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1. Introduction

In 1939, Koksma [16] introduced a classification of the real transcendental num-
bers ξ in terms of the quality of their algebraic approximations. For any positive
integer n, denote by w∗

n(ξ) the supremum of the real numbers w for which there
exist infinitely many real algebraic numbers α of degree at most n satisfying

0 < |ξ − α| ≤ H(α)−w−1,

where H(α) is the naïve height of α, that is, the maximum of the absolute values
of the coefficients of its minimal defining polynomial over the integers. Following
Koksma, set

w∗(ξ) = lim sup
n→+∞

w∗
n(ξ)

n

and call ξ an

S ∗-number if w∗(ξ) < +∞;
T ∗-number if w∗(ξ) = +∞ and w∗

n(ξ) < +∞ for any n ≥ 1;
U ∗-number if w∗(ξ) = +∞ and w∗

n(ξ) = +∞ from some n onward.

It turns out (see e.g. Schneider [20]) that this classification coincides with that
of Mahler introduced in 1932 [17], which depends on the accuracy with which
nonzero integer polynomials evaluated at ξ approach zero. Sprindžuk [21] proved
that almost all real numbers (in the sense of Lebesgue measure) are S ∗-numbers
and, moreover, satisfy w∗

n(ξ) = n for any positive integer n. Using this result and
the theory of Hausdorff dimension, Baker and Schmidt [1] established that, for
any n ≥ 1, the function w∗

n takes any value in the range [n, +∞[ and even that,
for any τ ≥ 1,

dim{ξ ∈ R : w∗
n(ξ) ≥ τ(n+ 1)− 1} = 1/τ , (1)

dim{ξ ∈ R : w∗
n(ξ) = τ(n+ 1)− 1} = 1/τ , (2)

and

dim
⋂
n≥1

{ξ ∈ R : w∗
n(ξ) ≥ τ(n+ 1)− 1} = 1

τ
, (3)
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where dim denotes the Hausdorff dimension. We would like to point out that until
now this has been the only known method of ensuring that, for any integer n ≥ 2,
the set of values taken by w∗

n includes the interval [n, 2n]. Further results on the
functions w∗

n are given in [10].
In [7] we see an extension of Baker and Schmidt’s results that involves general

dimension functions rather than the family of power functions x �→ x s. Basically,
under some natural assumptions on the functions f and � (observe that the tech-
nical condition (1) in [7, Thm. 1] can be removed; see [9; 6]), the Hausdorff Hf -
measure of the set

K∗
n(�) := {ξ ∈ R : |ξ − α| < �(H(α)) for infinitely many real algebraic

numbers α of degree at most n}
is equal to 0 or +∞ according as the sum

∑
x≥1 x

nf(�(x)) converges or diverges.
However, the approach followed in [7] does not seem to yield such a precise state-
ment for countable intersections of sets of this form.

The purpose of the present work is to consider these questions from another
point of view. Our main tool is the notion of intersective sets, introduced and sys-
tematically studied by Falconer [12; 14]. These are classes of sets of Hausdorff
dimension at least s with the property that countable intersections of the sets also
have dimension at least s. Examples include the “regular sets” introduced by Baker
and Schmidt [1] (which allowed them to obtain (3)), the Ms∞-sequences of Rynne
[19], and constructions using the “ubiquitous systems” of Dodson, Rynne, and
Vickers [11]. Falconer [12; 13; 14] pointed out various applications of the notion
of intersective sets to Diophantine approximation. Thanks to an extension of [14]
to classes of sets defined in terms of general dimension functions (see Section 4,
at the end of which we correct a slight mistake in [14]), we refine an auxiliary re-
sult of [1], allowing us to obtain sharp, new results in Diophantine approximation
(stated in Section 3 and proved in Section 6). These complement our previous
work in [7].

2. Background on Hausdorff Measure Theory

The notion of intersective sets that we consider was introduced by Falconer [14],
and we refer to that paper for some background and notation. In [14], Falconer
dealt with the scale of functions x �→ x s; however, we need to work in a more
general setting.

Definition 1. A dimension function f is a strictly increasing continuous func-
tion defined on R≥0 and satisfying f(0) = 0.

Let E be some set in Rn. Let f be a dimension function and, for any positive real
number δ, set

Hf

δ(E) := inf
J

∑
j∈J

f(|Uj |),
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where the infimum is taken over all countable coverings (Uj )j∈J of E by cubes
of diameter at most δ. Clearly, the function δ �→ Hf

δ(E) is nonincreasing. Con-
sequently,

Hf(E) := sup
δ>0

Hf

δ(E)

is well-defined and lies in [0, +∞]; this is the Hf -measure of E.
If f and g are two dimension functions, we say that g corresponds to a “smaller”

generalized dimension than f (and write g ≺ f ) if

x �→ g(x)

f(x)
tends monotonically to infinity as x tends to zero.

