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1. Introduction

We consider the following nonlinear parabolic problem,

ut − �u = F(u,�u), x ∈�, t > 0 (1.1)

u(t, x) = 0, x ∈ ∂�, (1.2)

u(0, x) = u0(x), x ∈�, (1.3)

where � is a bounded (or unbounded) and sufficiently regular (say, uniformly
regular of class C2) open domain in R

N, F ∈ C1(R × R
N), and u0 satisfies the

compatibility condition (i.e., u0(x) = 0 on ∂�). It is well known that the problem
(1.1)–(1.3) admits a unique classical solution u, of maximal existence time T ∗ ∈
(0, ∞], when � is a bounded domain and u0(x) ∈ C1(�̄) [14, Thm. 10, p. 206].
Moreover, if T ∗ < ∞, then u blows up in finite time in C1 norm; that is,

lim sup
t→T ∗

sup
x∈�̄

|u(x, t)| + |�u(x, t)| = +∞.

It is also known that if F(u,�u) = b|�u|p + auq (p > 1, q > 1, and a, b ∈ R)

then (1.1)–(1.3) admits a unique, maximal-in-time solution u ∈ C([0, T ∗);
W 1,s

0 (�)) for all sufficiently regular initial data. For example, u0 ∈ W 1,s
0 (�)

with s ≥ N max(p, q) when � is an unbounded domain. Moreover, if T ∗ < ∞
then lim t→T ∗‖u(t)‖W 1,∞

0 (�) = ∞.

The foregoing two regularity assumptions on u0 will be maintained throughout
the paper.

The equation

ut − �u = |�u|p, t > 0, x ∈�, p > 1, (1.4)

serves as a typical model case in the theory of parabolic partial differential equa-
tions. In fact, it is the simplest example of parabolic PDE with a nonlinearity
depending on the first-order spatial derivatives of u, and it can be considered
as an analogue of the extensively studied equation with zero-order nonlinearity,
ut − �u = u|u|p−1. This equation was studied by many authors in the past few
years [3; 4; 5; 6; 7; 8; 16; 17; 21; 22; 29].
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Assume that the initial data is given by u0 = λψ , where ψ �≡ 0 is a positive
function on �. The authors in [1] and [29] proved that the problem (1.2)–(1.4) for
p > 2 cannot admit a global solution whenever λ is sufficiently large and � is a
bounded domain.

The first aim of the present paper is the study of the problem (1.2)–(1.4) for un-
bounded domains. In fact, for p > 2 and u0 = λψ (ψ �≡ 0 with λ sufficiently
large), we shall prove that the finite-time blow-up occurs whenever Poincaré’s in-
equality is valid in W 1,1

0 (�); that is:

‖v‖L1(�) ≤ C(�)‖�v‖L1(�) ∀v ∈W 1,1
0 (�),

and there exist some positive functions φ ∈ W 1,∞
0 (�) such that, for δ = 1

p−1 and
δ = 1

pN
, ∫

�

1

φ(x)δ
dx < ∞.

Remark 1.1. Here we should mention that the foregoing conditions hold for
every bounded domain. In fact, if φ is the first eigenfunction of the −� operator
in H1

0(�), then φ ∈W 2,2(�)∩W 1,∞
0 (�) and we can choose φ such that φ > 0 in

�. Furthermore, the author in [29, Lemma 5.1] proved that∫
�

φ−α(x) dx = C(α,�) < ∞ ∀α ∈ (0,1).

Moreover, these conditions may hold for some unbounded domains. For example,
if we take

� = {(x, y) | |x| ≤ 1, |y| ≤ 3x4 − 8x 2 + 6} ∪ {(x, y) | |x| ≥ 1, |y| ≤ 1/x4}
⊆ R

2,

and choose

φ(x, y) =
{

(1/x4 − |y|)e(1/x4−|y|), |x| ≥ 1,

3x4 − 8x 2 + 6 − |y|, |x| ≤ 1,

whenever p = 3, then the conditions hold for this unbounded domain.

