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On the Gehring–Hayman Property,
the Privalov–Riesz Theorems,

and Doubling Measures

José G. Llorente

1. Introduction and Main Results

The motivation for the results in this paper is threefold. First, in [BKR] the au-
thors observed that a number of relevant results on conformal mapping rely on
only two properties of the derivative |f ′| of a conformal map f of the unit disk
in the complex plane: the Harnack property (H) and the so-called volume growth
property (VG).

Let ρ : R
N+1
+ → (0, +∞) be a continuous function (a metric density) in the

upper half-space. We say that ρ satisfies Harnack’s property (H) with constant C
if, for each z = (a, t)∈R

N+1
+ ,

C−1 ≤ ρ(w)

ρ(q)
≤ C

whenever w, q ∈B(
z, 1

2 t
)
. (See the end of this section for notation.)

Associated to a metric density ρ in R
N+1
+ , we define the ρ-length of a curve �

in R
N+1
+ as

lengthρ(�) =
∫
�

ρ(z) |dz|
and the ρ-distance

dρ(w, q) = inf
�

lengthρ(�)

for w, q ∈R
N+1
+ , where the infimum is taken over all curves in R

N+1
+ joining w, q.

Then dρ is a distance in R
N+1
+ . If ρ(x, t) = 1/t, then dρ is the hyperbolic distance

in R
N+1
+ . We recall that the hyperbolic geodesics are exactly the vertical lines and

the circles ending orthogonally at the boundary.
If z∈R

N+1
+ and r > 0 then Bρ(z, r) denotes the open ball of center z and radius

r in the distance dρ. We say that ρ satisfies the volume growth condition (VG)
with constant C if

µρ(Bρ(z, r)) ≤ CrN+1

for all z∈R
N+1
+ and r > 0, where µρ is the volume measure associated to ρ.
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From the distortion theorem for conformal mappings [P], it follows that if f is
conformal in R

2+ then ρ = |f ′| satisfies (H) with respect to some absolute con-
stant. On the other hand, it is elementary that |f ′| also satisfies (VG) for some
absolute constant and N = 1. Following [ABH; BHR; BK; BKR], those met-
ric densities ρ in R

N+1
+ satisfying (H) and (VG) are called conformal metrics. In

[BKR] it was shown that most of the results on the boundary behavior of con-
formal maps still hold for conformal metrics (the Gehring–Hayman theorem and
Beurling’s radial limit theorem among them).

We say that a metric density ρ in R
N+1
+ satisfies the Gehring–Hayman property

(GH) with constant C if, for each w, q ∈R
N+1
+ and for any curve � ⊂ R

N+1
+ with

endpoints w, q, ∫
�

ρ ≥ C

∫
�h

ρ,

where �h is the hyperbolic geodesic joining w and q. Then we have the following
theorem.

Theorem A [BKR, Thm. 3.1].

(H) + (VG) �⇒ (GH);

that is, conformal metrics satisfy (GH).

When ρ = |f ′| for some conformal mapping f , we recover the classical Gehring–
Hayman theorem [GHa]. In [BaBu] can be found further geometrical implications
of the Gehring–Hayman property in more general settings.

A second motivation comes from the Privalov–Riesz problems for quasiconfor-
mal mappings or, more generally, for conformal metrics. We recall that a classical
theorem of Privalov (see [P, Chap. 6]) states that if f is analytic in the upper
half-plane R

2+ then

m1

{
x ∈R : lim

z→x
f(z) = 0

}
= 0,

where the limit must be understood in the angular sense and m1 is 1-dimensional
Lebesgue measure. Observe that no growth restriction on f is needed here.

A close companion to the Privalov theorem is the Riesz theorem (see [P, Thm.
6.8]): suppose now that F : R

2+ → � is conformal, where� ⊂ R
2 is a Jordan do-

main. Then F ′ belongs to the Hardy space H1 if and only if H1(∂�) < ∞, and
in this case the restriction of F to R ∪ {∞}, which is a homeomorphism into ∂�
by [P, Thm. 2.3], is absolutely continuous in both directions, in the sense that

m1(E) = 0 ⇐⇒ H1(F(E)) = 0

for E ⊂ R. Here H1 denotes 1-dimensional Hausdorff measure in the plane. The
implication to the right (direct absolute continuity) follows from the fact that F ′ ∈
H1, while the implication to the left (inverse absolute continuity) requires Pri-
valov’s theorem. Observe also that, since the vertical asymptotic behavior of F ′
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is comparable (up to multiplicative constants) to the angular behavior (see [P,
Chap. 1]), it follows from Privalov that

m1

{
x ∈R : lim

t→0
F ′(x, t) = 0

}
= 0.

Now, let F : R
N+1
+ → R

N+1 be quasiconformal with N ≥ 2. Then the limit

lim
t→0

F(x, t) = f(x)

exists for x ∈ R
N outside an exceptional set of (N + 1)-capacity 0—in particu-

lar, of Hausdorff dimension 0 [V, Thm. 15.1]. The averaged derivative of F is
defined by

aF (x, t) =
(∫

B((x,t),t/2)
JF dmN+1

)1/(N+1)

,

where JF is the Jacobian determinant of F, which exists almost everywhere and is
strictly positive in R

N+1
+ . An equivalent version of aF was first introduced in [AG].

Since quasiconformal maps do not, in general, have pointwise derivatives, it turns
out that aF is a satisfactory quasiconformal substitute of the modulus of the de-
rivative of a conformal mapping. One of the links between quasiconformal theory
and the general theory of metrics developed in [BKR] is that aF is a conformal
metric if F is quasiconformal [BKR, Ex. 2.4).

