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1. Introduction

Let F be Fq((t)) with ring of integers OF, and letG be a split connected reductive
group over F. Let L be the completion of the maximal unramified extension of F,
F̄q((t)). Let σ be the Frobenius automorphism of L over F. Let Bn be the affine
building for G(E) where E/F is the unramified extension of degree n in L (so
E = Fqn((t))), and let B∞ be the affine building forG(L). Let T be a split torus in
G, let B = UT be a Borel subgroup, and let I be an Iwahori in G(L) containing
T(OL), where OL is the ring of integers of L. Let AM and CM be the correspond-
ingly specified apartment and alcove, which we assume are in B1; we will call
these the main apartment and the main alcove, respectively. We assume that CM
is in the positive Weyl chamber in AM specified by B. Let P ⊇ I be a parahoric
subgroup of G(L). If b ∈ G(L) then the σ -conjugacy class of b is {x−1bσ(x) :
x ∈ G(L)}. Let W̃ = N(L)/T (OL) be the extended affine Weyl group, and let
W̃P = N(L) ∩ P/T(OL). Here N is the normalizer of T .

If w̃ ∈ W̃, then we define (after Rapoport [12] and Kottwitz) the generalized
affine Deligne–Lusztig variety XP

w̃
(bσ) = {x ∈ G(L)/P : invP (x, bσ(x)) = w̃}.

Here invP : G(L)/P ×G(L)/P → P \G(L)/P = W̃P \W̃/W̃P is the relative posi-
tion map associated to P. Rapoport [12] asked which pairs (b, w̃) give rise to
non-empty sets and, for these pairs, what is dim(XP

w̃
(bσ)). Kottwitz and Rapoport

[9; 12] answered the emptiness/non-emptiness part of this question forP = K, the
maximal bounded subgroup ofG(L) associated to some special vertex vM of CM.

In Section 3 we consider the case G = SL3 with b = 1 and P = I. Complete
results on emptiness/non-emptiness and dimension are shown for this case in Fig-
ure 5. In Section 4 we considerG = Sp4, again with b = 1andP = I. Emptiness/
non-emptiness results and dimension results are shown in Figure10. The caseG =
SL2 (b = 1, P = I ) can be handled using an even simpler version of the same
methods.

Rapoport showed in [12, Prop. 4.2] that, for generalG,XK
w̃
(σ) is non-empty for

any w̃ corresponding to a dominant cocharacter in the coroot lattice. This is also
shown in some special cases in [9]. Rapoport [13] conjectured a specific formula
for the dimension of the XK

w̃
(σ). The knowledge of the XI

w̃
(σ) mentioned in the
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previous paragraph gives knowledge of theXP
w̃
(σ), so the dimensions of theXK

w̃
(σ)

are computed in Section 5 for SL2, SL3, and Sp4. The result is that dim(XK
w̃
(σ)) =

〈µ, ρ〉, where µ∈X∗(T ) dominant corresponds to w̃ ∈W̃K\W̃/W̃K and where ρ is
half the sum of the positive roots forG. This supports the conjecture of Rapoport
in [13]. Preliminary work toward a proof of this conjecture in general has been
done with Kottwitz.

In Section 6 we present a formula that encapsulates part of the results pictured
in Figures 5 and 10. The formula also holds for SL2. It is too soon to conjecture
that this formula holds for general G. Some results on emptiness/non-emptiness
for b �= 1 when G = SL2, SL3, or Sp4 can be found in [14]. Section 7 contains a
summary of these results.

This work has significance for the study of the reduction modulo p of Shimura
varieties. Interested readers should see the survey article by Rapoport [13]. Other
non-emptiness results for affine Deligne–Lusztig varieties can be found in [15].

2. General Methodology

For this and the next two sections we letP = I, so w̃ ∈W̃P \W̃/W̃P = W̃, and we let
Xw̃(σ) = XI

w̃
(σ). In this section we assume the group G to be simply connected,

so that I is the stabilizer of CM. First note that, if w̃CM ∩ CM is non-empty, then
Xw̃(σ) can be identified with a disjoint union of (non-affine) Deligne–Lusztig va-
rieties whose structure and dimension are already known [3]. Let v1 be a vertex
in AM and let v2 be a vertex in B1 in the same G(F ) orbit as v1. We require that
v1 /∈ CM. Let Q1 be the last alcove in a minimal gallery from CM to v1, and let
Q2 be the set of all alcovesQ2 containing v2 such thatQ2 and σ(Q2) have some
fixed relative position, pr. Note thatQ1 does not depend on the choice of minimal
gallery from CM to v1. We require that pr be such thatQ2 ∩ B1 = {v2}.
Definition 2.1. The (v1, v2,pr)-piece of Xw̃(σ) (which may be empty) is the
set of all alcoves D ⊂ B∞ such that there exists a y ∈ G(L) with yCM = D,
yQ1 = Q2 for someQ2 ∈ Q2 (so yv1 = v2), and inv(D, σ(D)) = w̃.
Definition 2.2. The (v1, v2,pr)-superpiece is the collection of all alcovesD ⊂
B∞ such that there exists a y ∈ G(L) with yCM = D and yQ1 = Q2 for some
Q2 ∈ Q2.

In other words, the (v1, v2,pr)-superpiece is the disjoint union, over all w̃ ∈W̃, of
the (v1, v2,pr)-pieces of the Xw̃(σ) (many of which will be empty).

