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Introduction

Let X ⊂ P(V ) be a (normal) complex projective G-variety, where G is a (reduc-
tive) classical group and V is a complex finite-dimensional G-module. Suppose
X is spherical—that is, a Borel subgroup has a dense orbit. Generalizing the case
of toric varieties, one can associate an integral convex polytope �(X) to X such
that the Hilbert polynomial h(t) of X is the Ehrhardt polynomial of �(X), that
is, h(t) = number of integral points in t�(X). The polytope �(X) is the poly-
tope fibred over the moment polytope of X with the Gelfand–Cetlin polytopes as
fibres. This polytope was defined by Okounkov [O1] based on results of Brion.
Following Okounkov, we call this polytope the Newton polytope of X.

In this paper, for G = SP(2n, C) we show that X can be deformed (degener-
ated), by a flat deformation, to the toric variety corresponding to the polytope�(X)

(Corollary 5.5). This is a consequence of the main result of our paper: the homoge-
neous coordinate ring of a horospherical variety has a SAGBI basis (Theorem 5.1).
A spherical variety is horospherical if the stabilizer of a point in the dense G-orbit
contains a maximal unipotent subgroup. Flag varieties and Grassmanians are ex-
amples of horospherical varieties. It is known that any spherical variety can be
deformed, by a flat deformation, to a horospherical variety such that the moment
polytopes of the two varieties are the same (see [P; ABr, Sec. 2.2; Kn, Satz 2.3]).

More precisely, we prove that if X ⊂ P(V ) is a projective horospherical G-
variety (G = SP(2n, C)), then the homogeneous coordinate ring R of X can be
embedded in a Laurent polynomial algebra and has a SAGBI basis with respect
to a natural term order. (SAGBI stands for subalgebra analogue of Gröbner basis
for ideals.) Moreover, we show that the semi-group of initial monomials is the
semi-group of integral points in the cone over the polytope �(X). A finite collec-
tion f1, . . . , fr of elements of R is a SAGBI basis, with respect to a term order, if
the semi-group of initial monomials is generated by the initial monomials of the
fi and if, moreover, every element of R can be represented as a polynomial in the
fi, in a finite number of steps, by means of a simple classical algorithm called the
subduction algorithm.

Degenerations of flag and Schubert varieties to toric varieties have been studied
by Gonciulea and Lakshmibai [GoL] and Caldero [Ca]. More recently, Kogan and
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Miller [KoM] have shown the existence of a SAGBI basis for the coordinate ring
of the flag variety of GL(n, C). More precisely, they prove that, for any dominant
weight λ in the interior of the Weyl chamber: (a) the homogeneous coordinate
ring of the flag variety GL(n)/B embedded in P(Vλ) (i.e. the generalized Plücker
embedding) has a SAGBI basis; and (b) GL(n)/B can be degenerated to the toric
variety corresponding to the Gelfand–Cetlin polytope of λ. The main results of
this paper (Theorem 5.1 and Corollary 5.5) imply a similar result for the flag va-
rieties G/P of G = SP(2n, C).

I was informed byA. Mustata that the degenerations of spherical varieties to toric
varieties can be useful in understanding the mirrors of hypersurfaces in spherical
varieties. In [Gi] and [BCKV], Givental and others use the Gonciulea–Lakshmibai
toric degeneration to give a mirror construction for the hypersurfaces in a (partial)
flag variety.

A key step in our proof is a result of Okounkov on the representation theory of
SP(2n, C). Let Vλ denote the irreducible G-module with highest weight λ, where
G = SP(2n, C). It is well known that one can view Vλ as a subspace of C[G] and,
after restriction to U, as a subspace of C[U ], where U is the standard maximal
unipotent subgroup of G. In [O2] Okounkov proves that, with respect to a natural
term order on C[U ], the set of highest terms of elements of Vλ can be identi-
fied with the Gelfand–Cetlin polytope �λ (Theorem 4.2). As Okounkov informed
the author, by using methods similar to those used for SP(2n, C), one can prove
his result for other classical groups. But so far he has not published the proofs
for other classical groups (e.g., GL(n, C) and the orthogonal group). Our results
here, as well as their proofs, go verbatim for other classical groups—provided that
Okounkov’s result is shown to hold for them.

