Lattice Points inside Random Ellipsoids

S. Hofmann, A. Iosevich, \& D. Weidinger

1. Introduction

Let

$$
\begin{equation*}
N_{a}(t)=\#\left\{t \Omega_{a} \cap \mathbb{Z}^{d}\right\}, \tag{0.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{a}=\left\{\left(a_{1}^{-\frac{1}{2}} x_{1}, a_{2}^{-\frac{1}{2}} x_{2}, \ldots, a_{d}^{-\frac{1}{2}} x_{d}\right): x \in \Omega\right\} \tag{0.2}
\end{equation*}
$$

with $\frac{1}{2} \leq a_{j} \leq 2$ and where Ω is the unit ball.
Let

$$
\begin{equation*}
N_{a}(t)=t^{d}\left|\Omega_{a}\right|+E_{a}(t) \tag{0.3}
\end{equation*}
$$

A classical result due to Landau states that

$$
\begin{equation*}
\left|E_{a}(t)\right| \lesssim t^{d-2+\frac{2}{d+1}} \tag{0.4}
\end{equation*}
$$

here and throughout the paper, $A \lesssim B$ means that there exists a positive constant C such that $A \leq C B$. Similarly, $A \lesssim B$, with a parameter t, means that given $\delta>0$ there exists a $C_{\delta}>0$ such that $A \leq C_{\delta} t^{\delta} B$.

A number of improvements over (0.4) have been obtained over the years in two and three dimensions. The best-known result in three dimensions (to the best of our knowledge) is $\left|E_{a}(t)\right| \lesssim t^{\frac{21}{16}}$ proved by Heath-Brown [HB], improving on an earlier breakthrough due to Vinogradov [V]. It is proved by Szegö that

$$
\begin{equation*}
\left|E_{1,1,1}(t)-\frac{4 \pi}{3} t^{3}\right| \gtrsim t \log (t) . \tag{0.5}
\end{equation*}
$$

In two dimensions, the best-known result is $\left|E_{a}(t)\right| \lesssim t^{\frac{46}{73}}$ due to Huxley [Hu]. A classical result due to Hardy says that

$$
\begin{equation*}
\left|E_{1,1}(t)-\pi t^{2}\right| \gtrsim t^{\frac{1}{2}} \log ^{\frac{1}{2}}(t) \tag{0.6}
\end{equation*}
$$

Thus it is reasonable to conjecture that the estimate

$$
\begin{equation*}
\left|E_{a}(t)\right| \lesssim t^{\frac{d-1}{2}} \tag{0.7}
\end{equation*}
$$

holds in \mathbb{R}^{2} and \mathbb{R}^{3}.

[^0]In higher dimensions, the problem of a pointwise estimate of $E_{a}(t)$ is completely solved. It is a result of Walfisch that if $d \geq 4$ then $\left|E_{a}(t)\right| \lesssim t^{d-2}$, and a logarithm may be removed in dimension 5 and greater. It is also known that if the eccentricities $\left(a_{1}, \ldots, a_{d}\right)$ are rational, then this estimate is essentially sharp.

It is not known if there exists a single $a=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ such that $\left|E_{a}(t)\right| \lesssim$ $t^{\frac{d-1}{2}}$ in any dimension. The question of finding such an a was posed by Sarnak in a two-dimensional setting a number of years ago. Sarnak's question would be answered by the following estimate.

Conjecture. Given any $\delta>0$,

$$
\begin{equation*}
\sup _{t \geq 1} t^{-\frac{d-1}{2}-\delta}\left|E_{(\cdot)}(t)\right| \in L^{p}\left(\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right] \times \cdots \times\left[\frac{1}{2}, 2\right]\right) \tag{0.8}
\end{equation*}
$$

for some $p \geq 1$ with a constant depending on δ.
Of course, (0.8) would imply that the estimate $\left|E_{a}(t)\right| \lesssim t^{\frac{d-1}{2}}$ holds for almost every $a \in\left(\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right] \times \cdots \times\left[\frac{1}{2}, 2\right]\right)$. We hope to address this issue in a subsequent paper.

Other types of square averages of lattice point discrepancy functions have been studied in the past and in recent years. For example, a classical result due to Kendall is that

$$
\begin{equation*}
\int_{\mathbb{T}^{2}}\left|\#\left\{(t \Omega+\tau) \cap \mathbb{Z}^{d}\right\}-t^{d}\right| \Omega| |^{2} d \tau \lesssim t^{\frac{d-1}{2}} \tag{0.9}
\end{equation*}
$$

for every convex domain whose boundary has everywhere nonvanishing Gaussian curvature.