Lemma 2.1. For w̃ with w̃CM ∩ CM = ∅, every alcove of Xw̃(σ) is in the
(v1, v2,pr)-piece of Xw̃(σ) for some (v1, v2,pr).

Proof. LetD ∈Xw̃(σ). Consider the set of all galleries which start atD and which
have an alcove containing some vertex in B1. Let $ be a minimal length element
of this set. Let the alcoves of $ be D = $1,$2, . . . ,$n, where $n ∩ B1 �= ∅. We
have $i ∩B1 = ∅ for any i < n by minimality. If n > 1, then $n must contain only
one vertex in B1, since $n−1 and $n share all but one vertex. Let $n ∩ B1 = {v2}
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and let v1 = ρCM (y−1v2), where y ∈G(L) is such that yCM = D and ρCM is the
retraction of B∞ onto AM centered at CM. Since $n ∩ B1 = {v2}, it follows that
pr = inv($n, σ($n)) is one of the allowed choices.

In the case that n = 1, we haveD ∩ B1 �= ∅ and soD ∈Xw̃(σ) for some w̃ with
w̃CM ∩ CM �= ∅.
The approach outlined in this section so far was suggested by Kottwitz and is sim-
ilar to that used in [6].

Recall that the set G/I can be given variety structure by writing it as an in-
creasing union of sets (G/I )m (m = 1, 2, 3, . . . ) and that each of these sets has
an m̃ such that any alcove D ∈ (G/I )m has d(D,CM) ≤ m̃, where d(·, ·) is the
metric on B∞. The sets (G/K)m are defined in [5] and [10], and the (G/I )m are
defined similarly. It is also true that if P is the (v1, v2,pr)-piece of Xw̃(σ) then
P ⊂ (G/I )m for large enough m. The sets Xw̃(σ) ∩ (G/I )m and P̄ ∩ (G/I )m are
locally closed subsets of (G/I )m; here P̄ is the (v1, v2,pr)-superpiece. Therefore,
P̄ ∩Xw̃(σ)∩(G/I )m=P ∩(G/I )m is a locally closed subset of (G/I )m.Using this
together with Lemma 2.2, we can write dimXw̃(σ)= supm dimXw̃(σ)∩(G/I )m=
supP,m dimP ∩ (G/I )m = supP dimP, allowing us to compute the dimensions of
Xw̃(σ) from the dimensions of the pieces P.

Lemma 2.2. P ∩ (G/I )m �= ∅ for only finitely many pieces P of Xw̃(σ).

In order to prove Lemma 2.2, we need the following.

Definition 2.3. Let A be an apartment in B∞, D an alcove in A, and v a ver-
tex in D. Define the barely neighboring alcoves of D in A through v to be all
alcoves E ⊂ A such that E ∩D = {v}. Let the barely neighboring cone of D in
A through v be all points a ∈A for which the geodesic from v to a passes through
the barely neighboring alcoves of D in A through v.

Lemma 2.3. LetD1,D2 be two alcoves in B∞, let v be a vertex in B∞, and let Pi
be the intersection of all apartments containingDi and v. Let Ei be the alcove in
Pi containing v (there is only one such). AssumeE1 ∩E2 = {v}. Then there exists
a positive constant l (depending only on the group G) such that d(D1,D2) ≥
ld(Di, v) for either i.

Proof. By symmetry, it suffices to find l > 0 such that d(D1,D2) ≥ ld(D1, v).
Let xi ∈ Di and let zt = tv + (1 − t)x2. By the negative curvature inequal-
ity, (1 − t)d 2(x2, x1) ≥ d 2(zt , x1) − td 2(v, x1) + t(1 − t)d 2(x2, v) [4, p. 225].
Choose t �= 1 such that zt ∈E2. Now letA be an apartment containingD1 andE2.

We have v ∈ A, so E1 ⊂ A. Let D̃2 ⊂ A be an alcove such that inv(D̃2,E2) =
inv(D2,E2), and let x̃2 ∈ D̃2 be such that inv(x̃2,E2) = inv(x2,E2). Since x̃2, v,
and x1 are in an apartment, it follows that

(1 − t̃ )d 2(x̃2, x1) = d 2(z̃t̃ , x1)− t̃d 2(v, x1)+ t̃(1 − t̃ )d 2(x̃2, v),

where z̃t̃ = t̃v+ (1− t̃ )x̃2 [4, p. 226]. Choose t = t̃ . Since zt ∈E2 ⊂ A, z̃t̃ = zt .
Since d 2(x̃2, v) = d 2(x2, v), we have d(x2, x1) ≥ d(x̃2, x1). Let C be the barely
neighboring cone of E1 in A through v. We know x̃2 ∈ C, so d(x2, x1) ≥ d(C, x1).
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Let Bα = {x ∈ A : d(x, v) = α}. Let W1 be the set of all x ∈ A such that the
geodesic from x to v passes throughE1, and let W̄1 be the closure. Define ϕt : A→
A by ϕt(x) = tx + (1 − t)v1. Then the invertible map ϕt × ϕt : Bα ∩ W̄1 × C̄ →
Btα ∩ W̄1 × C̄ and the relationship td(x, y) = d(ϕt(x),ϕt(y)) (for x,y ∈ A) to-
gether imply that tmα = mtα , wheremα is the minimum of d on Bα ∩W̄1 × C̄.We
now have d(x2, x1) ≥ d(C, x1) ≥ d(x1, v)m1, which implies the desired result be-
cause m1 > 0.

