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The Large-Scale Geometry of
Some Metabelian Groups
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1. Introduction

In this paper we consider quasi-isometries of the upper triangular subgroup �n of
PSL2(Z[1/n]). These groups arise in a geometric way because they are subgroups
of both PSL2(R) and PSL2(Qp) for all p dividing n. The group PSL2(Qp) acts
on its Bruhat–Tits building, a regular (p+1)-valent tree, and PSL2(R) acts on H2.

ThenG = PSL2(R)× ∏
pi |n PSL2(Qpi ) has an induced action on H2 × ∏k

i=1Ti,

where Ti is the Bruhat–Tits building of PSL2(Qpi ). The restriction to �n gives
a properly discontinuous action with infinite volume quotient. However, the in-
duced action of �n on the product of trees is cocompact; the quotient is a k-torus.
The stabilizer of any point is an infinite cyclic group that acts parabolically on H2.

Thus �n has a decomposition as a k-dimensional complex of groups [BH].
The upper triangular subgroup �n arises naturally as the stabilizer of a point

at infinity under the action of PSL2(Z[1/n]) on H2 × ∏k
i=1Ti. For n prime, this

group of upper triangular matrices is isomorphic to the solvable Baumslag–Solitar
group BS(1,p2) = 〈a, b | aba−1 = bp

2〉, and our results on quasi-isometries and
rigidity generalize the results of [FM1]. In this case, the rigidity of the groups �n
should be useful for understanding the groups PSL2(Z[1/n]), analogously to how
the results of Farb and Mosher are used in [T].

The upper triangular groups �n are also basic examples of metabelian groups
fitting into the short exact sequence

1 → Z[1/n] → � → Zk → 1.

In the sections that follow, we describe geometric models for these groups as
warped products of R with the product of trees on which�n acts. This identifies�n
as a cocompact lattice in the isometry group R � (Sim(Qm1)× · · · × Sim(Qmk ))

of this model space, where Sim(Qm) is the group of similarities of the m-adic ra-
tionals and the mi are determined by the prime factors of n. We also describe the
group of all self–quasi-isometries of �n and classify them up to quasi-isometry.

Our results rely on the technology available for groups acting on trees. How-
ever, products of trees are substantially more complicated than trees. For example,
a group that acts freely on a tree is free whereas groups that act freely on a product
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of trees need not be products of free groups. Such groups can, in fact, be simple
(see [BM]).

Our results generalize immediately to a larger class of groups that do not arise
as nicely in a geometric context but are interesting nonetheless. This larger class
of groups generalizes the solvable Baumslag–Solitar groups BS(1, n) = 〈a, b |
aba−1 = bn〉. Let S = {n1, n2, . . . , nk}, where (ni, nj ) = 1 when i �= j, and de-
fine � = �(S) by

� = �(S) = 〈a1, . . . , ak, b | a−1
i bai = bni, aiaj = aj ai, i �= j〉.

These groups are (k+1)-dimensional metabelian groups fitting into a short exact
sequence

1 → A → � → Zk → 1,

where the map onto Zk is given by sending the {ai} to a basis and sending b to 0.
The kernel, A, is normally generated by b and is an infinitely generated abelian
group. Hence these groups provide natural examples of finite-type solvable groups
that are not polycyclic.

The groups�n are also of this same form. Namely, let n = p
e1
1 p

e2
2 · · ·pekk ,where

the pi are distinct primes. Then �n is isomorphic to �(p2e1
1 , . . . ,p

2ek
k ), where the

isomorphism is given by

ai 
→
(
p
ei
i 0

0 p
−ei
i

)
,

b 
→
(

1 1
0 1

)
.

The decomposition of �n into a k-dimensional complex of groups can be gen-
eralized to the groups �(S). Indeed, the presentation given is that of a k-torus of
infinite cyclic groups, generalizing the fact that all the Baumslag–Solitar groups
are HNN extensions of Z. This decomposition is fundamental to our study of the
geometry of these groups. The groups �(S) have geometric models analogous
to those of the �n. As a result, our quasi-isometry classification and rigidity re-
sults immediately generalize to this larger class of groups. We are able to identify
�(S) as a cocompact lattice in the isometry group of the model space, describe its
quasi-isometry group, and classify these groups up to quasi-isometry.