In Section 1 we discuss SAGBI bases. Section 2 deals with some facts about ho-
mogeneous coordinate rings of spherical varieties, and we give a description of the
homogeneous coordinate ring of a horospherical variety. In Section 3, we define
the Gelfand–Cetlin polytopes and the polytope �(X). Section 4 discusses the re-
sult of Okounkov on the initial monomials of elements of an irreducible G-module
and Gelfand–Cetlin polytopes for G = SP(2n, C). Finally, in Section 5 we state
and prove our main results.

Acknowledgments. The author would like to thank I. Arzhantsev, J. Chipal-
katti, A. G. Khovanskii, A. Okounkov, and Z. Reichstein for stimulating discus-
sions. He would also like to thank I. Arzhantsev and Z. Reichstein for reading the
first version and giving helpful comments.

1. SAGBI Bases

In this section we define the notion of a SAGBI basis for a subalgebra of the Lau-
rent polynomials. SAGBI bases play an important role when one deals with sub-
algebras of the polynomial or Laurent polynomial algebras. Their theory is more
complicated than the theory of Gröbner bases. In particular, not every subalgebra
has a SAGBI basis with respect to a given term order. It is an unsolved problem
to determine, for a given term order, which subalgebras have a SAGBI basis.
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Let C[x±1
1 , . . . , x±1

n ] denote the algebra of Laurent polynomials in n variables.
Let ≺ be a term order on Z

n, that is, a total order compatible with addition. An
important example is the lexicographic order. We will identify a monomial with
its exponent and hence regard it as an element of Z

n. Obviously, the multiplica-
tion of monomials corresponds to the addition of their exponents in Z

n. The initial
monomial (with respect to ≺) of a polynomial f is denoted by in(f ). If R is a
subalgebra of C[x±1

1 , . . . , x±1
n ], we denote by in(R) the semi-group of initial mono-

mials in R, that is, {in(f ) | 0 �= f ∈R}.
First consider the case where R is a subalgebra of C[x1, . . . , xn]. In this case,

one usually assumes that ≺ satisfies the extra condition

a 
 (0, . . . , 0) ∀a (0 �= a ∈ N
n).

Definition 1.1. Let R be a subalgebra of C[x1, . . . , xn]. A finite collection of
polynomials {f1, . . . , fr} ⊂ R is a SAGBI basis for R if {in(f1), . . . , in(fr)} gen-
erates the semi-group in(R).

When R has a SAGBI basis, there is a simple classical algorithm (due to Kapur–
Madlener and Robbiano–Sweedler [RoS]) for expressing elements of R in terms
of the fi as follows. Write in(f ) = d1 in(f1)+· · ·+dr in(fr) for some d1, . . . , dr ∈
N. Dividing the leading coefficient of f by the leading coefficient of f d1

1 · · · f dr
r ,

we obtain a c such that the leading term of f is the same as the leading term of
cf

d1
1 · · · f dr

r . Set g = f − cf
d1

1 · · · f dr
r . If g = 0 we are done; otherwise, we

replace f by g and proceed inductively. Since g has a smaller leading exponent
than f and since N

n is well-ordered with respect to ≺ , it follows that this process
will terminate, resulting in an expression for f as a polynomial in the fi. This is
referred to as the subduction algorithm. See [RoS] for a detailed discussion of
SAGBI bases for subalgebras of C[x1, . . . , xn].

In general, if R is a subalgebra of C[x±1
1 , . . . , x±1

n ] then, since Z
n is not well-

ordered, there is no guarantee that this algorithm terminates. Following [R, p. 2],
we define the SAGBI basis as follows.

Definition 1.2. Let R be a subalgebra of C[x±1
1 , . . . , x±1

n ]. A finite collection of
polynomials {f1, . . . , fr} is a SAGBI basis for R if:

(a) the in(fi) generate in(R) as a semi-group; and
(b) the subduction algorithm just described terminates for every f ∈R, no matter

what choices are made for d1, . . . , dr in the course of the algorithm.

The algebra R is said to have a SAGBI basis if it has a SAGBI basis for some
choice of a term order.