Proof of Lemma 2.2. Let D2 be an alcove in P, the (v1, v2,pr)-piece of Xw̃(σ).
We now apply Lemma 2.3 with D1 = CM and v = v2. Since the elements of
(G/I )m are all within a fixed distance of CM, we must have v1 and v2 within a
fixed distance of CM. There are only finitely many such v1 and v2.

Note that the structure of the (v1, v2,pr)-superpiece does not depend on v2, pro-
vided v2 is some vertex in B1 in the same G(F ) orbit as v1. Hence, for each
(v1,pr)-pair, we fix an arbitrary vertex v2 ∈ AM in the same G(F )-orbit as v1

and then compute the possible values of inv(D, σ(D)) for D in the (v1, v2,pr)-
superpiece. We will discuss how this computation is carried out for SL3 and Sp4.

The results tell us for which w̃ the (v1, v2,pr)-piece of Xw̃(σ) is non-empty. We
will also demonstrate a way of calculating the dimension of each non-empty piece
in the (v1, v2,pr)-superpiece, again only for SL3 and Sp4. (Everything we will do
also applies to SL2, however.) Aggregating all this information over all (v1,pr)-
pairs will tell us, for each piece of each Xw̃(σ), whether it is empty or non-empty
and what its dimension is. This gives the emptiness/non-emptiness and dimension
of the Xw̃(σ) themselves, by the previous results.

We now give some more definitions and propositions that will be needed to de-
velop the ideas of the previous paragraph. Let $v1 be the standard minimal gallery
from CM to Q1, as defined in [14] for SL3 and Sp4 (the definition could be gen-
eralized to G). Let $f(v1,pr )

be z$v1 , where Q1 and zQ1 have relative position pr ,
z ∈G(L), and z sends AM to AM. Let $c(v1,pr )

be some fixed minimal connecting
gallery fromQ1 to zQ1. Define $̄(v1,pr ) = $v1 ∪ $c(v1,pr )

∪ $f(v1,pr )
.

Let 2 be a gallery in AM starting at CM and containing any alcove at most
once (so it is non-stuttering, non-backtracking, and does not cross itself ). Let
21,22, . . . ,2n be the alcoves of 2 in order (so 21 = CM), and let ei be the edge
between 2i and 2i+1.

Definition 2.4. Let j be minimal such that CM and2j are on opposite sides of
the hyperplane hj in AM determined by ej . We say that ej is the first choice edge
in 2.

If j does not exist then there are no choice edges in 2. If j does exist, then this
leads to our next definition.

Definition 2.5. The hard choice at ej is the gallery 21, . . . ,2j ,2j+1, and the
easy choice at ej is the gallery 21, . . . ,2j , fhj (2j+1) = 2j , where fhj represents
the flip of AM about hj .



Formulas for the Dimensions of Some Affine Deligne–Lusztig Varieties 439

Given the hard choice, we consider21, . . . ,2j ,2j+1, . . . ,2n and find the minimal
k > j such that hk has2k and CM on opposite sides. This is the next choice edge,
given the hard choice at j , and we can make either an easy choice or a hard choice
here. Given the easy choice at j we consider 21, . . . ,2j , fhj (2j+1), . . . , fhj (2n),
and we find the minimal k such that k > j and such that fhj (2k) and CM are on
opposite sides of the hyperplane between fhj (2k) and fhj (2k+1). This is the next
choice edge, given the easy choice at j , and we can make either a hard or an easy
choice here. In this way we construct a binary tree T .

Definition 2.6. T is called the choice tree for 2. Each node in T (except the
leaves) corresponds to a choice edge in2. At every node except the leaves, T has
a branch corresponding to a hard choice and another branch corresponding to an
easy choice.

One can show that any non-backtracking path from the root node to a leaf of T
corresponds to the retraction (onto AM centered at CM) of some gallery (or gal-
leries) starting at CM and of the same type at 2. Such a path is equivalent to the
choice of a leaf of T, since T is a tree. The gallery2 itself corresponds to the path
obtained by making all hard choices in T . Further, all galleries starting at CM of
the same type as2 retract in a way specified by some non-backtracking path from
the root node of T to a leaf.

Definition 2.7. The set of comprehensive folding results of 2 is the set of final
alcoves of retractions of galleries starting at CM that have the same type as 2.

By retraction we always mean the retraction centered at CM onto AM. So a com-
prehensive folding result of 2 can also be thought of as a non-backtracking path
F from the root node to a leaf of the choice tree of 2, or (equivalently) as a leaf
of T .

Let 2 = $̄(v1,pr ).

Definition 2.8. The cf-dimension of F is l($v1)+ l($c(v1,pr )
)− nF − 2, where

nF is the number of hard choices in F and l represents the length of a gallery (the
number of alcoves in it).