1.1. Statement of Results

Let�n be the upper triangular subgroup of PSL2(Z[1/n]), and letXn be the model
space for �n that is quasi-isometric to �n and constructed in Section 3.

Theorem1.1 (Quasi-isometry classification). Let �n be the upper triangular sub-
group of PSL2(Z[1/n]) and �m the upper triangular subgroup of PSL2(Z[1/m]).
If n = p

e1
1 · · ·pekk and m = q

f1
1 · · · qfll , where {pi} and {qj} are sets of distinct

primes, then �n and �m are quasi-isometric if and only if k = l and for i =
1, 2, . . . , k, after possibly re-ordering, pi = qi.
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Theorem 1.2 (Quasi-isometry group). Let n = p
e1
1 · · ·pekk , where all pi are dis-

tinct primes. The quasi-isometry group, QI(�n), is isomorphic to the product

Bilip(R)× Bilip(Qp1)× · · · × Bilip(Qpk ).

Theorem 1.3 (Cusp group rigidity). If � ′ is a finitely generated group quasi-
isometric to �n, then there is a finite normal subgroup F of � ′ such that � ′/F is
commensurable to �n, meaning that � ′/F and �n have isomorphic subgroups of
finite index.

When we replace �n by the more general group �(S) defined previously, where
all elements in S are pairwise relatively prime, we obtain the following general-
izations of the previous theorems.

Theorem1.4. Consider the setsS1 = {n1, n2, . . . , nk}andS2 = {m1,m2, . . . , ml}
with (ni, nj ) = (mi,mj ) = 1 for i �= j. Define �1 = �(S1) and �2 = �(S2). The
groups �1 and �2 are quasi-isometric if and only if k = l and for i = 1, 2, . . . , k,
after possibly re-ordering, each ni is a rational power of mi.

Theorem1.5. LetS = {n1, n2, . . . , nk}. Then the quasi-isometry group QI(�(S))
is isomorphic to the product

Bilip(R)× Bilip(Qn1)× · · · × Bilip(Qnk ).

Theorem 1.6. Let � ′ be any finitely generated group quasi-isometric to �(S).
Then there exist integers m1,m2, . . . , mk, with each mi a rational power of ni, as
well as a finite normal subgroup F of � ′ such that � ′/F is isomorphic to a co-
compact lattice in Iso(X(m1, . . . , mk)) = R � (Sim(Qm1)× · · · × Sim(Qmk )).

1.2. Outline of the Proofs

The key to all our results is understanding the self–quasi-isometries of the model
space X = Xn for �n, and in general for �(S), constructed in Section 3. This
model space is the warped product of R and a product of trees

∏k
i=1Ti. We begin

with a definition crucial to understanding the following outline of the proofs and
refer the reader to Section 2 for additional definitions. Throughout, let f : X →
X be any quasi-isometry.

When considering points in
∏k

i=1Ti, it is important to define a notion of height
on each tree Ti. Fix a basepoint (t1, t2, . . . , tk)∈ ∏k

i=1Ti. The height of a vertex
t ∈ Ti is the height change between t and the ith coordinate ti of the basepoint.
Extend this notion to a height function hi on each tree Ti through linear interpola-
tion along the edges. The metric onX is then given by a warped product of R and∏k

i=1Ti, where on each tree Ti the warping function is given by e−hi.
In the following outline, as in most of the paper, we consider only the groups

�n. The similarities in the construction of model spaces for the groups�n and�(S)
ensure that generalizations of the proofs are immediate. Let n = p

e1
1 p

e2
2 · · ·perr ,

where the pi are distinct primes.
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1. Warped product structure is preserved. We first show that any quasi-isometry
preserves, up to bounded distance, the horocycles, that is, the subsets of the form
R× (t1, . . . , tk). In other words, there is a quasi-isometry f̄ of the product of trees
T1 × · · ·× Tk such that f and f̄ commute with the projectionX → T1 × · · ·× Tk.

Results of [KL] imply that, up to permuting the factors, f̄ splits as a product of
quasi-isometries fi of the trees Ti.