Observe that if g ≺ f then g increases faster than f in a neighborhood of the ori-
gin. Usually, the monotonicity is omitted in the definition of the ordering ≺ , but
in our present context this assumption cannot be dropped. Clearly, ≺ does not de-
fine a total ordering.

Definition 2 generalizes the definition in [14].

Definition 2. Let f be a dimension function. We define Gf(Rn) to be the class
of Gδ-subsets F of Rn such that

Hg

( +∞⋂
i=1

fi(F )

)
= +∞

for any dimension function g with g ≺ f and any sequence of similarity transfor-
mations {fi}+∞

i=1 . If E is an open cube in Rn, we define Gf(E) to be the class of
Gδ-subsets F of E such that the set

⋃
j σj(F ) is in Gf(Rn). Here, the σj are trans-

lations such that
⋃

j σj(E) is a disjoint union of cubes and covers Rn up to a set
of Lebesgue n-dimensional measure 0.

Observe that a subset F of Rn is in Gf(Rn) if F ∩E is in Gf(E) for any bounded
open cube E.

Theorem 1 extends [14, Thm. A] to the case of general dimension functions.

Theorem 1. The class Gf(Rn) is closed under countable intersections and under
bi-Lipschitz transformations on Rn. Furthermore, if f(x) = x s for some real num-
ber s with 0 < s ≤ n, then any set in Gf(Rn) has Hausdorff dimension at least
equal to s.

We outline the proof of Theorem 1 in Section 4. Except for some minor changes,
it follows the same lines as the proofs of Theorems B and C in [14].

3. Diophantine Approximation

In order to study sets of real numbers close to infinitely many algebraic numbers
of bounded degree, Baker and Schmidt [1] introduced the notion of a “regular sys-
tem”. Roughly speaking: an infinite sequence of points form a regular system if
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they are well distributed; they form an optimal regular system (or, in the terminol-
ogy of [4], a best possible regular system) if they are as well distributed as they
could be, in the following sense.

Definition 3. Let E be a bounded open real interval. Let S = (αj )j≥1 be a se-
quence of real numbers. Then S is called an optimal regular system of points in
E if there exist positive constants c1, c2 , c3 depending only on S and, for any in-
terval I in E, a number K0 = K0(S, I ) such that, for any K ≥ K0, there exist
integers

c1K ≤ i1 < · · · < it ≤ K

with αih in I for h = 1, . . . , t,

|αih − αi! | ≥ c2

K
(1 ≤ h �= ! ≤ t),

and
c3|I |K ≤ t ≤ |I |K.

We emphasize that we do not assume that every point in S belongs to E. In the
original work of Baker and Schmidt [1], the set S is not indexed. However, as in
[9], we choose to number its elements; an alternative presentation can be found in
[2; 4; 7] and in the impressive work [6]. Furthermore, we have supposed that E is
bounded, although this was not assumed in [1]. This does not involve any loss of
generality because any unbounded set can be covered by a countable collection of
bounded, open sets to which the results may be applied.

It is an easy exercise to show that the rational numbers, ordered by increas-
ing height and increasing numerical order, form an optimal regular system in any
bounded interval. The importance of this notion has been pointed out in a series of
papers [2; 4; 6; 7; 8; 9]. In particular, Beresnevich [3] proved a Khintchine-type
statement for sets of real numbers close to infinitely many points in an optimal
regular system.

Examples of optimal regular systems in any bounded interval include real alge-
braic numbers of fixed degree ([2]; see Proposition 2 to follow), real algebraic inte-
gers of fixed degree ≥ 2 (see [8]), and real algebraic units of fixed degree ≥ 3 [8].

Theorem 2 asserts that sets of real numbers close to infinitely many points in an
optimal regular system turn out to be intersective sets.

Theorem 2. Let E be a bounded, open real interval. Let S = (αj )j≥1 be a se-
quence of real numbers that is an optimal regular system in E. Let � : R≥1 →
R>0 be a nonincreasing function such that

∑
j≥1�(j) converges. Set

E(αj ) := {ξ ∈E : |ξ − αj | < �(j)}
for any j ≥ 1, and let

E(�) = lim sup
j→+∞

E(αj ).