SAGBI bases are closely related with the toric degeneration of varieties. Namely,
if a subalgebra R has a SAGBI basis then Spec(R) can be deformed, by a flat de-
formation over C, to a (possibly nonnormal) affine toric variety. The deformation
corresponds to the degeneration of the elements of R to their initial monomials
(see the paragraph before Corollary 5.3 and [E, Thm. 15.17]).
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2. Homogeneous Coordinate Ring of Spherical
and Horospherical Varieties

Let V be a finite-dimensional G-module and X ⊂ P(V ) a projective spherical
G-variety; that is, X is normal and a Borel subgroup B ⊂ G has a dense orbit in
X. Let R = C[X] denote the homogeneous coordinate ring of X. This algebra is
graded by the degree of polynomials,

R =
∞⊕
k=0

Rk.

We decompose the spaces Rk into irreducible G-modules,

Rk =
⊕
λ

mk,λVλ,

where Vλ is the irreducible G-module with the highest weight λ and mk,λ is its
multiplicity (here mk,λVλ denotes the direct sum of mk,λ copies of Vλ). Since X is
spherical, its spectrum is multiplicity free (i.e., mk,λ ∈ {0,1}). Let �(X) denote
the moment polytope of X, that is, the intersection of the image of the moment
map with the positive Weyl chamber for the choice of B. (The symplectic struc-
ture on X is induced from the projective space and X is regarded as a Hamiltonian
K-space, where K is a maximal compact subgroup of G.) Also, denote by �

the weight lattice of G. The following theorem, due to Brion, determines which
weights λ occur in the decomposition of Rk with multiplicity 1.

Theorem 2.1 [Br1, Sec. 3; Br2]. There is a sublattice �′ of � such that �(X) ⊂
�′

R
, the vector space spanned by �′, and we have

Rk =
⊕

λ∈k�(X)∩�′
Vλ.

The rank of the sublattice �′ is called the rank of the spherical variety X.

Remark 2.2. It follows from Theorem 2.1 that one can recover the moment poly-
tope �(X) from the multiplicities of the irreducible G-modules appearing in Rk.

More precisely, we have

�(X) = closure of
∞⋃
k=0

{
µ

k
| Vµ appears in the decomposition of Rk

}
.

One can show that the ring multiplication in R sends Vλ × Vµ to Vλ+µ ⊕ ⊕
ν Vν ,

where ν = λ+µ− ξ and ξ is some nonnegative combination of the simple roots.
Now, suppose that all the stabilizer subgroups of the points of X contain a maxi-
mal unipotent subgroup. From a theorem of Popov [P, Thm. 2.3] it can be shown
that the ring multiplication sends Vλ ×Vµ to Vλ+µ and that this map coincides with
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a Cartan multiplication. (For the definition of Cartan multiplication, see [FH,
p. 429].)

Definition 2.3. A spherical G-variety X such that the stabilizer of a point in the
dense G-orbit contains a maximal unipotent subgroup is called a horospherical
variety.

It can be shown that, if X is horospherical, then all the stabilizer subgroups con-
tain a maximal unipotent subgroup. Examples of horospherical varieties are toric
varieties, flag varieties, and Grassmanians.

Now assume X is horospherical, and fix a point x in the dense G-orbit of X.

Choose highest-weight vectors fλ in each simple submodule Vλ of R by the con-
dition that fλ(x) = 1. Then the product of these highest-weight vectors is again
such a vector; that is, fλfµ = fλ+µ. Hence, for any two λ and µ appearing in the
decomposition of R, one can uniquely define Cartan multiplication. We can then
give the following description for the homogeneous coordinate ring of X.

Theorem 2.4. We have the following isomorphism of graded algebras:

R ∼=
∞⊕
k=0

⊕
λ∈k�(X)∩�′

Vλ,

where the multiplication in the right-hand side is defined as follows. Let Rd =⊕
λVλ and Re = ⊕

µVµ be the decompositions of two graded pieces of R. Then the
multiplication Rd ×Re → Rd+e is given by the Cartan multiplication Vλ ×Vµ →
Vλ+µ, which is defined uniquely by our foregoing choice of the highest-weight vec-
tors fλ and fµ.

3. Newton Polytope of a Spherical Variety

Let G be a (reductive) classical group over C. In this section we briefly explain,
following [O1], the definition of the Newton polytope of a spherical G-variety X.