2. Quasi-isometries are almost height translations on the tree factors. The
geometry of the space X restricts the quasi-isometries fi. The warping function
can be reconstructed as the (logarithm of the) amount of stretching induced by
closest point projection between the horocycles. This splits as a sum of func-
tions, hi, on each of the trees. The quasi-isometries fi preserve these warping
functions in the sense that hi(fi(x))− hi(fi(y)) differs from hi(x)− hi(y) by a
uniformly bounded amount. We call such quasi-isometries almost height trans-
lations. In [FM1], the group of almost height translations of Tn is identified as
Bilip(Qn).

3. f induces a bilipschitz homeomorphism of R. This shows that the group
of quasi-isometries of T1 × · · · × Tk that quasi-preserve the warping function
is Bilip(Qp1) × · · · × Bilip(Qpr ). All of these quasi-isometries extend to quasi-
isometries ofX. The quasi-isometries ofX that induce the identity on T1×· · ·×Tr
induce a bilipschitz homeomorphism of R. This allows us to identify the quasi-
isometry group of X and so prove Theorem 1.2.

4. These methods hold for quasi-isometries between �n and �m. Consider a
quasi-isometry f : �n → �m. Using again the methods described here shows that
f induces a bilipschitz homeomorphism of R and a quasi-isometry on the prod-
uct of trees that is a bounded distance from a product quasi-isometry. Theorem 1.1
now follows by combining results of [FM1] and [W1].

5. Quasi-actions. Understanding the quasi-isometries of X enables us to un-
derstand groups that are quasi-isometric to �n via the quasi-action principle. Sup-
pose � ′ is quasi-isometric to �n (and hence to X), and let f : � ′ → X be a quasi-
isometry. For every γ ′ ∈� ′ we obtain a quasi-isometry ofX by x 
→ f(γ ′f −1(x)).

These quasi-isometries all have uniform constants and compose, up to bounded
distance, according to the multiplication table of � ′. In other words, � ′ quasi-acts
on X and thus gives an almost height translation action on each of the Ti.

6. Obtaining similarity actions on Qn.According to [MSW] these almost height
translation actions are equivalent, via a quasi-isometry Ti → T ′

i , to a height trans-
lation action on trees T ′

i . In terms of the pi-adics, this means that there is some qi
such that the bilipschitz action of � ′ on Qpi is bilipschitz equivalent to a similar-
ity action on Qqi . Similarly, the bilipschitz action on R is equivalent to an affine
action on R. Further, the uniformity of the quasi-isometry constants implies that
the expansion factor of the affine action on R is the inverse of the product of the
factors from the similarity actions on the Qqi . This shows � ′ to be a lattice in the
subgroup of Aff(R) × Sim(Qq1) × · · · × Sim(Qqk ) that satisfies this condition.
This subgroup is R � Sim(Qq1) × · · · × Sim(Qqk ) and can be identified as the
isometry group of a complex X ′, proving Theorem 1.3.
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2. Preliminaries

2.1. Definitions and Notation

We begin with the definition of a quasi-isometry.

Definition. Let K ≥ 1 and C ≥ 0. A (K,C)-quasi-isometry between met-
ric spaces (X, dX) and (Y, dY ) is a map f : X → Y that satisfies the following
conditions.

(1) 1
K
dX(x1, x2)−C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2)+C for all x1, x2 ∈X.

(2) For some constant C ′, we have NbhdC ′(f(X)) = Y.

We will assume that our quasi-isometries have been changed by a bounded amount,
using the standard “connect-the-dots” procedure to be continuous (see e.g. [SW]).
A quasi-isometry has a coarse inverse, that is, a quasi-isometry g : Y → X such
that f � g and g � f are a bounded distance from the appropriate identity map in
the supremum norm. A map satisfying (1) but not (2) in the definition is called a
quasi-isometric embedding.

We define the quasi-isometry group QI(X) of a space X to be the collection of
all self–quasi-isometries of X, identifying those that differ by a bounded amount
in the supremum norm.