3. SL3

In order to carry out the process outlined in the first half of Section 2 for SL3, it
suffices to consider v1 in the region pictured in Figure 1. All other v1 can be ob-
tained from these by rotating by 120◦ or 240◦ about the center ofCM. Furthermore,
if v ′

1 is the rotation of v1 by α (= 120◦ or 240◦) about the center of CM then it is
easy to see that the set {w̃ ∈ W̃ : the (v ′

1, v
′
2,pr)-piece of Xw̃(σ) is non-empty}

is the rotation of the set {w̃ ∈ W̃ : the (v1, v2,pr)-piece of Xw̃(σ) is non-empty}
by α about the center of CM. Further, the correspondence between these two sets
given by rotation by α preserves the dimension of the corresponding pieces.
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CM

Figure 1 The region containing all vertices v1

that must be considered for SL3

Given the restriction (mentioned in Section 2) that pr be such that Q2 ∩ B1 =
{v2}, we know that Q2 and σ(Q2) must share exactly one vertex. Thus for SL3,
pr corresponds to some element ofW (the finite Weyl group) of length 2 or 3.

The galleries $̄(v1,pr ) for SL3 can have the general shapes pictured in Figure 2.
For clarity, only two of the galleries in this figure have all their parts labeled.

$v1

$
f

(v1,pr )

CM

v1

Q1

· · ·

· · ·

· · ·

· · ·

$v1

$
f

(v1,pr )

$c
(v1,pr )

CM

v1

Q1

· · ·

· · ·

· · ·

· · ·

CM

· · · · · ·
···

· · ·

· · · · · ·

· · · · · ·

CM

· · · · · ·

· · ·

· · ·
· · · · · ·
···

· · ·

Figure 2 General shapes of the $̄(v1,pr ) for SL3

We now observe that the set of comprehensive folding results of 2 = $̄(v1,pr )

contains the set of possible inv(D, σ(D)) for D in the (v1, v2,pr)-superpiece.

Proposition 3.1. The set of comprehensive folding results of 2 coincides with
the set of inv(D, σ(D)) for D in the (v1, v2,pr)-superpiece. The cf-dimension of
F is equal to the dimension of the (v1, v2,pr)-piece of Xw̃(σ), where w̃CM is the
comprehensive folding result of 2 corresponding to F.

Proof. We first note that one can make at most one easy choice for each 2 =
$̄(v1,pr ) in Figure 2. Once this choice is made, there are no subsequent choice
edges. This can be seen simply by analyzing the pictures in Figure 2 on a case-
by-case basis. Also, one can see that $v1 ∪ $c(v1,pr )

is minimal. So the first choice
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edge in2 occurs between two of the alcoves of $f(v1,pr )
. Using these facts, one can

show that choice edges in 2 correspond to hyperplanes in AM that pass between
two alcoves of $f(v1,pr )

and that also pass between two alcoves of $v1 .

Given a non-backtracking path F in T from the root node to a leaf, we need
to produce some gallery 7 such that (a) y$v1 = 7 for some y ∈ SL3(L) with
yQ1 = Q2 for some Q2 ∈ Q2 and (b) ρCM (y

−1(7 ∪7c ∪ σ(7))) gives the com-
prehensive folding result determined by F. Here7c is a minimal gallery fromQ2

to σ(Q2) that has the same type as $c(v1,pr )
, and ρCM is the retraction ontoAM cen-

tered at CM.
Note first that F determines the relative position of any two alcoves in 7̄ =

7 ∪ 7c ∪ σ(7). In our SL3 case, F is just an indication of the choice edge at
which to make the easy choice, if any (since there is at most one easy choice). We
will construct 7 starting from 7n, the alcove that contains v2. We choose 7n =
Q2. The dimension of the set of choices for this construction is l($c(v1,pr )

) − 1,
since the structure of (non-affine) Deligne–Lusztig varieties is known [3]. We as-
sume by induction that we have constructed 7i,7i+1, . . . ,7n (and therefore also
σ(7n), σ(7n+1), . . . , σ(7i)) such that the relative position of any two of these
2(n − i + 1) alcoves is that given by F and such that the dimension of the space
of possible such constructions is l($c(v1,pr )

)+ (n− i)− 1 − n(F,i), where n(F,i) is
defined as follows. Each choice edge e in 2 has two corresponding integers 1 ≤
β1,β2 ≤ n−1 such that the hyperplane he corresponding to e passes between the
(β1)th and (β1 + 1)th alcoves of $v1 (where the first alcove of $v1 is considered
to be CM) and between the (β2)th and (β2 + 1)th alcoves of $f(v1,pr )

(where the
nth alcove of $f(v1,pr )

is considered to be the one containing v1). We define n(F,i)
to be the number of choice edges e such that i ≤ β1,β2 and such that F indicates
a hard choice at e. Note that

l($c(v1,pr )
)+ (n− i)− 1 − n(F,i)

=
{
l($v1)+ l($c(v1,pr )

)− nF − 2 if i = 1,

l($c(vi,pr ))− 1 if i = n. (∗)
We now want to find 7i−1 such that the relative positions of any two of the

alcoves 7i−1, . . . ,7n, σ(7n), . . . , σ(7i−1) is that specified by F. We seek the di-
mension of the set of such 7i−1. Let A be some apartment containing 7i and
σ(7i), and let S ⊂ A be the intersection of all apartments that contain 7i and
σ(7i). Let di−1 be the edge of 7i to which 7i−1 must be attached (this is speci-
fied by the requirement that 7̄ and2 be of the same type). Let 7̃i−1 be the alcove
in A obtained by reflecting 7i about di−1, and let ˜σ(7i−1) be the alcove in A ob-
tained by reflecting σ(7i) about σ(di−1). One can see by considering each of the
cases pictured in Figure 2 that either exactly one of 7̃i−1 and ˜σ(7i−1) is in S or
neither is in S. Note that the former occurs if and only if i − 1 = min(β1,β2) for
β1,β2 the two integers corresponding to some choice edge in F.

