 0. Hence, φn vanishes on (z, x1, . . . , xdm−1) in this case. Now as-
sume that n = ar d

r for ar �= 1. Then g(n) = dr+1 and we have xd
n −x

ar

g(n)z
d−ar =

αdn − αarg(n) = αar dr+1 − αar dr+1 = 0; hence φn vanishes on (z, x1, . . . , xdm−1)

in this case, too. Finally, assume that n �= ar d
r. By Remark 2.1(iii), dn =

f(n) + arg(n); hence

xd
n − xf(n) x

ar

g(n)z
d−ar−1 = αdn − αf(n)+arg(n) = αdn − αdn = 0,

so φn vanishes on (z, x1, . . . , xdm−1). This completes the proof of the theorem.

Acknowledgment. The proofs of Lemmas 2.2 and 2.3 as given in this note are
due to the referee and are an improvement over the author’s original proofs. The
author thanks the referee for providing them.
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