Given a group G and a metric space X, a quasi-action of G on X associates to
each g ∈ G a quasi-isometry of X; that is, Ag : X → X, subject to certain con-
ditions. This map is defined by Ag(x) = g · x and the collection of these maps
has uniform quasi-isometry constants, so that AId = IdX and dsup(Ag � Ah,Agh)
is bounded independently of g and h.

2.2. Previous Results

The following theorems will be referred to repeatedly in Section 4. We state them
here for easy reference.

2.2.1. Rigidity of Baumslag–Solitar Groups. Since the geometry of the group�n
is so dependent on its various Baumslag–Solitar subgroups, we will often refer to
the following classification and rigidity results (for the solvable Baumslag–Solitar
groups) due to Farb and Mosher.

Theorem 2.1 [FM1, Thm. 7.1]. For integersm, n ≥ 2, the groups BS(1,m) and
BS(1, n) are quasi-isometric if and only if they are commensurable. This happens
if and only if there exist integers r, j, k > 0 such that m = rj and n = r k.

Theorem 2.2 [FM1, Thm. 8.1]. The quasi-isometry group of BS(1, n) is given
by the following isomorphism:

QI(BS(1, n)) ∼= Bilip(R)× Bilip(Qn).
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2.2.2. Products of Trees and Groups Acting on Products of Trees. A major step
in the proofs that follow is showing that a quasi-isometry f : �1 → �2 induces a
map on the product of trees on which each group acts. Once this is accomplished,
we use the following result of Kleiner and Leeb to show that our map is uniformly
close to a product of quasi-isometries.

Theorem 2.3 [KL, Thm. 1.1.2]. Let Ti and T ′
i be irreducible thick Euclidean

Tits buildings with cocompact affine Weyl group. LetX = En × ∏k
i=1 Ti andX ′ =

En′ × ∏k ′
i=1 T

′
i be metric products. Then, for all K,C > 0, there exist K ′,C ′,D ′

such that the following statement holds: If f : X → X ′ is a (K,C)-quasi-isometry,
then n = n′, k = k ′, and there are (K ′,C ′)-quasi-isometries fi : Ti → Tj such
that d

(
p � f,∏k

i=1 fi � p
) ≤ D ′, where p is the projection map.

The following result of [MSW] will be needed for the proof of rigidity of the
groups �n. It applies to bushy trees, meaning that each vertex is a uniformly
bounded distance from a vertex having at least three unbounded complemen-
tary components. We also require bounded valence, meaning that vertices have
uniformly finite bounded valence. All of the trees in this paper satisfy these
properties.

Theorem 2.4 [MSW]. If G × T → T is a quasi-action of a group G on a
bounded valence and bushy tree T, then there exist a bounded-valence and bushy
tree T ′, an isometric action G × T ′ → T ′, and a quasi-isometry f : T ′ → T

that intertwines the actions of G on T ′ and the quasi-action of G on T to within
a uniformly bounded distance.

3. The Geometric Models

To illustrate the geometry of �n and of �(S) in general, we describe a metric
(k + 1)-complex X quasi-isometric to �n (i.e., on which �n acts properly discon-
tinuously and cocompactly by isometries). We begin with the simplest case of the
upper triangular subgroup �n of PSL2(Z[1/n]). We then describe the geometry of
the more general groups �(S). For all of these groups, the complexX is a warped
product of R with a product of trees on which the group acts. If the ni are not rel-
atively prime then the group �(S) does not act on a product of trees, so we do not
consider this case here.

First recall that the Baumslag–Solitar groups BS(1, n) = 〈a, b | aba−1 = bn〉,
for integral n ≥ 2, act properly discontinuously and cocompactly by isomet-
ries on metric 2-complexes. These complexes Yn are topologically the product
T × R, where each vertex of the tree T has one incoming edge and n outgoing
edges. Metrically we define a height function on T so that, if l ⊂ T is a line
on which the height function is strictly increasing, then l × R is metrically a hy-
perbolic plane. See [FM1] and Figure 1 for a more detailed construction of this
complex.
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Figure 1 The geometric model of the solvable Baumslag–Solitar group
BS(1, 3), which is topologically a warped product of a tree and R

3.1. The Geometric Model of �n

We give the most comprehensive description of the model spaceX in this case be-
cause the trees on which �n acts are easier to understand than the trees on which
�(S) acts. We present several ways to understand the complex X.