This result was recently sharpened by Magyar and Seeger, who proved that the estimate (0.9) still holds in \mathbb{R}^{d} if the exponent 2 is replaced by $p \leq \frac{2 d}{d-1}$.

Another type of average is studied in [ISS]. The authors prove that

$$
\begin{equation*}
\left(\frac{1}{h} \int_{R}^{R+h}\left|\#\left\{t \Omega \cap \mathbb{Z}^{d}\right\}-t^{d}\right| \Omega| |^{2} d t\right)^{\frac{1}{2}} \lesssim R^{\alpha_{d}} \tag{0.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{2}=\frac{1}{2} \quad \text { with } h \geq \log (R) \tag{0.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{d}=d-2 \quad \text { with } h \approx R \tag{0.12}
\end{equation*}
$$

for $d \geq 4$. If $d=3$ then $\alpha_{d}=1$ and an additional factor $\log (R)$ is present. These results improve upon those previously obtained by Muller [M]. See also [Hu] and [ISS] and the references contained therein.

Using (0.10), (0.11), (0.12), and their proofs, one can deduce the following result.

Theorem 0.1. Let $E_{a}(t)$ be as before. Then

$$
\begin{equation*}
\int_{\frac{1}{2}}^{2} \int_{\frac{1}{2}}^{2} \cdots \int_{\frac{1}{2}}^{2}\left|E_{a}(t)\right|^{2} d a \lesssim R^{\alpha_{d}} \tag{0.13}
\end{equation*}
$$

where α_{d} is exactly as described previously and where the additional $\log (t)$ factor is still present in three dimensions.

The purpose of this paper is to give a simple and transparent proof of Theorem 0.1 in two and three dimensions. Similar two-dimensional results have recently been obtained by Toth and Petridis [TP] using different methods. We believe it is likely that our approach will lead to a better estimate in higher dimensions, where we conjecture that (0.13) holds with $\alpha_{d}=\frac{d-1}{2}$. We hope to address this issue in a subsequent paper.

We shall give the proof in three dimensions. We shall then indicate how a twodimensional proof follows from a simpler version of the same argument.

1. Basic Setup

We start with the following standard reduction. Let $\rho_{0} \in C_{0}^{\infty}\left(\frac{1}{4}, 4\right)$ with $\rho_{0} \equiv 1$ on $[1,2]$, and let ρ be the radial extension of ρ_{0} such that $\int \rho(x) d x=1$.

Let $\rho_{\varepsilon}(x)=\varepsilon^{-3} \rho\left(\frac{x}{\varepsilon}\right)$, and let

$$
\begin{align*}
N_{a}^{\varepsilon}(t) & =\sum_{k \in \mathbb{Z}^{3}} \chi_{t \Omega_{a}} * \rho_{\varepsilon}(k)=t^{3}\left|\Omega_{a}\right|+t^{3} \sum_{k \neq(0,0,0)} \hat{\chi}_{\Omega_{a}}(t k) \hat{\rho}(\varepsilon k) \\
& =t^{3}\left|\Omega_{a}\right|+E_{a}^{\varepsilon}(t) \tag{1.1}
\end{align*}
$$

It is not hard to see that there exists a $C>0$ such that

$$
\begin{equation*}
N_{a}^{\varepsilon}(t-C \varepsilon) \leq N_{a}(t) \leq N_{a}^{\varepsilon}(t+C \varepsilon) \tag{1.2}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\int_{\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right]}\left|E_{a}(t)\right|^{2} d a \lesssim \int_{\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right]}\left|E_{a}^{\varepsilon}(t)\right|^{2} d a+t^{4} \varepsilon^{2} \tag{1.3}
\end{equation*}
$$

We conclude that it suffices to establish estimates for $E_{a}^{\varepsilon}(t)$ with $\varepsilon=t^{-1}$.
Using the standard asymptotic formula for the Fourier transform of the characteristic function of a bounded smooth convex domain where the Gaussian curvature of the boundary is nonvanishing (see e.g. [H]), we see that $\hat{\chi}_{\Omega_{a}}(t k)$ is a sum of two terms of the form

$$
\begin{equation*}
e^{2 \pi i t|k| a} t^{-2}|k|_{a}^{-2}+O\left((t|k|)^{-3}\right), \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
|k|_{a}=\sqrt{a_{1} k_{1}^{2}+a_{2} k_{2}^{2}+a_{3} k_{3}^{2}} . \tag{1.5}
\end{equation*}
$$