Let f be a dimension function with f ≺ Id such that x �→ xf(2�(x)) tends to
zero as x goes to infinity. If the sum

∑
j≥1 f(2�(j)) diverges, then the set E(�)

is in the class Gf(E).
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Theorem 2 neither follows from nor implies Theorem 3 of [9], which asserts that
Hf(E(�)) = +∞ if the sum

∑
j≥1 f(2�(j)) diverges. However, it may be seen

as a refinement of Lemma 1 in [1], where the assumption “x �→ xf(�(x)/2) tends
to infinity” is demanded instead of the divergence of the sum

∑
j≥1 f(2�(j)).

Here, f can increase more slowly.
Thanks to Theorem 1 and to the observations following Definition 3, Theorem 2

allows us to prove the existence of real numbers with various approximation prop-
erties by real algebraic numbers or/and by real algebraic integers or/and by real
algebraic units.

We first give an application to Koksma’s classification of real numbers. A well-
known refinement of this classification consists of dividing the class of S ∗-numbers
into uncountably many subclasses according to the value of w∗(ξ), which is called
the type of ξ. Actually, Koksma [16] called “Index der S ∗-Zahl ξ” the quantity
supn≥1w

∗
n(ξ)/n, but—in view of the results from [1] quoted in the Introduction—it

is much more natural to consider

lim sup
n→+∞

w∗
n(ξ)+ 1

n+ 1
or sup

n≥1

w∗
n(ξ)+ 1

n+ 1
. (4)

In this author’s opinion, the limsup is much more relevant than the supremum;
hence we define the type t∗(ξ) of an S ∗-number ξ by

t∗(ξ) = lim sup
n→+∞

w∗
n(ξ)+ 1

n+ 1
(= w∗(ξ)).

Theorem 3. For any real number τ ≥ 1,

dim{ξ ∈ R : ξ is an S ∗-number of type τ } = 1/τ.

Notice that Theorem 3 does not follow from (1), (2), and (3). Although the tools
developed in [1] are sufficient to obtain Theorem 3 (see [10, Ch.V]), this statement
has not previously appeared in print.

For τ = 1, Theorem 3 follows from the result of Sprindžuk quoted in the In-
troduction. For τ > 1, Theorem 3 is an easy consequence of Theorem 4, which
deals with the more general sets introduced in [7]. In the sequel of this paper we
denote by logi r the i-fold iterated logarithm

log � · · · � log r︸ ︷︷ ︸
i times

.

For positive integers n and t and for real numbers ν0 ≥ 1 and ν1, . . . , νt−1, set ν̃ :=
(ν0, . . . , νt−1) and, for any real number τ , consider the set

K∗
n(ν̃, τ) := K∗

n(ν0, . . . , νt−1, τ) = K∗
n(x �→ x−(n+1)ν0(log x)−ν1 · · · (logt x)

−τ )

of real numbers ξ for which the inequality

|ξ − α| < (H(α))−(n+1)ν0
(
log(H(α))

)−ν1 · · · (logt−1(H(α))
)−νt−1

(logt H(α))−τ

is satisfied by infinitely many algebraic numbers α of degree at most n. The ν̃-
exact logarithmic order (a terminology introduced by Beresnevich, Dickinson, and
Velani [5]) of ξ is, by definition,
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τn,ν̃ (ξ) := sup{τ : ξ ∈ K∗
n(ν̃, τ)}.

We adopt the convention ν̃ = (0) for t = 0. Then,

K∗
n((0), τ) = K∗

n(x �→ x−τ ) and τn,(0)(ξ) = w∗
n(ξ)+ 1

n+ 1
.

For any ν = (ν0, . . . , νt−1, νt ), put ν̃ = (ν0, . . . , νt−1) and consider the set

En(ν) := {ξ ∈ R : τn,ν̃ (ξ) = τ }
of real numbers whose ν̃-exact logarithmic order is equal to τ. In particular,
En((0), τ) = En(τ ) is the set of real S ∗-numbers ξ such that (w∗

n(ξ)+1)/(n+1) =
τ. For ν = (ν0, . . . , νt ), define the dimension function fν by

fν(u) := u1/ν0

t∏
i=1

(
logi

1

u

)−1+νi/ν0

,

where an empty product is taken to be 1. With the foregoing notation, Theorem 4
is an easy consequence of Theorem 1 and provides an extension of some results
in [5].