In the case of F(u,�u) = b|�u|p + auq (q > 1, p > 1), several authors have
studied the existence of nonglobal positive solutions and blow-up under certain
assumptions on p, q, N, a, b, and � (see e.g. [2; 10; 11; 12; 13; 17; 18; 23; 24; 25;
26; 27; 28; 31]). The author in [29] and [28] recently introduced some open prob-
lems about boundedness of global solutions and blow-up in finite time for these
types of equations. The second aim of this article is to consider these problems.
In fact, we prove the following statements.

(i) If a > 0 and b > 0, we show that blow-up in finite time occurs for large
values of initial data in every regular domain in R

N.

(ii) If b > 0, a < 0, |a| � 1, and � = (−1,1) is an interval in R
1, we show that

either blow-up occurs or global solutions are unbounded for large values of
initial data.
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(iii) If a > 0, b < 0, and � is bounded, we show that the solutions decay expo-
nentially whenever the initial data is small.

In Section 2 we establish the blow-up for the equation ut − �u = F(�u). In
Section 3, we study blow-up in finite time and global solutions for the equation
ut − �u = b|�u|p + auq.

2. Blow-up for the Equation ut − �u = F(�u)

In this section we consider the problem

ut − �u = F(�u), x ∈�, t > 0,

(x, 0) = u0(x), x ∈�, (2.5)

u(x, t) = 0, x ∈ ∂�, t > 0,

where� is a (possibly unbounded) domain in R
N. At first we assume thatF(�u) =

|�u|p. In [29] it was shown that the nonnegative solutions of (1.2)–(1.4) for p >

2, blow up in finite time for large values of initial data whenever � is a bounded
domain in R

N. We recall this theorem here.

Theorem 2.1. Let � be a bounded domain with smooth boundary (say C2) and
let ϕ1 > 0 be the first eigenfunction of the −� in H1

0(�). Assume that p > 2 and
consider the problem (1.2)–(1.4). There exists K0 = K0(�,p) > 0 such that, if∫
�
u0(x)ϕ1(x) dx > K0, then gradient blow-up occurs.

We now extend this theorem for regular domains that are possibly unbounded.

Theorem 2.2. Let � be a uniformly regular domain of class C2 in R
N with p >

2 and u0 = λψ (ψ �≡ 0, ψ ≥ 0), and consider the problem (1.2)–(1.4). Assume
that Poincaré’s inequality holds in W 1,1

0 (�) and there exists some positive func-
tion φ ∈W 1,∞

0 (�) such that
∫
�
(1/φ(x)δ) dx < ∞ for δ = 1

p−1 and δ = 1
pN

. Then
there exists a K = K(�,p,φ) such that, if λ > K, blow-up occurs.

Notice that these conditions on � hold for every bounded domain and may also
hold for some unbounded domain (see Remark 1.1).

For the proof of Theorem 2.2 we need the following lemma.

Lemma 2.3. Let the conditions of Theorem 2.2 hold. Then:

(i) u(t)∈W 1,r
0 (�) for all r ≥ 1;

(ii) there exists a constant C = C(�,φ,p) such that(∫
�

uφ dx

)p

≤ C

∫
�

|�u|pφ dx.

Proof. (i) Since u(t)∈W 1,r
0 (�) for r > pN [30, Props. A3 & A4], it is sufficient

to show that u(t)∈W 1,r
0 (�) for 1 ≤ r ≤ pN. By Hölder’s inequality we have
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∫
�

u dx =
∫
�

uφ1/sφ−1/s dx ≤
(∫

�

usφ dx

)1/s(∫
�

φ−s ′/s dx

)1/s ′

,

where 1/s +1/s ′ = 1. On the other hand, if s = pN +1 then u∈W 1,s
0 (�); more-

over, φ ∈ W 1,∞
0 (�) and

∫
�
φ−s ′/s dx < ∞, so

∫
�
u dx < ∞. Consequently, u ∈

L1(�) ∩ LpN+1(�). Hence u ∈ Lr(�) for 1 ≤ r ≤ pN. By using a similar argu-
ment, we can show that |�u| ∈Lr(�) for 1 ≤ r ≤ pN. Therefore, u(t)∈W 1,r

0 (�)

for 1 ≤ r ≤ pN.