It follows that

$$
\begin{align*}
E_{a}^{\varepsilon}(t) & =t \sum_{k \neq(0,0,0)} e^{2 \pi i t|k|_{a}}|k|_{a}^{-2} \hat{\rho}(\varepsilon k)+t^{3} \sum_{k \neq(0,0,0)} O\left((t|k|)^{-3}\right) \hat{\rho}(\varepsilon k) \\
& =I+I I . \tag{1.6}
\end{align*}
$$

Since we can easily handle $I I$ pointwise, we turn our attention to I. Squaring, integrating in a, and replacing the limits of integration in a by a smooth cutoff function, we obtain

$$
\begin{align*}
t^{2} \sum_{k, l \neq(0,0,0)}|k|^{-2}|l|^{-2} \hat{\rho}(\varepsilon k) \hat{\rho}(\varepsilon l) & \int e^{2 \pi i t(|k| a-|l| a)} \psi_{k, l}(a) d a \\
& =t^{2} \sum_{k, l \neq(0,0,0)}|k|^{-2}|l|^{-2} \hat{\rho}(\varepsilon k) \hat{\rho}(\varepsilon l) I_{k, l}(t) \tag{1.7}
\end{align*}
$$

here

$$
\begin{equation*}
\psi_{k, l}(a)=\left(\frac{|k|}{|k|_{a}}\right)^{2}\left(\frac{|l|}{|l|_{a}}\right)^{2} \psi(a) \tag{1.8}
\end{equation*}
$$

where ψ is a positive smooth cutoff function that is supported in $\left[\frac{1}{4}, 4\right]$ and identically equal to 1 on $\left[\frac{1}{2}, 2\right]$. Observe that, if $k \neq(0,0,0)$ and $l \neq(0,0,0)$, then $\psi_{k, l} \in C_{0}^{\infty}$ with constants uniform in k and l. It suffices to show that (1.7) is bounded above by $C_{\delta} t^{2+\delta}$ for any $\delta>0$.

2. Preliminary Reductions

This section contains some simple observations that we shall make use of in Section 3, where the main result of the paper is proved.

Lemma 2.1. Let $\delta>0$, and let $N>\frac{1}{\delta}+1$. Then

$$
\begin{equation*}
\sum_{|k|>\varepsilon^{-1-\delta}}|k|^{-2}|\varepsilon k|^{-N} \lesssim 1 \tag{2.1}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
\sum_{|k|>\varepsilon^{-1-\delta}}|k|^{-2}|\varepsilon k|^{-N} & \lesssim \varepsilon^{-N} \int_{|x|>\varepsilon^{-1-\delta}}|x|^{-2-N} d x \\
& \lesssim \varepsilon^{-N} \varepsilon^{-1-\delta} \varepsilon^{N} \delta \varepsilon^{\delta N} \frac{1}{N-1} \lesssim 1 \tag{2.2}
\end{align*}
$$

if $N>\frac{1}{\delta}+1$.
Since $|\hat{\rho}(\varepsilon k)| \lesssim(1+|\varepsilon k|)^{-N}$ for any $N>0$ and since $\left|I_{k, l}(t)\right| \lesssim 1$, Lemma 2.1 shows that in estimating (1.7) we may sum over $|k|,|l| \lesssim \varepsilon^{-1-\delta}(\delta>0)$. In particular, this means that we may sum over $\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta}$.

Lemma 2.2. Let S, S^{\prime} be subsets of $\{1,2,3\}$ of cardinality at most 2 . Then

$$
\begin{equation*}
t^{2} \sum_{1 \leq\left|k_{i}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ; i \in S, j \in S^{\prime}}|k|^{-2}|l|^{-2} \lesssim t^{2} . \tag{2.3}
\end{equation*}
$$

Proof. The proof is immediate since we are down to at most two variables in k and l, so the power -2 suffices (up to logarithms).