Theorem 4. Let ν = (ν0, . . . , νt ) with ν0 > 1. For any integer n ≥ 1, the set
K∗

n(ν) := K∗
n(ν0, . . . , νt ) is in the class Gfν (R) and we have

Hg

( ⋂
n≥1

En(ν)

)
= +∞

for any dimension function g with g ≺ fν.

The tools developed in [1] are not precise enough to get Theorem 4 for two reasons:
(i) we make considerable use of the fact that real algebraic numbers of bounded
degree form an optimal regular system (a weaker result is sufficient to get (1), (2),
and (3)); and (ii) we also need a refinement of [1, Lemma 1].

Using the properties of intersective sets yields the following statement, which
seems to be out of reach via the methods of [9] or [7].

Theorem 5. Let (ϕk)k≥1 be a sequence of real numbers. For any real number
τ ≥ 1,

dim{ξ ∈ R : for all k ≥ 1, ξk + ϕk is an S ∗-number of type τ } = 1/τ.

Observe that there exist real numbers ξ for which w∗
n(ξ) �= w∗

n(ξ
2) (see e.g. [15])

for some integers n, although it is still unknown whether real numbers ξ with
t∗(ξ) �= t∗(ξ 2) do exist.

Theorem 5 is one among many examples of results in Diophantine approxima-
tion that we can obtain thanks to the properties of intersective sets. We may apply
it, for example, to a sequence (ϕk)k≥1 that is composed of Liouville numbers (i.e.,
real numbers ξ with w∗

1(ξ) = +∞) or of other real numbers having various Dio-
phantine approximation properties.
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Notice that Theorem 5 (and hence Theorem 3 also) holds for either definition
of the type of an S ∗-number chosen in (4).

4. Proof of Theorem 1

As pointed out by Falconer [12; 14], proving Theorem 1 is much more convenient
with the net-premeasures Mf

∞. According to [12] (but not to [14]), a dyadic cube
in Rn is a set of the form

[2−km1, 2−k(m1 + 1)[ × · · · × [2−kmn, 2−k(mn + 1)[,

where k is a nonnegative integer and m1, . . . ,mn are integers.

Definition 4. Let f be a dimension function. Let ε(f ) be the supremum of the
real numbers x in [0,1] such that f is increasing and concave on [0, x]. Then, for
any subset F of Rn, we set

Mf
∞(F ) = inf

∑
j≥1

f(|Ij |),

where the infimum is taken over all countable coverings (Ij )j≥1 of F by dyadic
cubes of diameter |Ij | that are less than or equal to ε(f ).

Note that Mf
∞(I ) = f(|I |) for any dyadic cube I of diameter at most ε(f ).

Furthermore, ε(f ) is positive if f satisfies f ≺ Id, which is assumed in Theorem 2.
Since the proof of Theorem 1 requires only slight modifications of the proofs in

[14], we direct the reader to [14] for the notation and content ourselves here with
stating the main lines. However, for sake of simplicity, we assume until Lemma 5
that the dimension functions f , g, and h satisfy ε(f ) = ε(g) = ε(h) = 1.

The next statement is a generalization of [14, Thm. B]—which, however, con-
tains a (slight) mistake; see the end of this section for a correction.

Theorem 6. Let f be a dimension function and let F be a subset of Rn. Then
the following implications between the statements hereunder are valid:

(a) �⇒ (b) �⇒ (c) ⇐⇒ (d) �⇒ (e) ⇐⇒ (f ).

If F is a Gδ-set, then (a)–( f ) are equivalent.

(a) For every nonempty open subset V of Rn and every sequence of bi-Lipschitz
transformations fi : V → Rn,

Hg

( +∞⋂
i=1

f −1
i (F )

)
= +∞

for any dimension function g with g ≺ f.

(b) For every sequence of similarity transformations fi : Rn → Rn,

Hg

( +∞⋂
i=1

fi(F )

)
= +∞

for any dimension function g with g ≺ f.
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(c) For all dyadic cubes I,

Mg
∞(F ∩ I ) = Mg

∞(I )

for any dimension function g with g ≺ f.

(d) For all open sets U,
Mg

∞(F ∩ U) = Mg
∞(U)

for any dimension function g with g ≺ f.

(e) There exists a c with 0 < c ≤ 1 such that, for all dyadic cubes I,

Mg
∞(F ∩ I ) ≥ cMg

∞(I )

for any dimension function g with g ≺ f.

( f ) There exists a c with 0 < c ≤ 1 such that, for all open sets U,

Mg
∞(F ∩ U) ≥ cMg

∞(U)

for any dimension function g with g ≺ f.