(ii) First of all, notice that∫
�

|�u| dx =
∫
�

|�u|φ1/pφ−1/p dx ≤
(∫

|�u|pφ dx

)1/p(∫
�

φ−p ′/p dx

)1/p ′

≤ C1

(∫
|�u|pφ dx

)1/p

,

where p ′ is the conjugate of p and C1 = C1(�,φ,p). By using Poincaré’s in-
equality in W 1,1

0 (�), we have∫
�

uφ dx ≤ ‖φ‖∞
∫
�

u dx ≤ ‖φ‖∞
∫
�

|�u| dx

≤ ‖φ‖∞C1

(∫
�

|�u|pφ dx

)1/p

.

Hence (∫
�

uφ dx

)p

≤ C

∫
�

|�u|pφ dx,

where C = C(�,φ,p).

Now, we can prove Theorem 2.2.

Proof of Theorem 2.2. Let us first assume that u0 ∈ C 3
c (�). By Propositions

A3 and A4 in [30], it follows that for every finite r ≥ pN we must have u ∈
C1([0, T ∗),Lr(�)) and u(t)∈W 1,r

0 (�) ∩ W 2,r(�) for all t ∈ [0, T ∗).
Let Z(t) = ∫

�
u(t, x)φ(x) dx and T1 = min(1, T ∗/2). Using integration by

parts, we obtain

Z ′(t) +
∫
�

�u.�φ dx =
∫
�

|�u|pφ dx, t ∈ (0, T1). (2.6)

By considering Hölder’s inequality and Young’s inequality for the second term on
the left-hand side, we can write∫

�

�u.�φ dx

≤
∫
�

|�u|φ1/p|�φ|φ−1/p dx

≤
(∫

�

|�u|pφ dx

)1/p(∫
�

|�φ|p ′
φ−p ′/p dx

)1/p ′

(Hölder’s inequality)

≤ 1

2

∫
�

|�u|pφ dx + C1

∫
�

|�φ|p ′
φ−p ′/p dx (Young’s inequality). (2.7)
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Let M = C1
∫
�
|�φ|p ′

φ−p ′/p dx. Then (2.6) and (2.7) imply that

Z ′(t) ≥ 1

2

∫
|�u|pφ dx − M, t ∈ (0, T1). (2.8)

On the other hand, from Lemma 2.3(ii) we have∫
�

|�u|pφ dx ≥ C2

(∫
uφ dx

)p

(2.9)

for some positive constant C2. From (2.8) and (2.9) we obtain

Z ′(t) ≥ C3Z(t)p − M, t ∈ (0, T1), (2.10)

for some positive constant C3. Now if Z(0) ≥ M + (2M/C3)
1/p, then it follows

from (2.10) that M ≤ (C3/2)Z(t)p for every t ∈ (0, T1). Therefore,

Z ′(t) ≥ C3

2
Z(t)p, t ∈ (0, T1),

so

Z(t) ≥
[
(1 − p)

C3

2
t + Z(0)1−p

]1/(1−p)

, t ∈ [0, T1). (2.11)

Consequently, the right-hand side of (2.11) becomes infinite for some finite val-
ues of t. By taking a larger value for Z(0) if necessary, we must have T1 < 1 and
hence T ∗ < 2. By using continuous dependence of the solutions to the initial data
in W 1,s

0 (�) [30, Prop. A1], we can show that this result is true for all large values of
the initial data u0 ∈W 1,r

0 (�), r ≥ pN. The proof of Theorem 2.2 is complete.

Here, we assume that the domain � has a finite Lebesgue measure. In this par-
ticular case it is possible to prove that, if p > 2 and ‖u0‖L2(p−1)/(p−2) (�) is large
enough, then blow-up occurs.

Theorem 2.4. Let � be a domain with finite Lebesgue measure and smooth
boundary (say C2), and let Poincaré’s inequality hold in W 1,p

0 (�). Assume that
p > 2 and consider the problem (1.2)–(1.4). Then there exists K = K(�,p) > 0
such that, if u0(x) ≥ 0 and

∫
�
u

2(p−1)/(p−2)
0 dx > K, then blow-up occurs.