When p is prime, the group BS(1,p), acts on the Bruhat–Tits tree Tp associated
to PSL2(Qp). This is not true for BS(1, n) when n is not prime. We will describe
the BS(1, n) tree in Section 3.2.

Assume p is prime, and consider the geometric model Yp of BS(1,p). Let (x, y)
be the coordinates on the upper half-space model of hyperbolic space, where y > 0.
One can also view Yp as being built from the “horobrick” with 0 ≤ x ≤ n and 1 ≤
y ≤ p. The vertical sides of this brick have length logp. In the Cayley graph of
BS(1,p), this horobrick has the form given in Figure 2.

a a

b

b b

Figure 2 The “horobrick” building block for the
geometric model of BS(1, 2)

If n = p
e1
1 p

e2
2 · · ·perr then �n acts on the product of the trees

∏k
i=1Ti, where Ti

is the tree on which BS(1,pi) acts; that is, Ti has one incoming edge at each ver-
tex and pi outgoing edges. The complexX is the same warped product of

∏k
i=1Ti

with R as we saw previously for BS(1,p).
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a a

a a

b b

c
c

cc
b

bb b

b b b b b b

Figure 3 The analogous building block for �(2, 3)

Analogously for �n, there is an (k+1)-dimensional building block used to con-
struct the complex X, whose 1-skeleton is the Cayley graph of �n. An example of
this block is given in Figure 3 for n a product of two primes. It is not difficult to see
that the correct branching occurs when these blocks are arranged so as to form the
appropriate Baumslag–Solitar subcomplexes. In general, the (k+1)-dimensional
building block will be an (k + 1)-cube with appropriate edge labels in terms of
the generators of �(S). We refer to the horocycles along which the sheets meet as
branching horocycles.

A second way of understanding the complexX is in terms of some of its special
subspaces. Let n = p

e1
1 p

e2
2 · · ·pekk , where the pi are prime. Then

�n ∼= 〈a1, . . . , ak, b | a−1
i bai = bp

2ei
i , ai aj = aj ai, i �= j〉.

We consider in particular two types of subspaces of X:

(i) Ypi, corresponding to BS(1,p2ei
i ) and generated by ai and b in the presenta-

tion above; and
(ii) Zl for 1 ≤ l ≤ k, generated by l distinct generators ai in the presentation

above.

Notice that the BS(1,pi) subgroups of � all share the generator b; in X this
means that the subcomplexes Ypi for i = 1, 2, . . . , k are joined along branching
horocycles. Namely, consider a subcomplex Ypi of X. At each branching horo-
cycle of Ypi there is a copy of Ypj for all j �= i attached along that horocycle. The
same is true for every branching horocycle of those Ypj , and the process continues.

For any vertex x ∈X, there is a Ypi subspace for each i = 1, 2, . . . , k in X that
contains x. For each i, the set {ami ·x | m∈ Z} is the vertex set of a line in the Cay-
ley graph of �, which is the 1-skeleton of X. These lines form the axes of an Rk

subspace of X. The orbit of x under the group generated by the entire collection
{ai} is a Zk subspace of X.
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3.2. The Geometric Model of �(S)

When � = �(n1, n2, . . . , nk) and the ni are relatively prime but not all prime, the
product of trees on which � acts is not as simple.

We first discuss the tree T n on which the group BS(1, n) acts when n is not
prime. Suppose that n = p

e1
1 p

e2
2 · · ·perr , and let Ti be the Bruhat–Tits tree associ-

ated to PSL2(Qpi ). The tree T n is a subspace of
∏r

i=1Ti whose branching may
not be constant and depends on the exponents of the primes.

Define a folding function Fi : Ti → R as follows. If hi is the height function
defined on Ti, then Fi(t) = hi(t) for t ∈ Ti. Combining folding functions on the Ti
yields a map F(r) :

∏r
i=1Ti → Rr defined by F(r) = (F1, F2, . . . , Fr). Consider

the grid of lines in Rr of the form (x1, x2, . . . , xj−1,R, xj+1, . . . , xr), where xi ∈
Z. So we actually have r families of parallel lines in Rr. View each family as rep-
resenting folded copies of one of the trees Ti under F(r).