Let Si−1 be the intersection of all apartments containing S ∪ 7̃i−1, and let S σi−1

be the intersection of all apartments containing S ∪ ˜σ(7i−1). One can see by
considering the cases in Figure 2 that, if neither 7̃i−1 nor ˜σ(7i−1) is in S, then

7̃i−1 is not in S σi−1 and ˜σ(7i−1) is not in Si−1. Therefore, in this case we can
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choose any 7i−1 adjacent to 7i by di−1. This in turn determines σ(7i−1) ad-
jacent to σ(7i) by σ(di−1), and in such a way that the desired relative posi-
tions of all pairs of 7i−1, . . . ,7n, σ(7n), . . . , σ(7i−1) occur. There is one di-
mension worth of these choices, so the dimension of the construction down to
i − 1 is l($c(v1,pr )

) + (n − i) − 1 − n(F,i) + 1. In this case n(F,i−1) = n(F,i), so
l($c(v1,pr )

)+ (n− i)− 1 − n(F,i) + 1 = l($c(v1,pr )
)+ (n− (i − 1))− 1 − n(F,i−1).

We now consider the case in which exactly one of 7̃i−1 and ˜σ(7i−1) is in S.
We assume that 7̃i−1 is in S; the other case is similar. This means that i − 1 =
min(β1,β2) for β1,β2 the two integers corresponding to some choice edge e. If
F dictates a hard choice at this point, then to ensure the proper relative position of
7i−1, . . . ,7n, σ(7n), . . . , σ(7i−1) we must choose 7i−1 ⊂ S. There is only one
such choice, causing no increase in the dimension of the construction. If F dic-
tates an easy choice, we may choose any7i−1 not inA but attached to7i via di−1.

There is one dimension worth of such choices, increasing dimension by one. In
the former case, n(F,i−1) = n(F,i) +1; in the latter, n(F,i+1) = n(F,i). In both cases,
the dimension of the new structure is l($c(v1,pr )

)+ (n− (i−1))−1−n(F,i−1). This
finishes the proof of the proposition.

The result of all this is that we can calculate the values of inv(D, σ(D)) for D
in the (v1, v2,pr)-superpiece, and for each w̃ in this set we can calculate the di-
mension of the (v1, v2,pr)-piece ofXw̃(σ). This can all be done through straight-
forward computation of comprehensive folding results and cf-dimensions. For
instance, using v1 and pr leading to the $̄(v1,pr ) pictured in Figure 3, we derive the
results pictured in Figure 4. The numbers in Figure 4 are the dimensions of the
(v1, v2,pr)-pieces of the Xw̃(σ), with w̃ corresponding to the alcoves on which

CM

Figure 3 An example of $̄(v1,pr )

CM

7

8

9

Figure 4 Comprehensive folding results and cf-dimensions
from the example in Figure 3
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Figure 5 Main result in diagram form for SL3

the numbers are written. Alcoves with no numbers have empty (v1, v2,pr)-pieces.
We did an analogous computation for every v1 in the region shown in Figure 1 and
for every pr for which the corresponding w ∈ W has l(w) ≥ 2. We rotated all
results about the center of CM by 120◦ and 240◦, combining these with the unro-
tated results. For any alcove that contained more than one number at that point, we
took the maximum (although in all cases for which two numbers occurred in the
same alcove, these numbers turned out to be equal). The outcome of this process
is Figure 5, which shows the Xw̃(σ) that are non-empty (those corresponding to
alcoves that have numbers in them) as well as the dimensions of those non-empty
Xw̃(σ). The bold lines in that figure correspond to the shrunken Weyl chambers
(to be discussed in Section 6).

Something observed in the course of the computation is that two different num-
bers never occurred in the same alcove. This means that, for any fixed w̃, the
non-empty pieces of Xw̃(σ) all have the same dimension. As we will see in the
next section, this may be related to the fact that all vertices in the building for SL3

are special.

4. Sp4

For Sp4, it suffices to consider v1 in the region pictured in Figure 6. All other v1

can be obtained from these by reflecting about the line of symmetry of CM. Once
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CM

Figure 6 The region containing all vertices v1

that must be considered for Sp4

results are obtained for v1 in the region specified, we will have to reflect the re-
sults across the line of symmetry of CM as well. Note that v1 can be special or
non-special for Sp4, whereas only the special case was possible for SL3.

Given the restriction that pr be such that Q2 ∩ B1 = {v2}, it follows that Q2

and σ(Q2)must share exactly one vertex. Therefore, pr corresponds to some ele-
ment of W of length 2, 3, or 4 for v1 special and to some element of length 2 for
v1 non-special.

The galleries $̄(v1,pr ) have the general shapes pictured in Figure 7 for the case
in which v1 is non-special. For clarity, only two of the galleries appearing in Fig-
ure 7 have all of their parts labeled. Figure 8 contains general shapes of the $v1

for v1 special. The twenty different general shapes of the $̄(v1,pr ) can be deduced
from these four possible $v1 by determining $f(v1,pr )

and $c(v1,pr )
from each $v1 us-

ing each of the five possible pr.