The proof of Theorem B in [14] depends on four lemmas. Instead of giving com-
plete proofs of their extensions to the case of general dimension functions, we
merely point out which changes have to be made.

Lemma 1. Let f be a dimension function, let 0 < c ≤ 1, and let F ⊂ Rn. If U
is an open subset of Rn such that

Mf
∞(F ∩ I ) ≥ cMf

∞(I )

for all dyadic cubes I contained in U, then

Mf
∞(F ∩ U) ≥ cMf

∞(U).

Proof. This is a straightforward adaptation of [14, Lemma 1].

Lemma 2. Let f be a dimension function, and let F ⊂ Rn and c > 0 be such
that

Mf
∞(F ∩ I ) ≥ cMf

∞(I )

for all dyadic cubes I of diameter at most 1. Then

Mg
∞(F ∩ I ) = Mg

∞(I )

for all dimension functions g with g ≺ f and for all dyadic cubes I of diameter
at most 1.

Proof. We follow the same lines as [14] and set h = g/f. There are, however,
some minor changes. Let I be a dyadic cube of side 2m for some integer m ≤ 0.
Let m′ be an integer with m′ ≤ m and h(2m

′
) ≥ h(2m)c−1. We replace inequality

(7) of [14] by ∑
i∈Q(j)

g(|Ii |) = g(|Jj |) ≥ h(|I |)f(|Jj |)

as well as the next two displayed inequalities of [14] by
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g(|Ii |) ≥ h(|I |)c−1f(|Ii |)
and ∑

i∈Q(j)

g(|Ii |) ≥ h(|I |)f(|Jj |).

Summing over all j we then have

∞∑
i=1

g(|Ii |) ≥ h(|I |)
k∑

j=1

f(|Jj |) ≥ h(|I |)Mf
∞(I ) = g(|I |),

as expected.

Lemma 3. Let V be a nonempty subset of Rn and let f : V → Rn be a bi-
Lipschitz mapping that satisfies

c1|x − y| ≤ |f(x)− f(y)| ≤ c2|x − y| (x, y ∈V ),

where 0 < c1 < c2 < ∞. Let h be a dimension function and assume that

Mh
∞(F ∩ U) ≥ cMh

∞(U)

for some 0 < c ≤ 1, for F ⊂ Rn, and for all open sets U. Then, for all open
U ⊂ V,

Mh
∞(f −1(F ) ∩ U) ≥ c0 Mh

∞(U)

for some positive real number c0 and also

Mg
∞(f −1(F ) ∩ U) = Mg

∞(U)

for any dimension function g with g ≺ h.

Proof. This is a straightforward adaptation of [14, Lemma 3].

We write Cf(V ) for the class of sets F such that

Mf
∞(F ∩ U) = Mf

∞(U)

for all open U ⊂ V.

Lemma 4. Let f be a dimension function, and let {Fk}∞k=1 be a sequence of Gδ-
sets in Cf(V ). Then there exists a positive constant c such that

Mf
∞

( ∞⋂
k=1

Fk ∩ U

)
≥ cMf

∞(U)

for all open U ⊂ V.

Proof. This goes exactly along the same lines as in [14]. Notice that we need a
version of the increasing sets lemma in this general context (see e.g. [18, Thm. 52]
for a suitable candidate).

We have now all the tools necessary for proving Theorems 1 and 6.
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Proof of Theorem 6. As remarked in [14], the implications (a) ⇒ (b) and (c) ⇔
(d ) ⇒ (e) ⇔ (f ) are immediate. To prove that (b) ⇒ (c) we argue by con-
tradiction. We assume that there exists a dimension function g with g ≺ f and
Mg

∞(F ∩ I ) < αMg
∞(I ) = αg(|I |) for some dyadic cube I and some α < 1.

Then there is a sequence of dyadic cubes {Ii}+∞
i=1 such that

∑+∞
i=1 g(|Ii |) < αg(|I |).

We obtain the analogue of [14, (16)] with Mt∞ replaced by Mg
∞, and we end up

with a doubly infinite sequence of similarity transformations {hm � gj} such that

Mg
∞

( ∞⋂
j=1

∞⋂
m=1

(hm � gj )(F )
)

= 0,

which is the desired contradiction to (b).
Assume now that F is a Gδ-set satisfying (f ). Let g be a dimension function

with g ≺ f. Then there exists a dimension function h with g ≺ h ≺ f. Let
fi : V → Rn be bi-Lipschitz transformations (i = 1, 2, . . . ). Lemma 3 yields that
Mh∞(f −1

i (F ) ∩ U) = Mh∞(U) holds for all open subsets U of V. Since the sets
f −1
i (F ) are Gδ , we infer from Lemma 4 that

Mh
∞

( ∞⋂
i=1

f −1
i (F ) ∩ V

)
> 0;

thus we have

Hg

( ∞⋂
i=1

f −1
i (F ) ∩ V

)
= +∞

as expected.