On the other hand, it has been shown in [ABH, Thm.1.1] that the boundary func-
tion f has distributional derivatives provided that F belongs to the so called Riesz
class, meaning that aF satisfies an appropriate Hardy-type condition. Therefore,
it is natural to ask (see [ABH, Prob. 1.3]) whether

mN {x ∈R
N : Df(x) = 0} = 0, (1.1)

which can be seen as a quasiconformal analogue of Privalov’s theorem.
In view of the connection between mappings and metric densities, it is also

asked (in [ABH, Prob. 4.2]) whether a conformal metric ρ in R
N+1
+ in the appro-

priate Riesz class verifies Privalov’s theorem in the sense that

mN

{
x ∈R

N : lim
t→0

ρ(x, t) = 0
}
= 0. (1.2)

It turns out that an affirmative answer to (1.2) would yield an affirmative answer
to (1.1) (see [ABH]). It is also remarked there that standard sawtooth arguments
show that the general case would follow from the case where F or ρ is assumed
to satisfy a Riesz condition. This fits with the spirit of Privalov’s theorem in the
classical case, as mentioned previously.

Regarding the problem of absolute continuity, it is proved in [BK] that F be-
longs to the Riesz class if HN(∂�) <∞, where � = F(RN+1

+ ). Examples in [H]
show that the direct absolute continuity does not hold in general, even when ∂�
satisfies assumptions stronger than HN(∂�) < ∞. On the other hand, by [BK,
Lemma 6.2] it follows that a positive answer to (1.2) would solve the problem of
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inverse absolute continuity. We refer to [ABH] for some partial results and further
comments.

The third motivation is that an interesting link between doubling measures on
R
N, metrics in R

N+1
+ , and the Gehring–Hayman property has been shown in [DS]

and [S1]. We say that a positive measure µ on R
N is doubling if

µ(2B) ≤ Cµ(B)

for each ball B and some C > 0, where 2B is the ball concentric to B and twice
its radius. Now, if µ is a doubling measure on R

N, define a metric density ρµ in
R
N+1
+ as

ρµ(x, t) =
(
µ(B(x, t))

tN

)1/N

. (1.3)

Then ρµ satisfies (H) (with constant depending only on N and the doubling
constant). Motivated by questions of bi-Lipschitz embeddings (see also [S2]),
David and Semmes [DS; S1] observed that the celebrated Gehring lemma [G] on
the self-improving of regularity for quasiconformal mappings could be adapted to
more general situations. From their program it follows in particular that the reg-
ularity of µ is closely related to certain geometric properties of ρµ. Namely, the
following theorem is a restatement, in slightly different terms, of Proposition 3.4
in [S1].

Theorem B [S1, Prop. 3.4]. Let µ be a doubling measure on R
N, N ≥ 2, and

let ρµ be defined by (1.3). Assume that ρµ satisfies (GH). Then µ is absolutely
continuous with respect to N -dimensional Lebesgue measure, and its density is a
strong A∞-weight.

Note that even though the hypothesis in [S1, Prop. 3.4] in terms of ρµ looks weaker
than (GH), it turns out to be equivalent; this is shown by [S1, Lemma 3.3], Propo-
sition 4.2, and a standard argument with Whitney balls. Theorem B states that,
when ρ is the special lift associated to a doubling measure µ on R

N given by (1.3),
then the assumption that ρ satisfies (GH) (it automatically satisfies (H) because of
the doubling property) implies that ρ has a nice boundary behavior; in particular,

mN

{
x ∈R

N : lim
t→0

ρ(x, t) = 0
}
= 0,

so ρµ satisfies Privalov’s theorem.
For example, the metric densities ρ1(x, t) = t and ρ2(x, t) = 1/t both satisfy

(H) in R
N+1
+ . Observe that ρ2 trivially satisfies (GH) but ρ1 does not. In fact, no

metric in R
N+1
+ that is continuous in R

N and vanishing on some rectifiable curve
in R

N can satisfy (GH) (see [BKR, Secs. 2.8 & 2.9] for more examples). Further-
more, it is easy to check that ρ2 does not satisfy (VG).

Note that the Gehring–Hayman property can be seen as a sort of subharmonic-
ity property of the metric density that seems to prevent it from being small at a
large part of the boundary. By Theorem B and all the preceding comments, one is
tempted to believe that the Privalov problem might be related to (GH), indepen-
dently of the conformality of the metric. For instance, we could even ask whether
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(H) and (GH) together imply (1.2) for a general metric density ρ in R
N+1
+ . The ex-

amples in Theorems 1 and 2, the main results of the paper, show that this is not
the case, although it turns out that the metrics used there are not conformal in gen-
eral (see the corollary to follow). This seems to reinforce the idea that the Privalov
problem should be very much related to conformality.

But Theorems 1 and 2 say also a bit more: suppose that we restrict our atten-
tion to metrics obtained as special liftings of doubling measures on R

N. Then we
can ask how stable Theorem B is to perturbations in the definition of ρµ. More
precisely, for a doubling measure µ on R

N and a certain nondecreasing function
ψ : [0,+∞), suppose we define

ρ(x, t) =
(
µ(B(x, t))

tNψ(t)

)1/N

. (1.4)

Observe that the choice ψ = 1 gives ρµ. From Theorem B it follows that, in order
to destroy the absolute continuity of µ in (1.4), some restriction on the size of ψ
will be needed. Theorem 2 shows that ψ(0) = 0 is essentially the only such re-
striction, whereas Theorem 1 states that, for weight functions of the form ψ(t) =
t ε, the situation can also change dramatically as soon as ε > 0. All of this shows
that Theorem B is quite sensitive to perturbations in the definition of ρµ in (1.3).
We do not know whether a quasiconformal mapping in the upper half-space can
be constructed in such a way that the trace of its Jacobian on the boundary exhibits
similar properties to that of the measures in Theorems 1 and 2.

Theorem 1. Let ε > 0 and define ψε(t) = t ε if 0 < t < 1 and ψε(t) = 1 if
t ≥ 1. Then, for each η > 0, there is a singular doubling measure µ on R

N (with
doubling constant depending only on N, ε, and η) such that, if we define

ρ(x, t) =
(
µ(B(x, t))

tNψε(t)

)1/N

,

then (a)

lim
t→0

ρ(x, t)

tη
= 0

for mN -a.e. x ∈ R
N and (b) ρ satisfies (H) and (GH) with constants depending

only on N, ε, and η.