We start by recalling the Gelfand–Cetlin polytopes.
To each dominant weight λ of G there corresponds a Gelfand–Cetlin (or briefly

GC) polytope �λ. The convex polytope �λ has the property that the number of in-
tegral points in �λ is equal to the dimension of the irreducible G-module Vλ. The
dimension of the GC polytope is equal to the complex dimension of the maximal
unipotent subgroup U of G, that is, 1

2 (dim(G) − rank(G)). For G = GL(n, C),
the construction of this polytope is due to Gelfand and Cetlin (see [GCe]). Def-
initions of GC polytopes can be found in [BeZ, Sec. 4]. We shall now recall the
definitions of GC polytopes for GL(n, C) and SP(2n, C).

Definition 3.1 (GC Polytopes for GL(n, C)). Let λ = (λ1 ≥ · · · ≥ λn) be a
decreasing sequence of integers representing a dominant weight in GL(n, C). The
GC polytope �λ is the set of all real numbers x1, x2 , . . . , xn−1, y1, . . . , yn−2 , . . . , z
such that the following inequalities hold:
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λ1 λ2 λ3 · · · λn−2 λn−1 λn

x1,1 x2,1 · · · xn−2,1 xn−1,1

x1,2 x2,2 · · · xn−3,2 xn−2,2

· · · · · · · · ·
· · · · · ·

x1,n−1,

where the structure
a b

c

indicates that a ≥ c ≥ b.

Definition 3.2 (GC Polytopes for SP(2n, C)). Let B be the Borel subgroup of
upper triangular matrices in SP(2n, C), and let

T = {(t1, . . . , tn, t−1
1 , . . . , t−1

n ) | ti ∈ C
∗ ∀i = 1, . . . , n}

be the maximal torus. Every dominant weight is then represented by a decreasing
sequence of positive integers λ = (λ1 ≥ · · · ≥ λn ≥ 0). The GC polytope �λ is
the set of all real numbers x1, . . . , xn, y1, . . . , yn−1, . . . , z,w such that the following
inequalities hold:

λ1 λ2 · · · λn 0
x1,1 x2,1 · · · xn,1

y1,1 · · · yn−1,1 0
· · · · · ·

· · ·
y1,1 0

x1,1.

If the components of the weight λ are real, we still can define �λ by the foregoing
inequalities. Hence we can extend the definition of �λ to all the real λ.

Lemma 3.3. The assignment λ �→ �λ is linear; that is, �cλ = c�λ for any pos-
itive c and �λ+µ = �λ + �µ, where the addition in the right-hand side is the
Minkowski sum of convex polytopes.

Proof. The proof is immediate from the definition in each of the three cases of
classical groups.

Now, let X ⊂ P(V ) be a (smooth) projective spherical G-variety and �(X) its
moment polytope. As before, let � denote the weight lattice and �R the real vec-
tor space spanned by �.

Definition 3.4 (Newton Polytope of a Spherical Variety). Define the set

�(X) ⊂ �R ⊕ R
dimU = R

dimB
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by
�(X) =

⋃
λ∈�(X)

(λ,�λ).

From Lemma 3.3, it follows that �(X) is a convex polytope.

Remark 3.5. In [O1], as a corollary to a theorem of Brion it is shown that the
polytope �(X) has the property

dimRk = #{k�(X) ∩ �′},
where �′ is the sublattice of � in Theorem 2.1. This means that the Hilbert poly-
nomial of the variety X coincides with the Ehrhardt polynomial of the polytope
�(X). Note that, since the Hilbert polynomial of a toric variety corresponding to
a polytope � is the Ehrhardt polynomial of � and since the Hilbert polynomial is
invariant under a flat deformation, the fact just stated agrees with the main result
of the paper; that is, X can be deformed to the toric variety of the polytope �(X)

(Corollary 5.5).

4. Initial Monomials of Elements of an Irreducible G-Module
and Gelfand–Cetlin Polytopes

Let λ be a dominant weight andVλ the corresponding irreducibleG-module, where
G = SP(2n, C). The purpose of this section is to explain the result of Okounkov
[O2] regarding the initial monomials of the elements of Vλ. This result will be
needed in the proof of our main theorem.