Proof. Similar to the proof of Theorem 2.2, we assume u0 ∈C 3
c (�). Multiplying

equation (1.4) by up/(p−2) and integrating over � yields∫
�

utu
p/(p−2) dx +

∫
�

�u.�up/(p−2) dx =
∫

|�u|pup/(p−2) dx.

Thus

p − 2

2(p − 1)

d

dt

∫
�

u2(p−1)/(p−2) dx +
∫
�

|�u|2u2/(p−2) dx

=
∫

|�u|pup/(p−2) dx. (2.12)

For the second term on the left-hand side, we have
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|�u|2u2/(p−2) dx

≤
(∫

�

|�u|pup/(p−2) dx

)2/p

mes(�)(p−2)/p (Hölder’s inequality)

≤ 1

2

∫
�

|�u|pup/(p−2) dx + C1 mes(�) (Young’s inequality), (2.13)

where mes(�) denotes the Lebesgue measure of the domain �. Therefore, from
(2.12) and (2.13) we obtain

p − 2

2(p − 1)

d

dt

(∫
�

u2(p−1)/(p−2) dx

)
+ C1 mes(�) ≥ 1

2

∫
�

|�u|pup/(p−2). (2.14)

On the other hand, Poincaré’s inequality yields∫
�

|�u|pup/(p−2) dx =
∫
�

|�u(p−1)/(p−2)|p dx ≥ C2(�,p)
∫
�

up(p−1)/(p−2) dx.

But ∫
�

u2(p−1)/(p−2) dx ≤
(∫

�

up(p−1)/(p−2) dx

)2/p

mes(�)(p−2)/p.

Therefore, ∫
�

|�u|pup/(p−2) dx ≥ C3

(∫
�

u2(p−1)/(p−2) dx

)p/2

, (2.15)

whereC3 = C3(�,p) is a positive constant. By settingZ(t) = ∫
�
u2(p−1)/(p−2) dx,

from (2.14) and (2.15) we obtain

Z ′(t) + M ≥ C4Z(t)p/2, t ∈ (0, T ∗),

for some constants M and C4 = C4(�,p). Hence, for large values of Z(0), we
must have

Z ′(t) ≥ C5Z(t)p/2, t ∈ (0, T1),

where T1 = min(1, T ∗) and C5 = C5(�,p). Similar to the proof of Theorem 2.2,
it follows that T ∗ < 1 for all large values of initial data in W 1,r

0 (�), r ≥ pN.

In the previous theorems we showed that blow-up occurs for large values of initial
data. However, if we add some positive constant to the right-hand side of (1.4),
say,

ut − �u = |�u|p + λ, x ∈�, t > 0, (2.16)

then, by the following theorem, blow-up may occur for all u0 ≥ 0, u0 �≡ 0.

Theorem 2.5. Let � and φ be exactly the same as in Theorem 2.2 and let u be
the nonnegative classical solution of (2.16), (1.2)–(1.3). If u0 ≥ 0 (u0 �≡ 0), then
blow-up occurs for large values of λ.

Proof. Similar to the proof of Theorem 2.2, we arrive at

Z ′(t) ≥ C1Z(t)p + λ

∫
�

φ(x) dx − M, t ∈ (0, T ∗),
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where Z(t) = ∫
�
φ(x)u(t, x) dx and C1 is a positive constant. Therefore, if λ >

M/
( ∫

�
φ(x) dx

)
then

Z ′(t) ≥ C1Z(t)p, t ∈ (0, T ∗).

Now, since Z(0) > 0, Z becomes infinite at a finite time, which implies that T ∗ <

∞.

Remark 2.6. Notice that, when � is a bounded domain, each solution of the
problem (1.2)–(1.4) satisfies a maximum principle. Thus, the L∞(�) norm of the
solution remains finite as long as the solution exists. Since the solution blows up
in finite time for p > 2, it follows that some of its derivatives must be singular for
a finite time. Moreover, as noted by many authors, if F depends only on �u then
it follows (from the maximum principle) that the maximum values of |�u| must
be attained on the parabolic boundary. Therefore, in this problem we have

lim
t→T ∗ sup sup

x∈∂�

|�u(t, x)| = ∞.