It is a well-known fact that, given a doubling measure µ on R
N, there is a positive

number d (depending only on N and the doubling constant) such that µ(E) > 0
implies dimE ≥ d, where dim denotes Hausdorff dimension. This remark applied
to the set E = {x : Dµ(x) = ∞}, together with Theorem 1, gives the following
corollary (see [BKR]).

Corollary. If in Theorem 1 we choose ε = N and let η be any absolute posi-
tive constant, then

dim

{
x ∈R

N :
∫ 1

0
ρ(x, t) dt = ∞

}
≥ d(N ) > 0.

In particular, ρ cannot be a conformal metric.
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Theorem 2. Let ψ0 : [0,1] → [0,1] be continuous and nondecreasing, with
ψ0(0) = 0 and ψ0(1) = 1. Then there is a singular doubling measure µ on R

N

(with doubling constant depending only on N) and a continuous, nondecreasing
function ψ : [0,∞)→ [0,∞) with ψ(0) = 0 and ψ ≥ ψ0 in [0,1] such that, if

ρ(x, t) =
(
µ(B(x, t))

tNψ(t)

)1/N

,

then ρ satisfies (H) and (GH) (with constants depending only on N) and

lim
t→0

ρ(x, t) = 0

for mN -a.e. x ∈R
N.

The structure of the paper is as follows. In Section 2 we construct the class of
doubling measures that will be used later, and Section 3 describes some symmetry
properties of those measures. Section 4 is devoted to the analysis of the Gehring–
Hayman property for metrics of the form (1.4), and in Section 5 the boundary
behavior of these metrics is studied with the help of martingale techniques.

Notation. Whenever x ∈ R
n and r > 0, B(x, r) denotes the Euclidean ball of

center x and radius r; R
N+1
+ denotes the upper half-space {(x, t) : x ∈R

N, t > 0}.
Given p ∈N, for each k ∈N we define Fk,p, the family of p-adic cubes of gen-

eration k in R
N, by

Fk,p =
{ N∏
j=1

[(mj − 1)p−k,mjp−k) : mj ∈Z , 1 ≤ j ≤ N

}
;

numbers of the form {mp−k,m∈Z} will be referred as the p-adic numbers of gen-
eration k. GivenQ∈Fk−1,p, there is a natural decomposition ofQ into pN cubes
in Fk,p, which will be called the descendents of Q.

For any cube Q, we use l(Q) to denote the side-length of Q. A curve γ in R
n

joining two points x, y ∈R
n is any continuous mapping γ : [a, b] → R

n such that
γ (a) = x and γ (b) = y.

Finally, C might denote successive positive constants during the same proof.

2. A Certain Family of Doubling Measures

Fix an odd integer p ≥ 3 and a positive number δ such that 0 < δ ≤ p−N. Let
(δk)

∞
k=1 be a sequence of nonnegative numbers such that δ ≤ δk ≤ p−N for all k ∈

N, and set

ak = 1− δk
pN − 1

(observe that ak ≥ δk). We will construct a positive measure µ in R
N by specify-

ing it on each Fk,p, the family of p-adic cubes of generation k.
Set µ(Q) = 1 for each Q ∈ F0,p and assume that µ has already been defined

on Fj,p with j ≤ k − 1. If Qk−1 ∈ Fk−1,p then Qk−1 has pN p-adic descendents



Gehring–Hayman Property, Privalov–Riesz Theorems, Doubling Measures 559

of generation k and, since p is odd, one of them contains the center of Qk−1. Let
us call this centered cube Q∗

k . Then, if Qk ⊂ Qk−1 and Qk ∈Fk,p, we define

µ(Qk) =
{
akµ(Qk−1) if Qk �= Q∗

k ,

δkµ(Qk−1) if Qk = Q∗
k .

Hence the measure has been also defined on Fk,p. Since
∏∞

k=n ak = 0 for all n∈
N, it can be checked [Sh, p. 152] that µ defines a Borel positive measure in R

N.

This type of asymmetric weight construction is well known.
Let us first show that µ is doubling. The main idea here is that µ has been con-

structed in such a way that the distortion between any two adjacent p-adic cubes
of the same generation is controlled by some fixed constant, even if the cubes are
not p-adic “siblings”. The next two properties of µ will be needed in the sequel.

(i) If Qk ,Q′
k ∈Fk,p are adjacent (not necessarily siblings), then
(

max

{
a1

δ1
, . . . ,

ak

δk

})−1

≤ µ(Qk)

µ(Q′
k)

≤ max

{
a1

δ1
, . . . ,

ak

δk

}
. (2.1)

(ii) If Qk ⊂ Qk−1 with Qk ∈Fk,p and Qk−1 ∈Fk−1,p, then

µ(Qk−1)

µ(Qk)
≤ 1

δk
. (2.2)

Proposition 2.1. µ is a doubling measure; that is, there exists aC > 0 (depend-
ing only on N, p, and δ) such that

µ(B(x, 2t)) ≤ Cµ(B(x, t))

for each x ∈R
N and t > 0.

Proof. By periodicity, it is enough to check the doubling property for small t, so
we assume that 2t ≤ 1. Let k1 be the largest integer such that 2t ≤ p−k1, and let
k2 be the smallest integer such that

√
Np−k2 ≤ t. Now, let Qki(x) be the p-adic

cube of the generation ki containing x, i = 1, 2. Then it is easy to check that:

(i) k1 < k2, and k2 − k1 depends only on N and p;
(ii) Qk2(x) ⊂ B(x, t);

(iii) B(x, 2t) is contained in a union of 3N p-adic cubes of generation k1, with
Qk1(x) being one of the cubes and the others being adjacent to it but not nec-
essarily siblings.