The branching of the tree T n is determined by the line

e1x1 + e2x2 + · · · + er xr = 0

in Rr. When the line crosses a line in the family of parallel lines corresponding
to Ti, the tree T n branches n times. When the line crosses the intersection of two
lines, one from the family of Ti and one from the family of Tj, the branching is
i + j.

Example. Consider the group BS(1, 6). The tree T 6 on which it acts is a subset
of T2 × T3 determined by the line y = −x in the plane R2, since the exponent of
each prime is 1. This line only crosses vertices of the grid of lines, so the branch-
ing is uniform of valence 6.

Example. Consider the group BS(1,12). The tree T 12 on which it acts is a sub-
set of T2 × T3, only now the line in R2 that determines the branching is −2x = y.

From the way this line crosses the grid of lines, we see that the branching of T 12

is not uniform. The vertices alternate between valence 2 and valence 6, where the
valence 2 arises from the line crossing only a horizontal grid line and the valence 6
arises when the line crosses a vertex in this grid of lines.

Example. Consider the group BS(1, 60). The tree T 60 on which it acts is a sub-
set of T2 × T3 × T5, and now the folding map F(3) is a map to R3. The line in R3

determining the branching of T is 2x + y + z = 0. Again we see that the amount
of branching at each valence varies.

Now consider � = �(n1, n2, . . . , nk) where the ni are not all prime. Consider any
ni and let p1,p2, . . . ,pr be the list of primes dividing ni, with Ti the Bruhat–Tits
tree of PSL2(Qpi ). Then let T i be the tree on which BS(1, ni) acts (described
previously) that is a subspace of

∏r
i=1Ti. Then � acts on

∏k
i=1T

i. The complex
X(S) is then the warped product of

∏k
i=1T

i with R.
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4. The Structure of Quasi-Isometries

The key step in the proofs of the theorems in this paper is understanding the
structure of the quasi-isometries of �, or equivalently of X. We begin with two
groups �1 and �2 and a (K,C)-quasi-isometry between their geometric models,
f : X1 → X2.

Let π be the projection X → ∏k
i=1Ti. Define a horocycle of the complex X

to be a subset of the form π−1(t1, t2, . . . , tk), where (t1, t2, . . . , tk) is a point in∏k
i=1Ti. A hyperplane inX is a subcomplex of the form π−1(l1 ×· · ·× ln),where

each li is a geodesic in Ti. The first goal is to show that the quasi-isometry f pre-
serves horocycles and hence induces a quasi-isometry of a product of trees. These
arguments are similar to those in [W2].

Lemma 4.1. For any (K,C) there is an R > 0 such that, for any f : X1 → X2

(a (K,C)-quasi-isometry) and every hyperplane H of X1, there exists a subset Y
of

∏k
i=1 Ti such that the image f(H ) is within distance R of π−1(Y ).

Proof. Let g be a quasi-inverse of f, so that g �f is a bounded distance from the
identity map and hence proper. By a standard connect-the-dots argument, we may
assume that f and g are continuous. Since the Xi are uniformly contractible, the
compositions are homotopic to the identity through homotopies of length at most
R0 (depending only on the Xi and the constants (K,C)). Then the maps f and g
are, in particular, proper homotopy equivalences.

Consider the fundamental class [H ] in Huf
n+1(X1). The push-forward f∗([H ])

is thus a nontrivial class in Huf
n+1(X2). Further, this class clearly has a represen-

tative c with support contained in the R0 neighborhood of f(H ). The simplicial
structure of X2 forces the coefficients of c to be constant along horocycles. Thus,
the support of c is of the form Y × R for some subcomplex Y of

∏k
i=1Ti. This

shows that the R0 neighborhood of f(H ) contains Y × R.

To complete the proof we must show that a neighborhood of Y ×R (= supp(c))
contains f(H ). If not, then there are arbitrarily large balls in f(H ) that are not
contained in Y × R. Applying the inverse map, g, this would give a representa-
tive of [H ] whose support misses large balls in H. This is impossible, since any
representative of the fundamental class has full support.