Remark 2.7. All of the results of this section remain valid if u is a classical so-
lution of ut − �u = F(�u) and F(�u) ≥ b|�u|p for p > 2 and b > 0.

3. Blow-up and Global Solutions for the
Case F(u,�u) = b|�u|p + auq

In this section we consider the problem

ut − �u = b|�u|p + auq, x ∈�, t > 0,

u(x, 0) = u0(x), x ∈�, (3.17)

u(x, t) = 0, x ∈ ∂�, t > 0,

where p > 1, q > 1, a ∈ R, b ∈ R, and � is a regular (and possibly un-
bounded) domain in R

N. For this problem we show that, under some assumptions
on a, b,p, q,� and the initial data, the solutions can be global or blow up in finite
time. In order to start our work, we recall some results about the special cases of
this problem that have been considered before.

For the equation with zero-order nonlinearity,

ut − �u = uq, q > 1, (3.18)

it is well known that L∞ blow-up occurs for large (nonnegative) initial data if �
is bounded. It is therefore natural to ask what happens if the nonlinearity involves
both zero-order and first-order source terms, such as

ut − �u = |�u|p + uq, (3.19)

or if the zero-order term is an absorption term, such as

ut − �u = |�u|p − uq. (3.20)

More generally, one may consider the equation
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ut − �u = |�u|p + a(x)uq, x ∈�, t > 0, (3.21)

where a ∈Cα(�̄), 0 < α < 1.
The author in [29] provided answers to some of these questions for a bounded

domain by the following theorem.

Theorem 3.1. Assume that p > 2 and p > q ≥ 1. Let u ≥ 0 be the solution
of (3.21), (1.2)–(1.3) where u0 = λψ (ψ ≥ 0, ψ �≡ 0). Then there exists )0 =
)0(p, q, a,�,ψ) > 0 such that, for all λ ≥ )0, gradient blow-up occurs.

Moreover, it was shown in [29] that the conclusion of Theorem 3.1 remains valid
when q = p and ‖a‖∞ is sufficiently small (depending on p, �, and ψ).

In this section, we have the following results related to the problem (3.17).

(i) If a > 0 and b > 0, we show that blow-up occurs for large values of initial
data in every regular domain in R

N.

(ii) If b > 0, a < 0, |a| � 1, and � = (−1,1) is an interval in R
1, we show that

either blow-up occurs or global solutions are unbounded for large values of
initial data.

(iii) If a > 0, b < 0, and � is bounded, we show that the solutions decay expo-
nentially whenever the initial data is small.

Here is our first result.

Theorem 3.2. Let � be an open (bounded or unbounded) domain in R
N with

smooth boundary, and let a > 0, b > 0, and p, q > 1. If u is the nonnegative so-
lution of the problem (3.17) with u0 = λψ (ψ ≥ 0, ψ �≡ 0) then there exists a
)0 = )0(p, q, a, b,�,ψ) such that, for all λ ≥ )0, blow-up occurs.

Proof. Similar to the proof of Theorem 2.2, here we assume that u0 ∈C 3
c (�). Let

�0 ⊆ � be a bounded domain such that ψ �≡ 0 on �0, and let ϕ1 > 0 be the
first eigenfunction of the −� operator in H1

0(�0). Multiplying (3.17) by φ = ϕσ
1

(σ > p ′, 1/p + 1/p ′ = 1) and then integrating over �0 implies that∫
�0

utφ dx +
∫
�0

�u.�φ dx = b

∫
�0

|�u|pφ dx + a

∫
�0

uqφ dx. (3.22)

For the second term on the left-hand side, we have∫
�0

�u.�φ dx

≤
∫
�0

|�u|φ1/pφ−1/p|�φ| dx

≤
(∫

�0

|�u|pφ dx

)1/p(∫
�0

|�φ|p ′
φ−p ′/p dx

)1/p ′

(Hölder’s inequality)

≤ b

(∫
�0

|�u|pφ dx

)
+ C1

∫
�0

|�φ|p ′
φ−p ′/p dx. (Young’s inequality).