From property (i) we deduce that if Q is any p-adic cube of generation k1 that
is adjacent to Qk1(x), then

µ(Q) ≤ max

{
a1

δ1
, . . . ,

ak1

δk1

}
µ(Qk1(x)) ≤ C0µ(Qk1(x)),

where C0 depends only on N,p, δ. Therefore,

µ(B(x, 2t))

µ(B(x, t))
≤ 3NC0

µ(Qk1(x))

µ(Qk2(x))
.
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Yet by iterating (2.2) we obtain µ(Qk1(x)) ≤ µ(Qk2 )
∏k2

j=k1+1 δ
−1
j , so

µ(B(x, 2t))

µ(B(x, t))
≤ 3NCk2−k1+1

0 .

3. Some Symmetry Properties of µ

Suppose that µ has been constructed as in Section 2. The following symmetry
properties will play an important role in our subsequent analysis of the Gehring–
Hayman property.

Lemma 3.1. For m ∈ N and i ∈ {1, . . . ,N}, let c be a p-adic number of genera-
tion m and let H be the hyperplane {xi = c} in R

N. Let x, x̄ ∈ R
N be symmetric

with respect to H. Suppose that lp−m ≤ dist(x,H ) < (l +1)p−m for some l ∈N.

Then, for each t > 0 we have

C−1 ≤ µ(B(x, t))

µ(B(x̄, t))
≤ C,

where C = C(N,p, δ, l ) > 0.

Proof. If t ≥ p−m then the result follows from the doubling condition. If t ≤
p−m (say, t � p−k with k ≥ m) then it is enough to observe, from the symmetry
of the construction of µ, that: if Qk ⊂ Qm(x), Qk ⊂ Qm(x̄), Qk ,Qk ∈Fk,p, and
Qk and Qk are symmetric with respect to H, then

µ(Qk)

µ(Qk)
= µ(Qm(x))

µ(Qm(x̄)
;

and from the doubling condition,

C−1 ≤ µ(Qm(x))

µ(Qm(x̄))
≤ C

where C = C(N,p, δ, l ) > 0.

For the following property, we need to introduce a bit more notation. Let Q =
J1 × · · · × JN ∈ Fm,p and, for each i = 1, 2, . . . ,N, let ci be the middle point of
Ji. Fix k ≥ m and set I ∗i = [ci − 1/2pk, ci + 1/2pk). Then, since p is odd, I ∗i ∈
Fk,p for each 1 ≤ i ≤ N. Now, let R = I1 × · · · × IN ∈ Fk,p with R ⊂ Q. For
any i, let

R∗i = I ∗1 × · · · × I ∗i−1 × Ii × I ∗i+1 × · · · × I ∗N
be the cube obtained when R is projected onto the centered k-adic bar I ∗1 × · · · ×
I ∗i−1 × Ji × I ∗i+1 × · · · × I ∗N parallel to the xi direction.

Proposition 3.2. Let k ≥ m, R ∈ Fk,p, Q ∈ Fm,p, and R ⊂ Q. For each di-
rection i (1 ≤ i ≤ N), if R∗i is the projected cube of R along the direction i (as
before) then

µ(R) ≥ µ(R∗i ).
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Proof. Use the construction of µ, the inequalities ak ≥ δk , and the fact that p is
odd.

Proposition 3.2 expresses the fact that, for any p-adic N -dimensional cube, µ
gives less mass around the center of such cube.

Let Q∈Fm,p and k ≥ m. A finite collection of cubes C = {Q1, . . . ,Qn} is a p-
adic k-chain crossing Q if:

(i) Qi ⊂ Q and Qi ∈Fk,p, i = 1, . . . , n;
(ii) Qi and Qi+1 have a common face, i = 1, 2, . . . , n− 1; and

(iii) ∂Q1 and ∂Qn intersect two parallel faces of Q.

If we remove the condition that all Qi belong to the same generation, we will
refer to C just as a p-adic chain crossingQ. Suppose now thatQ = J1 ×· · ·×JN ,
that ci is the middle point of Ji, and that I ∗i is as in the remarks preceding Proposi-
tion 3.2 (i = 1, . . . ,N). Let {I1, . . . , Ipk−m} be the decomposition of J1 into p-adic
intervals of generation k, in increasing order. Then we define the centered p-adic
k-chain crossing Q along the x1 direction as C∗

1 = {Q1, . . . ,Qpk−m}, where Qj =
Ij × I ∗2 × · · · × I ∗N. The centered k-chain crossingQ along the xi direction, C∗

i , is
defined analogously.

4. Construction of ρ and the Gehring–Hayman Property

We now describe the type of metric densities to be used in Theorems 1 and 2.
Suppose that p, δ, (δk),µ are as in Section 3. We will consider metric densities

of the form

ρ(x, t) =
(
µ(B(x, t))

tNψ(t)

)1/N

, (4.1)

where ψ : [0,∞)→ [0,∞) is continuous and nondecreasing and verifies

ψ(2t) ≤ Mψ(t), (4.2)

ψ(1) = 1, (4.3)
(

ψ(p−k )
ψ(p−(k−1))

)1/N

≤ (p − 1)

(
1− δk
pN − 1

)1/N

+ δ1/N
k (4.4)

for each k ∈N and t > 0, where M > 0.
Standard arguments about doubling measures show that ρ is continuous. On

the other hand, (4.2) and (4.4) impose restrictions on the growth of ψ near zero.
Inequality (4.2) directly implies that ρ verifies (H), whereas (4.4) is a technical
restriction that will be needed to prove (GH). Because of the periodicity of the
construction of µ, (4.3) implies that ρ is bounded above on {(x, t) : t ≥ 1}. Note
also that, if N = 1, then (4.2)–(4.4) are automatically satisfied with ψ = 1.

Suppose that µ is as in Section 3, ψ verifies (4.2)–(4.4), and ρ is defined by
(4.1). The following theorem is the main result of this section.
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Theorem 4.1. Let ψ : [0,∞)→ [0,∞) be continuous and nondecreasing, and
let ψ satisfy (4.2)–(4.4). If ρ has been defined by (4.1), then ρ satisfies (H) and
(GH) with constants depending only on N, p, δ, and M.