$v1

$
f

(v1,pr )

$c
(v1,pr )

CM

Q1

v1

· · ·

···
···

· · ·

$v1

$
f

(v1,pr )

CM

Q1

v1

· · ·

···
···

· · ·
CM

· · ·
· · · · · · · · ·

CM· · · · · · · · · · · ·

Figure 7 General shapes of the $̄(v1,pr ) for Sp4, non-special v1
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CM

v1

· · ·

···

CM

v1

· · ·

···
CM

v1· · ·
· · ·

CM

v1· · ·
· · ·

Figure 8 General shapes of the $v1 for Sp4, special v1

The set of comprehensive folding results of2 = $̄(v1,pr ) contains the set of pos-
sible inv(D, σ(D)) for D in the (v1, v2,pr)-superpiece.

Proposition 4.1. The set of comprehensive folding results of 2 coincides with
the set of inv(D, σ(D)) for D in the (v1, v2,pr)-superpiece. The cf-dimension of
a leaf, F, of the tree T of 2 is equal to the dimension of the (v1, v2,pr)-piece of
Xw̃(σ), where w̃CM is the comprehensive folding result of 2 corresponding to F.

Proof. We first note that F can contain at most two easy choices. In fact, the
maximum number of easy choices that F can contain is −m+ 4, where m is the
length of pr inW. This result is obtained by considering cases. For SL3, the max-
imum number of easy choices is −m + 3. As in the SL3 case, for Sp4 we have
that $v1 ∪ $c(v1,pr )

is minimal.

Definition 4.1. A non-primal choice edge is a non-leaf node in T that occurs
below some easy choice in T (i.e., the non-backtracking path from the root node to
the node in question passes through an edge in T corresponding to an easy choice).

Definition 4.2. A primal choice edge is any choice edge that is not non-primal.

All choice edges for SL3 are primal. For SL3 and Sp4, all primal choice edges in
2 = $̄(v1,pr ) correspond to hyperplanes in AM that pass between two alcoves of
$
f

(v1,pr )
and that also pass between two alcoves of $v1 .

Given a primal choice edge in F, we define the two corresponding integers 1 ≤
β1,β2 ≤ n − 1 as in the SL3 case. We will also define 1 ≤ β1,β2 ≤ n − 1 for a
non-primal choice edge e, but in a slightly different way. Since e is non-primal,
there is some choice edge d above e in F at which F makes the easy choice. Let
hd be the hyperplane in AM determined by the edge d in 2 (so hd is a hyperplane
separating two alcoves of $f(v1,pr )

and also two alcoves of $v1). Let fhd be the flip
in AM about hd. Consider the gallery in AM obtained by applying fhd to the al-
coves in 2 that occur after d (here CM is considered to be the first alcove of 2).
Let ẽ = fhd (e), and let hẽ be the hyperplane in AM determined by ẽ. Let β2 be
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such that he passes between the (β2)th and (β2 +1)th alcoves of $f(v1,pr )
(here the

nth alcove of $f(v1,pr )
is considered to be the one containing v1). If hẽ passes be-

tween two alcoves of $v1 , then let β1 be such that hẽ passes between the (β1)th
and (β1 +1)th alcoves of $v1 (here CM is considered to be the first alcove of $v1).

Otherwise let β1 = n.
Now, given a non-backtracking path F from the root node of T to a leaf, we

want to produce a gallery 7 such that (a) y$v1 = 7 for some y ∈ Sp4(L) with
yQ1 = Q2 for some Q2 ∈ Q2 and (b) ρCM (y

−1(7 ∪7c ∪ σ(7))) gives the com-
prehensive folding result determined byF. Here, as before,7c is a minimal gallery
fromQ2 to σ(Q2) that has the same type as $c(v1,pr )

.

We choose7n = Q2. The dimension of the set of such choices is l($c(v1,pr )
)−1

[3]. We assume by induction that we have constructed7i, . . . ,7n and σ(7n), . . . ,
σ(7i) such that the relative position of any two of these alcoves is that given
by F and such that the dimension of the space of choices for this construction
is l($c(v1,pr )

)+ (n− i)− 1 − n(F,i), where n(F,i) is defined to be the number of
choice edges e in F such that i ≤ β1,β2 and such that F indicates a hard choice at
e. Here β1,β2 are the integers corresponding to e, defined in the new way. Equa-
tion (∗) of Section 3 holds under the new definitions as well.

We now want to construct 7i−1. As for SL3, we let A be some apartment con-
taining7i and σ(7i). Let S ⊂ A be the intersection of all apartments that contain
both 7i and σ(7i). Let di−1 be the edge of 7i to which 7i−1 must be attached.
Let 7̃i−1 be the alcove in A obtained by reflecting7i about di−1, and let ˜σ(7i−1)

be the alcove in A obtained by reflecting σ(7i) about σ(di−1). Let Si−1 be the in-
tersection of all apartments containing S ∪ 7̃i−1 and let S σi−1 be the intersection of

all apartments containing S ∪ ˜σ(7i−1).