Proof of Theorem 1. This follows the same lines as the proof of assertions (a) and
(e) of [14, Thm. C]. Indeed, let F1,F2 , . . . be in Gf(Rn). Let g be a dimension
function with g ≺ f. Then there exists a dimension function h with g ≺ h ≺ f.

By Theorem 6(d),
Mh

∞(fi(Fk) ∩ U) = Mh
∞(U)

for all open sets U and for all integers k and similarity transformations fi : Rn →
Rn. Applying Lemma 4, we then get

Mh
∞

( ∞⋂
i=1

∞⋂
k=1

fi(Fk) ∩ U

)
> 0

for all open sets U. Consequently, we have

Hg

( ∞⋂
i=1

fi

( ∞⋂
k=1

Fk

))
= +∞.

We conclude that
⋂+∞

k=1 Fk is in Gf(Rn) by Theorem 6(b).

As pointed out in [14], the following lemma provides a useful test for Gf -sets.
Since the condition ε(f ) = 1 is not always satisfied in the applications we have in
mind, this restriction does not appear in Lemma 5.
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Lemma 5. Let (Fk)k≥1 be a sequence of open subsets of Rn. Assume that there
exist a dimension function f with ε(f ) > 0 and positive real numbers ε and c

such that ε < ε(f ) and

lim
k→∞ Mg

∞(Fk ∩ I ) ≥ cMg
∞(I )

for every dyadic cube I of diameter less than ε and any dimension function g with
g ≺ f. Then

lim sup
k→∞

Fk ∈ Gf(Rn).

Proof. This is a straightforward adaptation of [14, Lemma 7]. If ε(f ) is strictly
less than 1, we adapt Theorem 6 with obvious modifications.

In the applications, we are not always able to work directly in Rn and we deal only
with bounded sets. Hence, Lemma 6 turns out to be very useful.

Lemma 6. Let E be an open cube in Rn. Let (Fk)k≥1 be a sequence of open sub-
sets of E, and assume that there exist a dimension function f with ε(f ) > 0 and
positive real numbers ε and c such that ε < ε(f ) and

lim
k→∞ Mg

∞(Fk ∩ I ) ≥ cMg
∞(I )

for every dyadic cube I in E of diameter less than ε and any dimension function
g with g ≺ f. Then

lim sup
k→∞

Fk ∈ Gf(E).

Proof. This follows immediately from Lemma 5 and the definition of Gf(E).

We end this section by pointing out a (slight) mistake in [14].
In the proof of the implication (b) ⇒ (c) of Theorem B [14, p. 273], it is as-

serted that “we may choose t < s such that
∑∞

i=1|Ii |t < α|I |t”. This statement
does not automatically follow from the assumption

∑∞
i=1|Ii |s < α|I |s unless the

sum is finite (which will not occur in the cases of interest). This slight mistake
can be easily corrected by changing statement (c) (and likewise statements (d), (e),
and (f )) of Theorem B as follows:

(c′) For all dyadic cubes I,

Mt
∞(F ∩ I ) = Mt

∞(I )

for any positive real number t < s.

Another consequence is that assertion (a) in [14, Thm. D] does not hold true.
Furthermore, Example 3 of [14] seems to be incorrect because there is no reason

for infinitely many rational approximants of the xi to have the same denominator.
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5. Proof of Theorem 2

Proposition 1 is the key tool in proving Theorem 2.

Proposition 1. Let S = (αj )j≥1 be an optimal regular system in a bounded,
open real interval E. Let I be an interval in E. Let F be a positive, nonincreasing
function such that the sum

∑
j≥1F(j) diverges and x �→ xF(x) is nonincreasing

and tends to zero as x goes to infinity. For any real number m, there exist a posi-
tive constant c(S ) ≤ 1, depending only on S, and integers m ≤ i1 < · · · < it such
that the intervals

[αih + F(ih),αih − F(ih)]

are included in I and are pairwise disjoint and
t∑

h=1

F(ih) ≥ c(S )|I |.

Proof. This is [9, Prop. 1] in the case s = 1.

We now show how Proposition 1 implies Theorem 2.