Our next proposition will state that, in the presence of (H), the Gehring–Hayman
property is actually equivalent to an apparently weaker condition (WGH). Let ρ
be a metric in R

N+1
+ satisfying (H). Following [S1], for a, b ∈ R

N we let Ba,b
be the smallest ball in R

N containing a and b. Also, set za,b = (c, |a − b|),
where c is the middle point on the segment [a, b]. We say that ρ satisfies the weak
Gehring–Hayman property (WGH) with constant C if, for each w = (a, t0) and
q = (b, t1) ∈ R

N+1
+ with a �= b and for any curve � ⊂ R

N+1
+ with endpoints w, q

such that � ⊂ 4Ba,b × (0, 2|a − b|], we have∫
�

ρ ≥ Cρ(za,b)|a − b|.
It is clear, from Harnack’s property and the geometry of hyperbolic geodesics,

that (H) + (GH) ⇒ (WGH). Proposition 4.2 gives the converse. Its proof uses
well-known standard arguments (see [BKR]). We include it here for completeness.

Proposition 4.2. If ρ is a metric in R
N+1
+ satisfying (H) and (WGH), then ρ

satisfies (GH) with constant depending on the (H) and (WGH) constants.

Proof. Let � be a curve in R
N+1
+ joining (a, t0) and (b, t1). We can assume that

a = 0 and t0 ≤ t1. We suppose first that t1 ≤ |b|.
LetL1 be the vertical segment joining (0, t0) and (0, |b|),L2 the horizontal seg-

ment joining (0, |b|) and (b, |b|), and L3 the vertical segment joining (b, |b|) and
(b, t1). It is easy to check that it is enough to prove∫

�

ρ ≥ C

∫
L1∪L2∪L3

ρ.

Let k be an integer such that 2kt0 ≤ |b| < 2k+1t0. Then, for j ≤ k, set

Aj = B((0, 0), t0 2j+1)\B((0, 0), t0 2j ).

Observe that�must cross each annulusAj for j ≤ k. Take a subcurve�j ⊂ �∩Aj
that crosses Aj , and let Ij be the vertical segment joining the points (0, 2jt0) and
(0, 2j+1t0). We claim that ∫

�j

ρ ≥ C1

∫
Ij

ρ.

To prove the claim, let aj , bj be the endpoints of �j , with |aj | = 2jt0 and |bj | =
2j+1t0. We distinguish two cases as follows.

Case 1: |bj | ≤ 3
2 2jt0. Here, bj ∈ Bj = {

z = (x, r) : |z| = 2j+1t0, |x| ≤
3
2 2jt0

}
, so we can select a subcurve αj of �j connecting Aj ∩ {(x, r) : r = 2jt0}

and Bj with length at least C0 2jt0 for some absolute constant C0. Then, by (H),∫
�j

ρ ≥
∫
αj

ρ ≥ C1

∫
Ij

ρ.
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Case 2: |bj | ≥ 3
2 2jt0. In this case, by (WGH) we have∫

�j

ρ ≥ ρ(zaj,bj )|aj − bj | ≥ C

∫
Ij

ρ.

The claim is thus proved in both cases, and adding up in j yields∫
�

ρ ≥ C

∫
L1

ρ.

Exactly in the same way we get
∫
�
ρ ≥ C

∫
L3
ρ. Finally, by hypothesis we have∫

�
ρ ≥ Cρ(z0,b)|b| ≥ C

∫
L2
ρ and so
∫
�

ρ ≥ C

∫
L1∪L2∪L3

ρ

as desired.
If we now suppose |b| ≤ t1 then the result follows in the same way. Here, it is

enough to show that ∫
�

ρ ≥ C

∫
L1∪L2

ρ.

Choose k such that 2kt0 ≤ t1 < 2k+1t0. Now � must cross the annuli Aj =
B((0, 0), 2j+1t0)\B((0, 0), 2jt0), and an argument similar to the foregoing can be
repeated to yield

∫
�
ρ ≥ C

∫
L1
ρ. Also, � must cross B(B, |b|/2) and so, by Har-

nack,
∫
�
ρ ≥ Cρ(b, t1)|b| ≥ C

∫
L2
ρ. Therefore,

∫
�

ρ ≥ C

∫
L1∪L2

ρ

and the proposition follows.

Let w = (a, t0) and q = (b, t1) ∈ R
N+1
+ with a �= b, and let �(s) = (γ (s), t(s)),

0 ≤ s ≤ L, be a curve in R
N+1
+ joiningw and q such that� ⊂ 4Ba,b×(0, 2|a−b|].

Here s denotes arc-length of � and we can assume that L = length(�) <∞ (else
the (GH)-inequality would be trivial). By Proposition 4.2, it is enough to prove∫

�

ρ ≥ Cρ(za,b)|a − b|, (4.5)

where C = C(N,p, δ,M) > 0.
We start with a number of reductions. The first one says that |a − b| can be

assumed to be small.

Lemma 4.3. Suppose that (4.5) holds whenever |a − b| ≤ 1. Then it also holds
when |a − b| ≥ 1 ( possibly with a different constant).

Proof. With the same notation as before, suppose that |a − b| ≥ 1 and for m ∈
N choose s0 = 0 < s1 < · · · < sm = L such that, if aj = γ (sj ), then 1/2 ≤
|aj − aj−1| ≤ 1 for 1 ≤ j ≤ m. Set �j = �[sj−1, sj ]. Then, by hypothesis we have
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∫
�

ρ ≥
m∑
j=1

∫
�j

ρ ≥
m∑
j=1

ρ(zaj,aj−1)|aj − aj−1|.

Thus, from the doubling condition, (4.3), and the fact thatm ≥ 2|a−b|, we obtain∫
�

ρ ≥ Cρ(za,b)|a − b|.