One can see by considering cases that either

(1) 7̃i−1, ˜σ(7i−1) �⊂ S, 7̃i−1 �⊂ S σi−1, and ˜σ(7i−1) �⊂ Si−1, or
(2) 7̃i−1, ˜σ(7i−1) �⊂ S, 7̃i−1 ⊂ S σi−1, and ˜σ(7i−1) ⊂ Si−1, or
(3) 7̃i−1 ⊂ S and ˜σ(7i−1) �⊂ S, or
(4) 7̃i−1 �⊂ S and ˜σ(7i−1) ⊂ S.
One can also see by considering cases that i−1 = min(β1,β2) (for β1,β2 the two
integers associated to some choice edge e) if and only if we are in case (2), (3), or
(4). In contrast to the SL3 case, it is possible for neither 7̃i−1 nor ˜σ(7i−1) to be
in S while still 7̃i−1 ⊂ S σi−1 and ˜σ(7i−1) ⊂ Si−1. To see this, consider the case in
which pr corresponds to an element ofW of length 3 (pictured in Figure 9). This
is the only situation in which case (2) arises.

In case (1) we can choose 7i−1 to be any alcove adjacent to 7i by di−1. In this
case, the dimension of the space of choices for the construction increases by one
and is therefore equal to l($c(v1,pr )

) + (n − (i − 1)) − 1 − n(F,i). We also have
n(F,i) = n(F,i−1).

Cases (3) and (4) occur only whenpr corresponds to an element ofW of length 2.
We address case (3); the other case is similar. We know i − 1 = min(β1,β2) for
β1 and β2 the two integers corresponding to some choice edge e. If F dictates a
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7i σ(7i)

· · ·

· · · · · ·

· · ·

v2

Figure 9 7i, . . . ,7n, σ(7n), . . . , σ(7i)

hard choice at e, we choose 7i−1 in S. In this case there is no increase in the di-
mension of the space of choices of the construction and, since n(F,i−1) = n(F,i)+1,
the dimension of the new space of choices is l($c(v1,pr )

) + (n − i) − 1 − n(F,i) =
l($c(v1,pr )

) + (n − (i − 1)) − 1 − n(F,i−1). If F dictates an easy choice at e, we
choose 7i−1 to be any alcove attached to 7i at di−1 but not in S. There is one di-
mension worth of such choices, so the dimension of the space of choices of the
construction increases by one. We have n(F,i−1) = n(F,i), so the new dimension is
l($c(v1,pr )

)+ (n− i)− 1 − n(F,i) + 1 = l($c(v1,pr )
)+ (n− (i − 1))− 1 − n(F,i−1).

We now consider case (2), which occurs only whenpr corresponds to an element
of W of length 3. The construction 7i, . . . ,7n, σ(7n), . . . , σ(7i) is contained in
an apartment and has the general shape pictured in Figure 9. The dashed lines in this
figure represent the boundary of S. Any choice of 7i−1 determines a g(7i−1) at-
tached to σ(7i) via σ(di−1), just by taking the alcove adjacent to σ(7i) via σ(di−1)

in the intersection of all apartments containing 7i−1 and S. By Lemma 4.2, the
number of choices of7i−1 with g(7i−1) = σ(7i−1) is non-zero and finite. So ifF
requires a hard choice, take7i−1 with g(7i−1) = σ(7i−1). Then dimension does
not increase and is therefore equal to l($c(v1,pr )

) + (n − i) − 1 − n(F,i), which is
l($c(v1,pr )

)+ (n− (i−1))−1−n(F,i−1) because n(F,i−1) = n(F,i)+1. If F requires
an easy choice, take7i−1 with g(7i−1) �= σ(7i−1). Then dimension increases by
one and is thus

l($c(v1,pr )
)+ (n− i)− 1 − n(F,i) + 1

= l($c(v1,pr )
)+ (n− (i − 1))− 1 − n(F,i−1),

since n(F,i−1) = n(F,i). This concludes the proof of Proposition 4.1.

Lemma 4.2. The number of choices of 7i−1 (in the preceding paragraph) with
g(7i−1) = σ(7i−1) is non-zero and finite.

Proof. We can identify the set {7i−1} with A1 over F̄q , where Fq is the residue
field of F. We can identify the set {σ(7i−1)} with the set {7i−1} (and therefore
with A1) using g. Hence the map σ : {7i−1} → {σ(7i−1)} given by the action of
σ on B∞ gives a map ψ : A1 → A1. But σ also acts on A1(F̄q) as the (algebraic)
Frobenius, and one can show that if ϕ : A1 → A1 is defined by ψ = ϕ � σ then ϕ
is an algebraic isomorphism of A1. Thus, ϕ(x) = ax + b with a �= 0. The fixed
points of ψ correspond to x ∈ A1 such that aσ(x) + b = x, which has exactly q
solutions since σ(x) = xq.
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Figure 10 Main result in diagram form for Sp4

So now we can compute the emptiness/non-emptiness as well as the dimension
of the (v1, v2,pr)-piece of Xw̃(σ) for each w̃ by doing straightforward computa-
tions with cf-dimension. We did this for all v1 and reflected the results across the
line of symmetry of CM, taking maxima whenever two numbers appeared in the
same alcove. The results of this process can be seen in Figure 10.

In the course of the computation we observed that, if the (v1, v2,pr)-piece
of Xw̃(σ) and the (v ′

1, v
′
2,p

′
r )-piece of Xw̃(σ) had different dimensions, then ex-

actly one of v1, v ′
1 was non-special and the corresponding piece had the smaller

dimension.