Proof of Theorem 2. In order to simplify the exposition, we assume that the length
of E is 1. We construct inductively open real subsets E0,E1, . . . such that

E(�) ⊃ lim sup
k→+∞

Ek ,

and we aim to conclude by Lemma 5. We first apply Proposition 1 to the interval
E, the function F = f ��, and a real number H0 ≥ 2 such that

f ��(x) > �(x) for any x ≥ H0. (5)

This is possible since f ≺ Id and since the function � tends to zero at infinity. We
then have a set of distinct integers A(0) := {i(0)1 , . . . , i(0)t1 } with∑

j∈A(0)

F(j) ≥ κ ,

where κ = c(S ) · |E| = c(S ). We define the set E0 to be the intersection of E
with the union of the intervals

]αj −�(j),αj +�(j)[, j ∈ A(0),

which are pairwise disjoint by (5).
Let k be a nonnegative integer and assume that (i) the sets of integers A(0), . . . ,

A(k) have been constructed and (ii) the sets E0, . . . ,Ek are finite unions of open
intervals centered at real numbers αj with j in A(0) ∪ · · · ∪ A(k). Denote by
Hk an upper bound for the integers contained in A(0) ∪ · · · ∪ A(k), and apply
Proposition 1 to each dyadic closed interval I in E of length 2−k−1, to the real
number Hk , and to the function F. We get a set of distinct integers A(k+1, I ) :=
{i(k+1)

1 , . . . , i(k+1)
tI

} such that
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∑
j∈A(k+1,I )

F(j) ≥ κ2−k−1,

and we define the set Ek+1 as the intersection of E with the union of the pairwise
disjoint intervals

]αj −�(j),αj +�(j)[, j ∈ A(k + 1, I ),

where I runs through the dyadic closed intervals of length 2−k−1 in E. Thanks
to this inductive process, we have constructed the sets Ek , which by (5) clearly
satisfy

E(�) ⊃
∞⋂
i=1

∞⋃
k=i

Ek.

Let k0 be such that 2−k0 ≤ ε(f ). Observe that, if I ⊂ E is a dyadic interval of
length |I | = 2−k0 , then for any k ≥ k0 we have∑

j

F(j) ≥ κ|I |, (6)

where the summation is taken over all indices j in A(k) for which αj belongs to I.
Let I be a dyadic interval contained in E of length less than ε(f ). Since f ≺

Id, we may further assume that f(x) ≥ x for any x ≤ |I |. Let k ≥ k0 be an inte-
ger. We want to prove that Mf

∞(I ∩ Ek) ≥ κf(|I |) for any integer k sufficiently
large. Consider a finite coveringU1∪· · ·∪Um of I ∩Ek , where theUi are pairwise
disjoint dyadic intervals such that their endpoints coincide with those of intervals
composing Ek. Without any restriction we can take only finite coverings, as ob-
served by Falconer [12, Proof of Lemma 6.1]. By definition, we have

Mf
∞(I ∩ Ek) ≥

m∑
j=1

f(|Uj |). (7)

For any integer j with 1 ≤ j ≤ m, either (i) Uj is one of the intervals composing
Ek , say Uj = ]αh −�(h),αh +�(h)[, or (ii) there exist h1, . . . ,hv with v ≥ 2
and αh1 < · · · < αhv such that

[αh1,αh1 + F(h1)[ ∪
v−1⋃
!=2

]αh! − F(h!),αh! + F(h!)[ ∪ ]αhv − F(hv),αhv ] ⊂ Uj

and

Uj ⊂ ]αh1 −�(h1),αhv +�(hv)[.

In case (i) we have f(|Uj |) = f(2(�(h)) ≥ F(h); in case (ii),

f(|Uj |) ≥ f(F(h1)+ · · · + F(hv)) ≥ F(h1)+ · · · + F(hv),

since f ≺ Id. Consequently, we have by (6) and (7) that
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Mf
∞(I ∩ Ek) ≥

∑
j∈A(k)

F(j) ≥ κ|I | ≥ κf(|I |).

Thus, the assumptions of Lemma 6 are satisfied, and the desired result follows.

6. Proofs of Theorem 4 and 5

Proof of Theorem 4. Before applying Theorem 2, we recall a deep result of
Beresnevich [2] on the distribution of real algebraic numbers of bounded degree.

Proposition 2. Let n ≥ 1 and M ≥ 2 be integers and let I be an interval con-
tained in (−M+1,M−1). There exist positive constants c4, c5 depending only on
n, and K0 = K0(n, I ). For any K ≥ K0, there are α1, . . . ,αt in An ∩ I such that

c4M
nK ≤ H(αh) ≤ MnK (1 ≤ h ≤ t),

|αh − α!| ≥ K−n−1 (1 ≤ h < ! ≤ t),

t ≥ c5|I |Kn+1.