The next proposition is a direct consequence of the reflection property ofµ (Lemma
3.1). We use the following notation: If H is a hyperplane in R

N, if S+ and S− are
the half-spaces into which R

N is divided by H, and if x ∈R
N, then x̄ denotes the

symmetric point of x with respect to H and

x̂ =
{
x if x ∈ S+ ,

x̄ if x ∈ S−.
Proposition 4.4. Let c be a p-adic number of generation m, and let H be the
hyperplane {xi = c} in R

N for some i, 1 ≤ i ≤ N. Let �(s) = (γ (s), t(s)), 0 ≤
s ≤ L, be a curve in R

N+1
+ such that γ ⊂ {x ∈R

N : dist(x,H ) ≤ lp−m} for some
l ∈N. Define �̂(s) = (γ̂ (s), t(s)) for 0 ≤ s ≤ L. Then,

C−1
∫
�̂

ρ ≤
∫
�

ρ ≤ C

∫
�̂

ρ,

where C = C(N,p, δ, l ) > 0.

Next we will use Proposition 4.4 to see that we can restrict to the case where the
projection curve γ crosses two parallel faces of some p-adic cube. If a ∈R

N and
m∈N, then each of the 3N −1 cubes in Fm,p surrounding a will be called a neigh-
bor p-adic cube of a of generation m.

Lemma 4.5. Let w = (a, t0), q = (b, t1), and �(s) = (γ (s), t(s)), 0 ≤ s ≤ L,
be as before, with 0 < |a − b| ≤ 1. Pick m ∈N such that 2

√
Np−m ≤ |a − b| <

2
√
Np−(m−1). Then there exist a Q ∈ Fm,p, a neighbor cube of a, and a curve

�̂(s) = (γ̂ (s), t̂(s)) such that γ̂ ⊂ Q crosses two parallel faces of Q and∫
�

ρ ≥ C

∫
�̂

ρ

for some C = C(N,p, δ) > 0.

Proof. Consider the grid Fm,p formed by all p-adic cubes of generation m. Let
A(a) be the union of the 3N−1 neighbor cubes of a in Fm,p. From the choice ofm,
it follows that γ must eventually leave A(a). Denote by γ1 the part of γ between
a and the point where γ leaves A(a) for the first time. Then γ1 ⊂ A(a) ∪Qm(a).

Whenever γ1 crosses from a cube Q∈Fm,p to an adjacent cube Q̂ = Q+ p−mv,
where v = ±ei for some 1 ≤ i ≤ N (with {e1, . . . , eN} the canonical basis in R

N),
we will associate the vector v to that crossing. In this way, the p-adic m-chain
of cubes obtained by the successive cubes in Fm,p crossed by γ1 can be identified



Gehring–Hayman Property, Privalov–Riesz Theorems, Doubling Measures 565

with a usual random walk
∑
vj in Z

N consisting of unit steps along any of the
coordinate directions. We will use the following elementary fact.

Claim. Let (k1, . . . , kN) ∈ Z
N be such that |ki | ≤ 2 for all i = 1, . . . ,N and

|kj | = 2 for some j. Then, from any given usual walk in Z
N joining (0, . . . , 0),

and (k1, . . . , kN), we can extract a subpath v1+ · · ·+ vn with n ≤ N +1 such that
v1 = vn and {v1, . . . , vn−1} are orthogonal.

Let Q1, . . . ,Qn+1 be the p-adic m-chain associated to the walk v1 + · · · + vn of
the claim and denote by γ2 the corresponding subcurve of γ1. The next step con-
sists of modifying γ2 by successive reflections on the coordinate hyperplanes in
such a way that the corresponding walk becomes simpler. More precisely, sup-
pose that we reflect γ2 on the hyperplane normal to v2 containing the “exit face”
ofQ2. Then the reflected curve is such that its associated walk no longer contains
the vectors±v2. Continuing in this way (and after at mostN−1 reflections) yields
a curve γ̂ such that its associated walk is v1 + v1 and must therefore cross some
cube Q∈Fm,p. It is clear from the construction that Q is a neighbor cube of a.

Now, Proposition 4.4 shows that, after each reflection, the integral
∫
�
ρ changes

up to a multiplicative factor depending only on N,p, δ. This proves Lemma 4.5.

The following lemma is elementary.

Lemma 4.6. Let Q ∈ Fk−1,p and {Q1∗, . . . ,Qp∗} be a p-adic centered k-chain
crossing Q along any of the coordinate directions. Then, if ψ satisfies (4.4),

p∑
i=1

(
µ(Qi∗)
ψ(p−k )

)1/N

≥
(

µ(Q)

ψ(p−(k−1))

)1/N

.

Proof. From the construction of µ and (4.4),
p∑
i=1

(µ(Q∗
i ))

1/N =
[
(p − 1)

(
1− δk
pN − 1

)1/N

+ δ1/N
k

]
(µ(Q))1/N

≥
(

ψ(p−k )
ψ(p−(k−1))

)1/N

(µ(Q))1/N.

Now we are ready for the proof of the general case.

Proof of Theorem 4.1. By Proposition 4.2 we need only check (WGH), and by
Lemmas 4.3 and 4.5 we can assume that �(s) = (γ (s), t(s)), 0 ≤ s ≤ L, is an
arc-length parameterization of a curve in R

N+1
+ joiningw = (a, t0) and q = (b, t1)

in such a way that a and b lie on two parallel faces of someQ∈Fm,p and γ ⊂ Q.

Then it is enough to prove∫
�

ρ =
∫ L

0

(
µ(γ (s), t(s))

(t(s))Nψ(t(s))

)1/N

ds ≥ C

(
µ(Q)

ψ(p−m)

)1/N

, (4.6)

where C = C(N,p, δ,M) > 0.
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We start by choosing a convenient covering of � by Whitney balls. Pick s1 =
0 < s2 < · · · < sn ≤ L and c = c(p) > 0 sufficiently small that, if zj = �(sj ) =
(aj , tj ) and �j = �[sj , sj+1], then:

(i) �j ⊂ B(zj , ctj );
(ii) |zj − zj+1| = ctj if 1 ≤ j ≤ n− 1 and |zn − q| ≤ ctn; and

(iii) if kj ∈ N is such that p−kj ≤ tj < p−(kj−1), then |kj+i − kj | ≤ 1 whenever
1 ≤ i ≤ p and j + i ≤ n.