(3.23)
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Now, let Z(t) = ∫
�0

u(t, x)φ dx. From (3.22), (3.23), and Jenson’s inequality
we obtain

Z ′(t) + C1

∫
�0

|�φ|p ′
φ−p ′/p dx ≥ aZ(t)q. (3.24)

Since σ > p ′, we must have
∫
�0

|�φ|p ′
φ−p ′/p dx < ∞. Let

M = C1

∫
�0

|�φ|p ′
φ−p ′/p dx;

then (3.24) becomes
Z ′(t) + M ≥ aZ(t)q. (3.25)

Similar to the proof of Theorem 2.2, it follows that T ∗ < ∞ for all large val-
ues of initial data in W 1,r

0 (�), r ≥ N max(p, q). This completes the proof of
Theorem 3.2.

In the following theorem we obtain a more interesting result by taking � = R
N,

a > 0, and b > 0.

Theorem 3.3. Let � = R
N and a, b > 0. Let u ≥ 0 be a solution of the prob-

lem (3.17) with u0 ≥ 0 (u0 �≡ 0). If 1 < q < 1+2/N and 1 < p < 1+1/(N +1),
then u is nonglobal.

Proof. Suppose that T ∗ = ∞ and ζ ∈C∞
0 (R+ × R

N) is a function satisfying∫ ∞

0

∫
RN

|ζt |qζ−q ′/q dx dt < ∞,
∫ ∞

0

∫
RN

|�ζ |p ′
ζ−p ′/p dx dt < ∞, (3.26)

where 1/p +1/p ′ = 1/q +1/q ′ = 1. Multiplying (3.17) by ζ(t, x) and integrating
over Q = R

+ × R
N gives∫

Q

utζ dx dt +
∫
Q

�u.�ζ dx dt = b

∫
Q

|�u|pζ dx dt + a

∫
Q

uqζ dx dt. (3.27)

Integrating by parts yields

−
∫
Q

uζt dx dt +
∫
Q

�u.�ζ dx dt

= b

∫
Q

|�u|pζ dx dt + a

∫
Q

uqζ dx dt +
∫

RN

u0(x)ζ(x, 0) dx. (3.28)

For the first and second terms on the left-hand side of (3.28), we have

−
∫
Q

uζt dx dt

≤
∫
Q

u|ζt |ζ1/qζ−1/q dx dt

≤
(∫

Q

uqζ dx dt

)1/q(∫
Q

|ζt |q ′
ζ−q ′/q dx dt

)1/q ′

≤ a

2

∫
Q

uqζ dx dt + C1

∫
Q

|ζt |q ′
ζ−q ′/q dx dt (Young’s inequality) (3.29)
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and∫
Q

�u.�ζ dx dt

≤
∫
Q

|�u|ζ1/p|�ζ |ζ−1/p dx dt

≤
(∫

Q

|�u|pζ dx dt

)1/p(∫
Q

|�ζ |p ′
ζ−p ′/p dx dt

)1/p ′

≤ b

2

∫
Q

|�u|pζ dx dt + C2

∫
Q

|�ζ |p ′
ζ−p ′/p dx dt (Young’s inequality),

(3.30)

where C1 and C2 are positive constants. Therefore, by (3.28)–(3.30) and using the
fact that u0 ≥ 0, we obtain

b

2

∫
Q

|�u|pζ dx dt + a

2

∫
Q

uqζ dx dt

≤ C1

∫
Q

|ζt |q ′
ζ−q ′/q dx dt + C2

∫
Q

|�ζ |p ′
ζ−p ′p dx dt. (3.31)

Now, let φ ∈ C∞(R+) be a decreasing function with 0 ≤ φ ≤ 1, r|φ ′(r)| ≤ c

(c is a positive constant) for every r > 0, and

φ(r) =
{

1 for r ≤ 1,

0 for r ≥ 2.
(3.32)

Let

ζ(t, x) = φσ

(
t + |x|2

R2

)
, R > 0, σ � 1.