First, we explain how one can identify Vλ with a subspace of a polynomial
algebra—that is, the coordinate ring of the standard maximal unipotent subgroup.
Let T be the standard maximal torus of diagonal matrices in G, B+ the Borel sub-
group of upper triangular matrices, and U+ the maximal unipotent subgroup of
B+. Denote by B− and U− the opposite subgroups of B+ and U+ , respectively.
Fix a B−-eigenvector ξλ in (Vλ)

∗. It is well known that the mapping from Vλ to
C[G], defined by

v �→ fv ,

fv(g) = ξλ(g
−1 · v),

maps the G-module Vλ isomorphically to the subspace

{f ∈ C[G] | f(gb) = (−λ)(b)f(g) ∀b ∈B−}, (1)

where −λ is regarded as a character of B−. We identify Vλ with its image in C[G].
Consider the Bruhat decomposition

G =
⋃
w∈W

B+wB−,

where W is the Weyl group. We have G/B− = ⋃
w∈W B+wB−/B−, and the big

Bruhat cell U in G/B− is B+B−. Since B+ ∩ B− = T and B+ = U+T, the cell U
can be identified with U+ via u �→ uB−. From (1) and the fact that U is dense in
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G/B− it follows that every element of Vλ ⊂ C[G] is uniquely determined by its
restriction to U+. We can thus consider Vλ as a subspace of C[U+]. Note that U+
is isomorphic, as a variety, to the affine space of dimension 1

2 (dim(G)− rank(G)).

For each dominant weight λ, choose a highest-weight vector vλ ∈ Vλ such that
ξλ(vλ) = 1.

Proposition 4.1. The following diagram is commutative:

Vλ × Vµ
� �

��

�� Vλ+µ
� �

��

C[G] × C[G] ��

��

C[G]

��

C[U+] × C[U+] �� C[U+] ,

where the map in the first row is the Cartan multiplication (defined uniquely by
our previous choice of vλ and vµ) and the maps in the second and third rows are
the usual product of functions.

Proof. From (1) it follows that each fv defines a function on G/U− and hence that
each Vλ can be identified with a subspace of C[G/U−]. Now the commutativity
of the top part of the diagram follows from a theorem of Popov ([P, Thm. 2.3];
see also the paragraph after Remark 2.2). The commutativity of the bottom part
of the diagram is trivial.

Following [O2], we now explain how one can interpret the GC polytope �λ as the
convex hull of the set of initial monomials of the elements of Vλ regarded as poly-
nomials in C[U+]. Choose a basis e1, . . . , e2n of C

2n in which the matrix of the
symplectic form is 



1
0 · · ·

1
−1

· · · 0
−1



.

Let xij be the matrix elements in this basis. We use x11, . . . , xnn as coordinates
in T and use the dual coordinates

gλ = x
λ1
11 · · · x λn

nn , g ∈ T, λ∈�,

for weights. The weights

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

are dominant for B+.
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We use xij (i < j, i + j ≤ 2n + 1) as coordinates in U+ and also as coordi-
nates in the big Bruhat cell U . Consider the following lexicographic ordering on
C[U+]: ∏

x
pij

ij 

∏

x
qij
ij

if p1,2n < q1,2n, or if p1,2n = q1,2n and p1,2n−1 < q1,2n−1, and so on. Observe
that, in particular,

x1,2n ≺ x1,2n−1 ≺ · · · ≺ x12 ≺ x2,2n−1 ≺ · · · ≺ x23 ≺ · · · ≺ xn,n+1, (2)

which is exactly the reverse of the ordering of positive roots induced by the stan-
dard lexicographic order in R

n. For a dominant weight λ and a monomial∏
x
pij

ij ,

put
ηi = λi − p1,2n−i+1, i = 1, . . . , n,

θi = ηi+1 + p1,i+1, i = 1, . . . , n − 1,

η ′
i = θi − p2,2n−i, i = 1, . . . , n − 1,

θ ′
i = η ′

i+1 + p2,i+1, i = 1, . . . , n − 2.

(3)

Theorem 4.2 [O2, Thm. 2]. View Vλ as a subspace of C[U+]. Then, with the
above grading on C[U+], the monomial∏

x
pij

ij

is an initial monomial of a polynomial in Vλ if and only if the numbers η1, . . . , ηn,
θ1, . . . , θn−1, η ′

1, . . . , η ′
n−1, . . . belong to the GC polytope �λ.