Proof. This is Theorem 3 of Beresnevich [2]. Actually, the existence of c4 is not
proved in [2], but we may easily deduce it by following his proof (see e.g. [7,
Thm. G]).

To prove that the set An of real algebraic numbers of bounded degree n forms an
optimal regular system in any bounded, open real interval E, it remains for us (in
view of Proposition 2) to order An in a suitable manner, as follows.

Lemma 7. Let n ≥ 1 be an integer. We number the elements of An := (αj )j≥1

by increasing order of their height and, when the heights are equal, by increas-
ing numerical order. Then, there exist two positive constants c1 and c2 depending
only on n and such that, for any j ≥ 1,

c1(n)j
1/(n+1) ≤ H(αj ) ≤ c2(n)j

1/(n+1). (8)

Proof. The left-hand inequality in (8) is clear, since an easy counting argument
shows that, for any positive integer H, there are at most n(2H + 1)n+1 algebraic
numbers of height at most H and degree at most n. As for the right-hand side, let
h ≥ 5 be an odd integer. Consider an integer polynomial

P(X) := hXn − an−1X
n−1 − · · · − a1X − a0,

where a0 is congruent to 2 modulo 4 and, for 0 ≤ j ≤ n − 1, the integer aj is
even and belongs to {0, 2, . . . , 2[h/2]}. By Eisenstein’s criterion, the polynomial
P(X) is irreducible. Furthermore, it clearly has (at least) one real root. Conse-
quently, there are at least c3(n)h

n real algebraic numbers of height h and degree
n. Hence, for any positive integer H, there are at least c4(n)H

n+1 real algebraic
numbers of height at most H and degree at most n. This proves the right-hand in-
equality of (8).
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Let E be a bounded, real closed interval. By Proposition 2 and Lemma 7, the set
An is an optimal regular system in E. In order to apply Theorem 2 with the func-
tion �̃ defined by �̃(j) := �(H(αj )) for j ≥ 1, we need only check that the sums∑

j≥1 �̃(j) and
∑

j≥1 j
n�(j) have the same behavior, which holds true. Indeed,

the functions �̃ and j �→ j n�(j) are both nonincreasing and so we may, for ex-
ample, use comparisons between sums and integrals to derive from (8) that the
sum

∑
j≥1 �̃(j) converges if and only if the sum

∑
j≥1 j

n�(j) converges.
Let n ≥ 1 be an integer. For any real number x ≥ 1, set

�n,ν(x) = x−(n+1)ν0(log x)−ν1 · · · (logt x)
−νt .

Because the sum
∑

j≥1 fν(2�̃n,ν(j)) diverges, Theorem 2 implies that the set

K∗
n(ν) ∩ E = K∗

n(�n,ν) ∩ E is in the class Gfν (E).

This holds for any bounded open interval E, so the set K∗
n(ν) is in the class

Gfν (Rn) and, by Theorem 1, the intersection
⋂

n≥1 K∗
n(ν) also belongs to that

class. Setting g(u) = fν(u)× log t+1(1/u) yields

Hg

( ⋂
n≥1

K∗
n(ν)

)
= +∞. (9)

For positive integers n and k, define the function �n,ν,k on R≥1 by �n,ν,k(x) =
�n,ν(x)× (log t x)

−1/k, and set

E :=
⋂
n≥1

En(ν) =
⋂
n≥1

K∗
n(�n,ν) \

⋃
n0≥1

⋃
k≥1

( ⋂
n �=n0

K∗
n(�n,ν) ∩ K∗

n0
(�n0,ν,k)

)
.

For any integers k ≥ 1 and n0 ≥ 1, we have Hg(K∗
n0
(�n0,ν,k)) = 0; hence it fol-

lows from (9) that Hg(E ) = +∞, as claimed.
Theorem 3 for τ > 1 follows by simply taking t = 0 and ν̃ = (τ ): we obtain

that the Hausdorff dimension of the set of real numbers of type τ is greater than
or equal to 1/τ. Actually, we have equality by (3).

Proof of Theorem 5. It is sufficient to observe that, by Theorem 1, the image of
an intersective set by a translation is an intersective set. Then we argue as at the
end of the proof of Theorem 4, noticing that, for any positive integer k, 1/τ is
the dimension of the set of real numbers ξ such that ξk + ϕk is an S ∗-number of
type τ.
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