Using the change of variables τ = t/R2 and y = x/R, we obtain∫
Q

|ζt |q ′
ζ−q ′/q dx dt ≤ cRγ1,

∫
Q

|�ζ |p ′
ζ−p ′/p dx dt ≤ cRγ2 , (3.33)

where γ1 = −2q ′ + 2 + N and γ2 = −p ′ + 2 + N. On the other hand, we know
that 1 < q < 1 + 2/N and 1 < p < 1 + 1/(N + 1), so γ1 < 0 and γ2 < 0. Now,
if R → ∞ in (3.31), then from (3.32) and (3.33) we obtain

b

2

∫
Q

|�u|p dx dt + a

2

∫
Q

uq dx dt = 0. (3.34)

Thus u ≡ 0, which is a contradiction.

For the case b > 0 and a < 0 the following theorem shows that the global solu-
tions are unbounded whenever � is a bounded interval in R

1.

Theorem 3.4. Let � = (−1,1) be an interval in R
1. Let q = p, b = 1, and a <

0 with |a| small. If u ≥ 0 is the solution of the problem (3.17) with u0 = λψ (ψ ≥
0, ψ �≡ 0) and p > 2, then there exists a )0 = )0(p, a,�,ψ) > 0 such that, for
all λ ≥ )0, either blow-up occurs or T ∗ = ∞ and u is unbounded.
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Proof. Suppose that T ∗ = ∞ and u ≥ 0 is global and uniformly bounded. Let

ϕ(x) = √
1 − |x|. Multiplying (3.17) by ϕe−t and integrating over Q1 = R

+ ×�

yields∫
Q1

e−t|�u|pϕ dt dx + a

∫
Q1

e−tupϕ dt dx

=
∫
Q1

e−tut ϕ dt dx −
∫
Q1

e−t�(u)ϕ dt dx. (3.35)

For the second term on the right-hand side of (3.35), we have

−
∫
Q1

e−t(�u)ϕ dt dx =
∫
Q1

e−t(�u).(�ϕ) dt dx. (3.36)

Integrating by parts, for the first term on the right-hand side of (3.35) we obtain∫
Q1

e−tut ϕ dt dx =
∫
Q1

e−tuϕ dt dx −
∫
�

u0(x)ϕ(x) dx. (3.37)

Therefore, by (3.35)–(3.37) we have∫
Q1

e−t|�u|pϕ dt dx + a

∫
Q1

e−tupϕ dt dx

=
∫
Q1

e−tuϕ dt dx −
∫
�

u0(x)ϕ(x) dx +
∫
Q1

e−t(�u).(�ϕ) dt dx. (3.38)

On the other hand,∫
Q1

e−t(�u).(�ϕ) dt dx

≤
∫
Q1

|�u||�ϕ|ϕ1/pϕ−1/pe−t/pe−t/p ′
dt dx

≤
(∫

Q1

e−t|�u|pϕ dt dx

)1/p(∫
Q1

e−tϕ−p ′/p|�ϕ|p ′
dt dx

)1/p ′

(Hölder’s inequality)

≤ 1

2

∫
Q1

e−t|�u|pϕ dt dx

+ C

∫
Q1

e−tϕ−p ′/p|�ϕ|p ′
dt dx (Young’s inequality) (3.39)

and ∫
Q1

e−tuϕ dt dx

=
∫
Q1

uϕ1/p+1/p ′
e−t/p ′

e−t/p dt dx

≤
(∫

Q1

e−tupϕ dt dx

)1/p(∫
Q1

ϕe−t dt dx

)1/p ′

≤ |a|
2

∫
Q1

e−tupϕ dt dx + C(a) (Young’s inequality), (3.40)
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where C(a) is a positive constant. Hence, from (3.38)–(3.40) we get

1

2

∫
Q1

e−t|�u|pϕ dt dx + 3a

2

∫
Q1

e−tupϕ dt dx +
∫
�

u0(x)ϕ(x) dx

≤ C

∫
Q1

e−tϕ−p ′/p|�ϕ|p ′
dt dx + C(a). (3.41)