Lemma 4.2 (Horocycles are preserved). For every (K,C) there exists anR such
that, if f is a (K,C)-quasi-isometry of X and h is a horocycle in X, then there is
a horocycle h′ such that dH (f(h), h′) ≤ R.

Proof. This is an immediate consequence of Lemma 4.1. For any horocycle h,
there are a finite number of hyperplanesH1, . . . , Hk inX1 that have coarse intersec-
tion at Hausdorff distance at mostR from h. The constants k andR depend only on
the geometry ofX1. Lemma 4.1 implies that the image of h is Hausdorff equivalent
to a complex of the form Y ×R for some subset Y ofX2. Applying the same argu-
ment to the inverse map g and each horocycle in Y × R, we conclude that Y must
be of finite diameter (bounded independently of h). This proves the lemma.
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Corollary 4.3 (Factor preserving). Consider the groups�1 = �(n1, n2, . . . , nk)

and �2 = �(m1,m2, . . . , ml), where (ni, nj ) = (mi,mj ) = 1 for i �= j, and as a
quasi-isometry f : �1 → �2 between them. Then:

(a) k = l;
(b) f induces a quasi-isometry fT :

∏k
i=1 Ti → ∏k

i=1 T
′
i ; and

(c) there are (K ′,C ′)-quasi-isometries fi : Ti → T ′
i (after possibly re-indexing

the tree factors) such that fT is a bounded distance from the product quasi-
isometry f1 × · · · × fk.

Proof. Since every point (t1, t2, . . . , tn)∈ ∏k
i=1Ti determines a horocycle in X, it

follows from Lemma 4.2 that the quasi-isometry f induces a quasi-isometry on
the product of trees: fT :

∏k
i=1Ti → ∏l

i=1Ti. It now follows from Theorem 2.3
that k = l and hence there exists the same number of parameters in �1 and �2. It
then follows from Theorem 2.3 that this map is a bounded distance from a prod-
uct f1 × · · · × fk of quasi-isometries.

Corollary 4.4 (Bilipschitz maps). Letf : �1 → �2 be a (K,C)-quasi-isometry.
Then there exist bilipschitz maps g : R → R and fi : Ti → Ti (after possibly re-
indexing the tree factors) so that f is a bounded distance from (g, f1, . . . , fk).

Proof. Applying Corollary 4.3, we may assume that the quasi-isometry f pre-
serves the individual tree factors. We use the notation of Corollary 4.3 and let fi
denote the induced map on the ith tree factor. It follows that the quasi-isometry
f restricts to a map on each Baumslag–Solitar subcomplex Ti × R that is also
a quasi-isometry. Applying Theorem 2.2, we conclude that fi is a bounded dis-
tance from the product of a bilipschitz map of Ti with a bilipschitz map of R. It is
easy to see that we must obtain the same bilipschitz map of R regardless of which
Baumslag–Solitar subspace we restrict to, and the corollary follows.

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Applying Corollary 4.4, we consider our quasi-isometry
to be factor-preserving and of the form (g, f1, . . . , fn), with each individual map
bilipschitz. Then any pair (g, fi) : R × Ti → R × T ′

i is a quasi-isometry of
BS(1,pi) to BS(1, qi) by Theorem 2.2. It follows from Theorem 2.1 that, after
re-ordering, pi = qi.

Description of the Quasi-Isometry Group

We begin with a lemma that is important for the proof of Theorem 1.2.

Lemma 4.5 ([FM2]; Rubber-band principle). For all L,M > 0, there is a con-
stant C that satisfies the following property. Let X and Y be path metric spaces,
and let f : X → Y be a map. Suppose there are collections of isometrically em-
bedded subspaces CX of X and CY of Y that satisfy the following statements:

(a) any two points inX (or in Y ) can be connected by anM-quasi-geodesic con-
sisting of a finite number of subpaths, each lying in an element of CX (or CY );

(b) f induces a one-to-one correspondence between elements of CX and CY ; and
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(c) f restricts to an L-quasi-isometry between corresponding elements of CX
and CY .

Then f : X → Y is a C-quasi-isometry.

We are now able to prove Theorem 1.2 and describe the quasi-isometry group
of �.