5. Application to dim(XK
w̃(σ))

Let w̃ ∈W̃ and let µ be a dominant cocharacter. Let π be the uniformizer in F.
The map p : G(L)/I → G(L)/K gives a map XI

w̃
(bσ) → XKµ(π)(bσ) whenever

Iw̃I ⊂ Kµ(π)K. The non-empty fibers of the map p are always K/I, which has
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dimension equal to the length δ of the longest element of the finite Weyl groupW.
Moreover, any point in XKµ(π)(bσ) is hit by a point in XI

w̃
(bσ) for some w̃ with

Iw̃I ⊂Kµ(π)K. If Sµ(π) ⊂ W̃ is defined so that
∐
w̃∈Sµ(π) Iw̃I =Kµ(π)K, then

dim(XKµ(π)(bσ)) = maxw̃∈Sµ(π) (dim(XI
w̃
(bσ))) − δ because p−1(XKµ(π)(bσ)) =⋃

w̃∈Sµ(π) X
I
w̃
(bσ). We applied this formula to G = SL2, SL3, and Sp4 (all with

b = 1) and found that dim(XKµ(π)(σ)) = 〈µ, ρ〉, where ρ is half the sum of the
positive roots of G. This result supports Rapoport’s Conjecture 5.10 in [13].

6. A Partial Formula for dim(XI
w̃
(σ)) for

SL2, SL3, and Sp4

Suppose that G is a simply connected group and that w̃ ∈ W̃. Let w̃ = tw, where
w ∈W and t acts onAM by translation. Let η2(w̃) = α ∈W, where w̃CM is in the
same Weyl chamber as αCM. Let η1 : W̃ → W be the quotient map by the sub-
group of translations. Let S be the set of simple reflections in W, and let WT be
the subgroup ofW generated by T ⊂ S.

Let h1, . . . ,hn+1 be the hyperplanes inAM that contain one of the codimension-1
sub-simplices of CM. Here n is the rank of G. Let h(j)i be the hyperplanes in AM
parallel to hi, with h(0)i = hi. Choose h(1)i to be as close as possible to hi but on the
other side of CM. We define the union of shrunken Weyl chambers to be the set of
all alcoves that are not between h(0)i and h(1)i for any i.

If w̃CM is in the union of shrunken Weyl chambers and ifG = SL2, SL3, or Sp4,
thenXw̃(σ) is non-empty if and only if η2(w̃)

−1η1(w̃)η2(w̃)∈W
∖⋃

T⊂S WT, and
in this case

dim(Xw̃(σ)) = lW̃ (w̃)+ lW (η2(w̃)
−1η1(w̃)η2(w̃))

2
.

Here lW is length inW and lW̃ is length in W̃, as Coxeter groups.
One can examine Figures 5 and 10 to see that the stated equality holds for SL3

and Sp4. It also holds for SL2. Note, though, that the new formula says nothing
about the dimension or emptiness/non-emptiness ofXw̃(σ) for w̃ not in the union
of the shrunken Weyl chambers. Figures 5 and 10 give this information for SL3

and Sp4. The complement of the union of the shrunken Weyl chambers for SL2 is
just CM, an easy special case.

The displayed equality might not hold for SL 4. One problem is that, for SL2,
SL3, and Sp4, there are other ways to specify the set W

∖⋃
T⊂S WT . In partic-

ular, W
∖⋃

T⊂S WT = {w ∈ W : lW (w) ≥ rank(G)} for these groups, and the
SL 4 analogues of these two sets are not the same. We think the first formulation
is more likely to be appropriate for a general statement.

The referee pointed out that, for SL3 (although not for Sp4), dim(Xw̃(σ)) =
�lW̃ (w̃)/2� + 1 for any alcove w̃CM for which Xw̃(σ) is non-empty and whose
intersection with CM has codimension > 1. Hence, for these alcoves, dimension
depends only on the length of w̃. The same formula does not hold for SL2, but
dimension depends only on length of w̃ in that case as well.
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7. Related Results

Some of the emptiness/non-emptiness results of this paper were also obtained
using other methods in the author’s Ph.D. thesis [14]. These other methods are
more computationally intensive and do not provide dimension information, but
they do extend (to some extent) to b �= 1. Some of the results from [14] can be
combined to suggest Conjecture 7.1.

We restrictG to be one of the groups SL2, SL3, or Sp4. LetD be a Weyl cham-
ber in AM, and let D ′ be the intersection of D with the union of shrunken Weyl
chambers. Then we call D ′ a shrunken Weyl chamber. Let b be a representative
of a σ -conjugacy class that meets the main torus ofG. We can choose b so that it
acts onAM by translation and such that bCM is in the main Weyl chamber. We de-
fine the b-shifted shrunken Weyl chamber associated to D to be wbw−1D ′, where
w ∈W is the Weyl group element corresponding to the Weyl chamber D.

Conjecture 7.1. Let b and G be restricted as just described, and let w̃CM be
in the union of the b-shifted shrunken Weyl chambers. Then Xw̃(bσ) is non-empty
if and only if η2(w̃)

−1η1(w̃)η2(w̃)∈W
∖⋃

T⊂S WT .

This conjecture is shown to hold true in [14] for several values of b. Information
about w̃ that is not in the b-shifted shrunken Weyl chambers is also given in [14]
for the same b-values, but we have been unable to describe these results with a
formula.
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