Thus, if ∫
�

u0(x)ϕ(x) dx ≥ C

∫
Q1

e−tϕ−p ′/p|�ϕ|p ′
dt dx + C(a)

then ∫
Q1

e−t|�u|pϕ dt dx ≤ 3|a|
∫
Q1

e−tupϕ dt dx. (3.42)

On the other hand, integrating by parts yields∫ 1

0
up(x, t)

√
1 − x dx

= −2p

3

∫ 1

0
up−1(x, t)

∂u

∂x
(x, t)(1 − x)3/2 dx − 2

3
up(0, t)

≤ 2p

3

∫ 1

0
up−1

(√
1 − x

)(p−1)/p|�u|(√1 − x
)1/p

dx − 2

3
up(0, t)

≤ 2p

3

(∫ 1

0
up

√
1 − x dx

)(p−1)/p(∫ 1

0
|�u|p√

1 − x dx

)1/p

− 2

3
up(0, t).

By using the same argument, we get∫ 0

−1
up(x, t)

√
1 + x dx

≤ 2p

3

(∫ 0

−1
up

√
1 + x dx

)(p−1)/p(∫ 0

−1
|�u|p√

1 + x dx

)1/p

+ 2

3
up(0, t).

From the foregoing inequalities we now obtain∫
�

upϕ dx ≤
(

4p

3

)p ∫
�

|�u|pϕ dx. (3.43)

Multiplying (3.43) by e−t and integrating over [0, ∞) with respect to t yields∫
Q1

e−tupϕ dt dx ≤
(

4p

3

)p ∫
Q1

e−t|�u|pϕ dt dx. (3.44)

Now, let |a| be small enough that 0 < 3|a|( 4p
3

)p
< 1

2 . Then from (3.42) and
(3.44) we have ∫

Q1

e−tupϕ dt dx ≤ 1

2

∫
Q1

e−tupϕ dt dx. (3.45)

On the other hand, u is uniformly bounded and so 0 ≤ ∫
Q1

e−tupϕ dt dx < ∞.

Therefore,
∫
Q1

e−tupϕ dt dx = 0, which implies that u ≡ 0 on � which is a con-

tradiction. This completes the proof.
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Remark 3.5. The conclusion of Theorem 3.4 remains valid if q > p and the
remaining conditions hold.

Now we consider the equation

ut − �u = −µ|�u|q + up, x ∈�, t > 0, (3.46)

where µ > 0 is a constant. In the following theorem we show that the solutions of
(3.46), (3.2)–(3.3), for small values of initial data, cannot blow up in finite time
whenever � is a bounded domain in R

N.

Theorem 3.6. Let � be a bounded domain. If u0 ≥ 0 and if u is the solution
of (3.46), (1.2)–(1.3), then there exists an ε > 0 such that, if |u0|C1(�̄) < ε, then
u is a global solution and decays exponentially.

Proof. Let �̄ be in BR = {x : |x| < R} for some R > 0. We denote by λ1 > 0
the lowest eigenvalue of −� in H1

0(BR) and by ϕ1 the associated eigenfunction
such that

0 < ϕ1 ≤ 1 on BR.

Now observe that, for the function W(x, t) = εe−λ1(t/2)ϕ1(x) with ε > 0 suffi-
ciently small, we have

Wt − �W − Wp + µ|�W |q = 1
2ελ1ϕ1(x)e

−λ1(t/2) − εpe−λ1(pt/2)ϕ1(x)
p

+ µ|�W |q ≥ 0, (x, t)∈� × (0, ∞).

Moreover for (x, t)∈ ∂� × (0, ∞) we have W > 0.
From [30, Lemma B1] it follows that, for u0 with

0 ≤ u0(x) ≤ ε min
�̄

ϕ1(x),

we must have
0 ≤ u(x, t) ≤ W(x, t) ≤ Ce−λ1(t/2),

where C is a positive constant. By Proposition 2.1 in [30], we must have u as a
global solution. This completes the proof.
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