Set Qj = Qkj (aj ), 1 ≤ j ≤ n. Then C = {Q1, . . . ,Qn} will be a p-adic chain
crossing Q along a certain coordinate direction and, from (i) and (ii),

∫
�

ρ ≥ C

n∑
j=1

(
µ(Qj)

ψ(l(Qj ))

)1/N

.

Now, for each j , let Qj∗ be the corresponding centered cube in Q along that
fixed direction and define C∗ = {Q1∗, . . . ,Qn∗}, which is also a p-adic chain cross-
ingQ. From the projection property (Proposition 3.2) we haveµ(Qj) ≥ µ(Qj∗),
so ∫

�

ρ ≥ C

n∑
j=1

(
µ(Qj∗)
ψ(l(Qj∗))

)1/N

.

By eliminating superfluous cubes, we can assume that noQi∗ is contained in some
other Qj∗ for i �= j. After these reductions it is easy to check, using (iii), that C∗
has the following property: ifR ∈Fk−1,p has some p-adic descendent in C∗∩Fk,p,
then C∗ must contain the wholep-adic centered k-chain crossingR along the given
direction.

Now Lemma 4.6 allows us to “raise generations” in the following sense: when-
everR∗ ∈Fk−1,p contains a whole p-adic centered k-chain {R1∗, . . . ,Rp∗}, we can
replace {R1∗, . . . ,Rp∗} by R∗. Proceeding in this way enables us to successively
lift the largest generation of C∗, and we finally obtain

∫
�

ρ ≥ C

(
µ(Q)

ψ(p−m)

)1/N

≥ Cρ(za,b)|a − b|,

which proves the theorem.

5. Basic Facts about Martingales and
Application to the a.e. Behavior of µ

We will exhibit examples of functions ψ such that the corresponding ρ given by
(4.1) has a bad boundary behavior; in particular, it does not verify Privalov’s theo-
rem. For that, we will need to take into account the asymptotic a.e. behavior of µ.

As shown in [GoN; LN], martingales are a useful tool for investigating the
growth behavior of a given measure in terms of its multiplicative properties. In
order to make the exposition as self-contained as possible, we first collect the basic
facts about martingales that will be used later.
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Let Q0 = [0,1)N and p ∈ N, p ≥ 2. For any Qk−1 ∈ Fk−1,p, let {Qi
k}p

N

i=1 be
its decomposition into disjoint p-adic cubes of generation k. If x ∈Q0, we recall
thatQk(x) denotes the only p-adic cube in Fk,p containing x. Suppose that ν is a
probability measure in Q0. We say that a real-valued sequence of functions {Sn}
in Q0 is a p-adic ν-martingale if:

(i) each Sn is constant on any Qn ∈Fn,p; and
(ii) for each n∈N and any Qn−1 ∈Fn−1,p,∫

Qn−1

Sn dν = Sn−1|Qn−1ν(Qn−1),

that is,

Sn−1|Qn−1ν(Qn−1) =
pN∑
i=1

Sn|Qi
n
ν(Qi

n),

where {Qi
n}p

N

i=1 are the p-adic descendents of Qn−1.

The differences Xk = Sk − Sk−1 are called the increments of the martingale.
Another relevant concept associated to a martingale is the quadratic characteris-
tic. If {Sn} is a p-adic ν-martingale, we define its quadratic characteristic 〈S 〉n as

〈S 〉n(x) =
n∑
k=1

pN∑
i=1

ν(Qi
k(x))

ν(Qk−1(x))
(Xi

k(x))
2,

where Xi
k(x) = Xk|Qi

k
(x). Note that 〈S 〉n is constant on any p-adic cube of gen-

eration n − 1 (we say that 〈S 〉n is a predictable sequence) and is nondecreasing.
We set 〈S 〉∞ = limn〈S 〉n. It turns out that the quadratic characteristic determines
the asymptotic behavior of a martingale (in the same way that the area function in
harmonic analysis), as the following theorem shows.

Theorem. Let {Sn} be a p-adic ν-martingale in Q0. Then the following state-
ments hold.

(i) {x ∈Q0 : 〈S 〉∞(x) <∞} ⊂ {x ∈Q0 : ∃ limn Sn <∞} ν-a.e.
(ii) (Law of the Iterated Logarithm) Assume that {Sn} has uniformly bounded

increments; that is, assume |Xk| ≤ C for each k. Then

lim sup
n

|Sn(x)|√
2〈S 〉n(x) log log〈S 〉n(x)

= 1

ν-a.e. on the set {x ∈Q0 : 〈S 〉∞(x) = ∞}.
Part (i) is due to Doob, and part (ii) is one of the versions of the law of the iterated
logarithm (LIL) as appears, for instance, in [St].

Now suppose that µ is a probability measure and take ν = mN to be N -
dimensional Lebesgue measure inQ0. The following representation ([GoN, Lem-
ma 2.1]; cf. [LN, Prop. 2.1]) explains the connections between measures and
martingales.
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Proposition 5.1. If µ is a probability measure onQ0, then there exist a p-adic
mN -martingale {Sn} and a nondecreasing predictable sequence {An} such that

µ(Qn) = exp{Sn − An}.
Here, up to additive constants, {An} and {Sn} can be chosen to be

An(x) = p−N
n∑
k=1

pN∑
i=1

log
µ(Qk−1(x))

µ(Qi
k)

and

Sn(x) = p−N
n∑
k=1

pN∑
i=1

log
µ(Qk(x))

µ(Qi
k)

,

where (as usual ) {Qi
k} is the p-adic decomposition of Qk−1(x).