Let us denote the vector (η, θ, η ′, θ ′, . . . )∈ R
dimU by (qij ), where i < j and i+j ≤

2n +1. The change of variables pij �→ qij in (3) can be written in matrix form as

(qij ) = A(pij ) + Bλ, (4)

where A is a constant upper triangular matrix with 0,1, −1 as entries and 1, −1 on
the diagonal and where B is the matrix of the linear transformation

λ = (λ1, . . . , λn) �→ (λ1, λ2 , . . . , λn, λ2 , λ3, . . . , λn, . . . , λn)∈ R
dim(U).

Note that det(A) = ±1 and hence the inverse of A also has integer entries. By (4)
we can therefore write

(pij ) = A−1((qij ) − Bλ).

Theorem 4.2 can be stated as follows: The monomial∏
x
pij

ij

is an initial monomial of an element of Vλ if and only if (pij )∈A−1(�λ − Bλ).

Definition 4.3. We denote the polytope A−1(�λ − Bλ) by �′
λ.
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One has �λ = A�′
λ + Bλ, and hence the two polytopes can be transformed to

each other by integral translations and integral transformations. Thus �λ and �′
λ

are integrally equivalent. The following lemma is immediate from the definition.

Lemma 4.4. The map λ �→ �′
λ is linear. That is, �′

cλ = c�′
λ for a positive c

and �′
λ+µ = �′

λ +�′
µ, where the addition in the right-hand side is the Minkowski

sum.

Definition 4.5. As in the definition of �(X), for a spherical variety X we de-
fine �′(X) ⊂ �R ⊕ R

dimU = R
dimB by

�′(X) =
⋃

λ∈�(X)

(λ,�′
λ).

From Lemma 4.4, it follows that �′(X) is a convex polytope.

Remark 4.6. The map (λ, x) �→ (λ,A−1(x − Bλ)) is an integral transforma-
tion that maps �(X) to �′(X). The inverse of this transformation is (λ, x) �→
(λ,Ax + Bλ), which is also integral. So the polytopes �′(X) and �(X) can be
transformed to each other by integral transformations and hence are integrally
equivalent.

5. Main Theorem

In this section we prove the main results of the paper.

Theorem 5.1. Let V be a finite-dimensional G-module and X ⊂ P(V ) a pro-
jective horospherical G-variety, where G = SP(2n, C). Then the following state-
ments hold.

(i) The homogeneous coordinate ring R of X can be embedded into the Laurent
polynomial algebra C[x1, . . . , xd , y±1

1 , . . . , y±1
r , t], where d = 1

2 (dim(G) −
rank(G)) and r = rank(X).

(ii) R has a SAGBI basis with respect to a natural term order. Moreover, the
semi-group of initial monomials S = in(R) ⊂ Z

d+r+1 coincides with the
semi-group of integral points in the cone over the polytope �′(X) (see Defi-
nitions 4.3 and 4.5 ); that is,

S = Z
d+r+1 ∩

∞⋃
k=0

(k�′(X), k).

Proof. We identify C[U+] with the polynomial algebra C[x1, . . . , xd ] equipped
with the term order ≺ in Theorem 4.2. For each λ, let φλ denote the embed-
ding Vλ ↪→ C[x1, . . . , xd ]. Let �′ be the sublattice of the weight lattice in The-
orem 2.1, and let C ∼= (C∗)r be a torus whose lattice of characters is �′. Let
y1, . . . , yr be a choice of coordinates in C whereby C[C] = C[y±1

1 , . . . , y±1
r ]. For

λ = (λ1, . . . , λr) ∈ �′ and y = (y1, . . . , yr) ∈ C, define y λ = y
λ1
1 y

λ2
2 · · · y λr

r .

Having the algebra isomorphism in Theorem 2.4 in mind, define the function
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5 : R =
∞⊕
k=0

⊕
λ∈k�(X)∩�′

Vλ → C[x1, . . . , xd , y±1
1 , . . . , y±1

r , t]

by
5(f ) = t ky λφλ(f ) ∀f ∈Vλ, λ∈ k�(X) ∩ �′,

where t is an extra free variable. Then we have the following lemma.

Lemma 5.2. 5 is an injective homomorphism of algebras.

Proof. Since the φλ are additive homomorphisms, it follows that 5 is also addi-
tive. The multiplicativity of 5 follows from Proposition 4.1. The homomorphism
5 is one-to-one because the φλ are one-to-one.