Proof of Theorem 1.2. It is clear that we have a homomorphism

/ : QI(X) → Bilip(R)× Bilip(Qp1)× Bilip(Qp2)× · · · × Bilip(Qpk )

given by /(f ) = (fR, f1, f2, . . . , fn). In addition, we have a homomorphism

/i : QI(X) → QI(BS(1,pi)) ∼= Bilip(R)× Bilip(Qpi )

for each i = 1, 2, . . . , n that is given by /(f ) = (fR, fi). By the reasoning in
[FM1] it follows that, for any f ∈ ker(/), the quasi-isometry /i(f ) is a bounded
distance Bi from the identity map on Xn. Letting B = max{Bi}, the rubber-band
principle implies that /(f ) is a bounded distance B from the identity.

To see that / is surjective, we again use the rubber-band principle to piece to-
gether quasi-isometries of theXn subcomplexes. Choose fR ∈ Bilip(R) and maps
fi ∈ Bilip(Qpi ). We must show that fR × f1 × · · · × fn is a quasi-isometry of
�1. From [FM1] we know that any pair (fR, fi) yields a quasi-isometry ofXi. We
can assume the quasi-isometry constants are uniform by taking the largest pair of
constants from any of these maps. Since the fR is common to any two pairs, we
obtain a product map f of the entire complex. Thus we have a collection of sub-
spaces and a map f = fR × f1 × · · · × fn satisfying the rubber-band principle,
so f is a quasi-isometry of �.

5. Rigidity

We finish with the proof of Theorem 1.3, which shows that this class of groups is
quasi-isometrically rigid.

Proof of Theorem 1.3. Let � ′ be any finitely generated group quasi-isometric to
�(S), with X the model space for �(S) as before, and let f : � ′ → X be a quasi-
isometry with g a coarse inverse. We thus have a quasi-action of � ′ on X, where
γ ′x=f(γ ′g(x)). By Lemma 4.2, horocycles are preserved and so we obtain an in-
duced quasi-action of � ′ on the product of trees

∏k
i=1Ti. By passing to a finite

index subgroup of � ′, we may assume that the quasi-action is the diagonal quasi-
action of a collection of quasi-actions � ′ on Ti. The maps to the complexes of the
Baumslag–Solitar subgroups of �(S) are � ′ equivariant (to within finite distance)
and so quasi-preserve the height function. By [MSW], there exist trees T ′

i that are
quasi-isometric to the Ti as well as actions of � ′ on Ti that are quasi-conjugate to
the quasi-actions on the Ti. Further, each of these trees is homogeneous, with a � ′
invariant orientation where one edge is directed into each vertex. Thus we get an
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action of � ′ on the product of the T ′
i , with vertex stabilizers that are orientation-

preserving and virtually cyclic, and with finite quotient; in other words, we obtain
a description of � ′ as a finite complex of virtual Zs.

Consider the edges in this quotient that come from edges of a T ′
i . These are

oriented, and as there is exactly one edge oriented toward every vertex in T ′
i , the

same is true in the quotient. Since the quotient is finite, this implies that there is
precisely one such edge oriented away from each vertex of the quotient. Thus the
collection of these edges consists of a finite union of circles. Furthermore, for any
v ∈ T ′

i , the action of stab(v) on edges pointing away from v is transitive. Simi-
larly, fixing any edge in T ′

i and looking at two cells coming from T ′
i ×T ′

j ,we have
exactly two such cells at every edge of the quotient: one oriented toward and one
away from this edge. Continuing over higher-dimensional cubes we see that the
quotient is a product of oriented circles, where the inclusion of the cube stabilizer
to a face stabilizer is an isomorphism if it goes against the orientation. Hence we
may collapse such a cube unless its opposite faces are the same in the quotient.
Making all such possible collapses yields a complex-of-groups description of � ′
with underlying complex a product of oriented loops, with stabilizers all virtually
Z, and with the inclusions isomorphism when going against the orientation. As
in [FM1], we may pass to a finite-index subgroup of � ′ that has such a descrip-
tion with all stabilizers Z. Such a complex of groups has a presentation precisely
of the form �(S ′) for some S ′. Thus � ′ is commensurable to �(S ′) for some S ′,
as desired.
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