The quadratic characteristic of the martingale {Sn} in this proposition is given by

〈S 〉n(x) = p−2N
n∑
k=1

pN∑
i=1

( pN∑
j=1

log
µ(Qi

k)

µ(Q
j

k )

)2

;

as before, {Qk} denotes the p-adic “tower” of cubes containing x.
Now let 0 < δ ≤ δk ≤ p−N. We will apply martingale techniques to describe

the asymptotic behavior of the measure µ constructed in Section 3. Let {Sn} be as
in Proposition 5.1. Observe that, since µ is doubling, {Sn} has uniformly bounded
increments. Furthermore, a simple computation shows:

An = nN logp +
n∑
k=1

(
pN − 1

pN
log

pN − 1

pN(1− δk) +
1

pN
log

1

pNδk

)
,

〈S 〉n = p−2N
n∑
k=1

log2

(
δ−1
k − 1

pN − 1

)
.

Hereafter, we will denote

α(δ) = pN − 1

pN
log

pN − 1

pN(1− δ) +
1

pN
log

1

pNδ
, (5.1)

β(δ) = (p − 1)

(
1− δ
pN − 1

)1/N

+ δ1/N. (5.2)

Then α is decreasing in (0,p−N) with α(0) = +∞ and α(p−N) = 0, and β is
increasing in (0,p−N) with β(0) = (p − 1)(pN − 1)−1/N < 1 = β(1). Let us
consider two special choices of (δk).

(1) Set δk = δ for each k, where 0 < δ ≤ p−N. Then:

An = nN logp + nα(δ),

〈S 〉n = p−2Nn log2

(
δ−1 − 1

pN − 1

)
.



Gehring–Hayman Property, Privalov–Riesz Theorems, Doubling Measures 569

(2) Fix E ⊂ N (infinite), and choose δk = δ if k ∈ E and δk = p−N otherwise.
Then

An = nN logp + νnα(δ),

〈S 〉n = p−2Nνn log2

(
δ−1 − 1

pN − 1

)
,

where νn = #(E ∩ [1, n]).

We now apply the law of the iterated logarithm to the measuresµ constructed in
Section 3 from these particular choices. Since 〈S 〉∞ = ∞ pointwise in both cases,
the LIL and the values of An and 〈S 〉n allow us to deduce the following corollary.

Corollary 5.2. There is C = C(N,p, δ) > 0 such that:

(i) if µ is as in case (1), then

lim
n

µ(Qn(x))

p−n(N+α(δ)(logp)−1) exp
{
C

√
n log log n

} = 0

for mN -a.e. x;
(ii) if µ is as in case (2), then

lim
n

µ(Qn(x))

p−nN exp
{
C

√
νn log log νn − α(δ)νn

} = 0

for mN -a.e. x.

In particular, µ is singular in both cases.

6. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let ε > 0 and η > 0. Pick an odd integer p such that

log pN−1

(p−1)N

logp
< ε. (6.1)

For this p, let us consider the functions α(δ) and β(δ) given by (5.1) and (5.2),
respectively. Then, since α(0) = ∞, we can choose 0 < δ ≤ p−N such that

α(δ)(logp)−1 > ε + ηN.
Associated to p and to δk = δ, let µ be the doubling measure corresponding to
case (1). Observe that (6.1) and the fact that β ≥ β(0) = (p − 1)(pN − 1)−1/N

together yield (
ψε(p

−k )
ψε(p−(k−1))

)1/N

= p−ε/N ≤ β(δ),

so ψε verifies condition (4.4). Since conditions (4.2) and (4.3) trivially hold, it
follows from Theorem 4.1 that the metric

ρ(x, t) =
(
µ(B(x, t))

tNψε(t)

)1/N

verifies (H) and (GH) with constants depending only onN, ε, η. On the other hand,
by Corollary 5.2, the choice of δ, and the doubling property, we have

lim
t→0

µ(B(x, t))

tN+ε+ηN = 0
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for mN -a.e. x ∈R
N. Therefore,

lim
t→0

ρ(x, t)

tη
= 0

mN -a.e. x ∈R
N. This finishes the proof of Theorem 1.

Proof of Theorem 2. Fix any odd integer p, and let ψ0 : [0,1] → [0,1] be as in the
statement of the theorem. Choose 0 < δ ≤ p−N such that

log
1

β(δ)
< α(δ).

Let

Mn = log(1/ψ0(p
−n))

log(1/β(δ))
,

and let E = {k ∈ N : [Mk] > [Mk−1]} and νn = #(E ∩ [1, n]) (here [x] denotes
integer part of x). Then E is infinite and νn ≤ Mn for all n. Set ν0 = 0 for con-
venience. Now we define

ψ(p−n) = (β(δ))νn .

Observe that ψ(p−n) ≥ ψ0(p
−n) for n = 0,1, . . . . Extend ψ to [0,1] in such a

way that ψ is nondecreasing and ψ ≥ ψ0. Note that, whatever the extension of
ψ, it will satisfy a doubling condition of the type ψ(pt) ≤ (β(δ))−2ψ(t) if 0 ≤
t ≤ p−1, so ψ(2t) ≤ Cψ(t) where C = C(N,p) > 0. This shows that ψ satisfies
(4.2). Since ψ(1) = 1, (4.3) also holds. Finally, if δk = δ when k ∈ E and δk =
p−N otherwise, then

ψ(p−k )
ψ(p−(k−1))

= (β(δ))νk−νk−1 ≤ β(δk)

for all k, so ψ satisfies condition (4.4), too; by Theorem 4.1, the metric

ρ(x, t) =
(
µ(B(x, t))

tNψ(t)

)1/N

satisfies (H) and also (GH) with constants depending only on N.
Now, by Corollary 5.2, the definition of ψ, and the choice of δ, we have

lim
n

µ(Qn(x))

p−nNψ(p−n)
≤ lim

n
exp

{
C

√
νn log log νn −

(
α(δ)− log

1

β(δ)

)
νn

}
= 0

mN -a.e. x, and therefore
lim
t→0

ρ(x, t) = 0

mN -a.e. x.
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