Now, R can be thought of as a subalgebra of C[x1, . . . , xd , y±1
1 , . . . , y±1

r , t]. Extend
the term order ≺ to C[x1, . . . , xd , y±1

1 , . . . , y±1
r , t] by lexicographic order such that

t 
 yr 
 · · · 
 y1 
 xi, i = 1, . . . , d. Let S = in(R) ⊂ Z
d+r+1. By Theorem 4.2

we have

S = Z
d+r+1 ∩

∞⋃
k=0

⋃
λ∈k�(X)∩�′

(�′
λ, λ, k);

that is, S is the semi-group of integral points in the cone over the polytope �′(X).

This cone is a (strictly) convex rational polyhedral cone and hence S is finitely
generated (Gordon’s lemma). Also, from the definition of ≺ and S, there are only
finitely many points in S that are smaller than a given point in S. This means that
the subduction algorithm terminates after a finite number of steps. Thus R has a
SAGBI basis and the proof of the theorem is finished.

SupposeR is an arbitrary subalgebra of a Laurent polynomial algebra. It is standard
that the polynomials in R can be continuously deformed to their initial monomi-
als. More precisely, one can show that there is a flat family of algebras π : R → C

such that π−1(t) ∼= R for all t �= 0 and π−1(0) = C[in(R)], the semi-group alge-
bra of in(R) [E, Thm. 15.17]. If the semi-group in(R) is finitely generated, then
C[in(R)] is the coordinate ring of an affine (possibly nonnormal) toric variety.
Geometrically speaking, this means that Spec(R) can be deformed, by a flat de-
formation, to this affine toric variety.

Corollary 5.3. Let G = SP(2n, C). Any projective horospherical G-variety
X ⊂ P(V ) can be deformed, by a flat deformation, to the toric variety correspond-
ing to the polytope �(X). That is, there exists a flat family of varieties π : X → C

such that π−1(t) ∼= X for all t �= 0 and π−1(0) is the toric variety of the polytope
�(X).

Proof. Let R be the homogeneous coordinate ring of X. From [E, Thm. 15.17,
p. 343] we know that Spec(R) can be deformed, by a flat deformation, to the
affine toric variety whose coordinate ring is the semi-group algebra C[S ]. Since
�′(X) and �(X) can be transformed to each other by integral transformations
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(Remark 4.6), it follows that the semi-group S is isomorphic to S0, the semi-group
of integral points in the cone over �(X). So Spec(R) can be deformed to the toric
variety Spec(C[S0 ]). It is well known that the projectivization of this affine toric
variety is the toric variety corresponding to the polytope �(X) (see [St, p. 36]).
This finishes the proof.

Now let X ⊂ P(V ) be a projective spherical G-variety. By a general result of
Popov applied to the spherical varieties, one can deform X, by a flat deformation,
to a horospherical variety X0. This can be stated more precisely as follows.

Theorem 5.4 (see [P; ABr, Sec. 2.2; Kn, Satz 2.3]). Let G be a reductive group
and Y an affine spherical G-variety. There exists a flat family of affine G-varieties
π : Y → C such that

1. the Yt = π−1(t) are isomorphic to Y as G-varieties for t �= 0,
2. Y0 = π−1(0) is horospherical, and
3. C[Y ] and C[Y0 ] are isomorphic as graded G-modules; in particular, the mul-

tiplicities of the irreducible representations Vλ appearing in the graded pieces
C[Y ]d and C[Y0 ]d are the same for any d ≥ 0.

If X ⊂ P(V ) is a projective spherical variety, let Y in Theorem 5.4 be the cone
over X in V. We obtain that X can be degenerated to a projective horospherical
variety X0, where X0 is the projectivization of Y0 in the theorem. Since the mul-
tiplicities of the irreducible G-modules appearing in the homogeneous coordinate
rings of X and X0 are the same, we know that the moment polytopes of X and X0

are also the same (see Remark 2.2). It is then immediate from the definition that
�(X) = �(X0).

Corollary 5.5. Let G = SP(2n, C). Any projective spherical G-variety X ⊂
P(V ) can be deformed, by a flat deformation, to the toric variety corresponding
to the polytope �(X). That is, there exists a flat family of varieties π : X → C

such that π−1(t) ∼= X for all t �= 0 and π−1(0) is the toric variety of the poly-
tope �(X).

Proof. By the foregoing comment, X can be deformed to a horospherical variety
X0 and �(X) = �(X0). The corollary now follows from Corollary 5.3.
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