Lemma 2.3. Let $U=\left\{k, l \in \mathbb{Z}^{3} \times \mathbb{Z}^{3}:\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ; k_{1}=0, l_{1} \neq 0\right\}$. Then

$$
\begin{equation*}
t^{2} \sum_{U}|k|^{-2}|l|^{-2} I_{k, l}(t) \lesssim t^{2} \tag{2.4}
\end{equation*}
$$

Proof. Let $\Phi_{k, l}(a)=|k|_{a}-|l|_{a}$. We have

$$
\begin{equation*}
\nabla \Phi_{k, l}(a)=\frac{1}{2}\left(\frac{k_{1}^{2}}{|k|_{a}}-\frac{l_{1}^{2}}{|l|_{a}}, \frac{k_{2}^{2}}{|k|_{a}}-\frac{l_{2}^{2}}{|l|_{a}}, \frac{k_{3}^{2}}{|k|_{a}}-\frac{l_{3}^{2}}{|l|_{a}}\right) \tag{2.5}
\end{equation*}
$$

Since $k_{1}=0$, it follows that $\left|\nabla \Phi_{k, l}(a)\right| \gtrsim l_{1}^{2} /|l|$. Integrating by parts once (see Section 5) shows that

$$
\begin{equation*}
\left|I_{k, l}(t)\right| \lesssim t^{-1} \frac{|l|}{l_{1}^{2}} \tag{2.6}
\end{equation*}
$$

We then have

$$
\begin{align*}
& t^{2} t^{-1} \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ; k_{1}=0}|k|^{-2}|l|^{-2}|l| l_{1}^{-2} \\
& \lesssim t \sum_{1 \leq\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta}}\left(\left|l_{2}\right|+\left|l_{3}\right|\right)^{-1} l_{1}^{-2} \lesssim t \varepsilon^{-1} \lesssim t^{2} \tag{2.7}
\end{align*}
$$

The same argument works if $k_{2}=0$ and $l_{2} \neq 0$, or if $k_{3}=0$ and $l_{3} \neq 0$.
The basic idea of these reductions is that we need only sum up to $|k|,|l| \lesssim \varepsilon^{-1-\delta}$ and that it suffices to consider the case where $k_{j}, l_{j} \neq 0$ for $j=1,2,3$.

$$
\text { 3. }\left|\left|\frac{k_{1}}{k_{2}}\right|-\left|\frac{l_{1}}{l_{2}}\right|\right|+\left|\left|\frac{k_{1}}{k_{3}}\right|-\left|\frac{l_{1}}{l_{3}}\right|\right|+\left|\left|\frac{k_{2}}{k_{3}}\right|-\left|\frac{l_{2}}{l_{3}}\right|\right| \neq 0
$$

The determinant of the Hessian matrix of $\Phi_{k, l}$ with respect to $\left(a_{1}, a_{2}\right)$ equals

$$
\begin{equation*}
-\frac{1}{16} \frac{\left(k_{1}^{2} l_{2}^{2}-k_{2}^{2} l_{1}^{2}\right)^{2}}{|k|_{a}^{3}|l|_{a}^{3}} \tag{3.1}
\end{equation*}
$$

and its absolute value is bounded from below by a constant multiple of

$$
\begin{equation*}
\frac{\left(k_{1}^{2} l_{2}^{2}-k_{2}^{2} l_{1}^{2}\right)^{2}}{|k|^{3}|l|^{3}} \tag{3.2}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& t^{2} \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ;\left|\left|\frac{k_{1}}{k_{2}}\right|-\left|\frac{l_{1}}{l_{2}}\right|\right| \neq 0}|k|^{-2}|l|^{-2} I_{k, l}(t) \\
& \lesssim t \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ;\left|\left|\frac{k_{1}}{k_{2}}\right|-\left|\frac{l_{1}}{l_{2}}\right|\right| \neq 0}|k|^{-\frac{1}{2}}|l|^{-\frac{1}{2}}\left|k_{1}^{2} l_{2}^{2}-k_{2}^{2} l_{1}^{2}\right|^{-1} \\
& \lesssim t \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ;\left|\left|\frac{k_{1}}{k_{2}}\right|-\left|\frac{l_{1}}{l_{2}}\right|\right| \neq 0}\left|k_{3}\right|^{-\frac{1}{2}}\left|l_{3}\right|^{-\frac{1}{2}}\left|k_{1}^{2} l_{2}^{2}-k_{2}^{2} l_{1}^{2}\right|^{-1} \\
& \lesssim t \varepsilon^{-1} \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ; j=1,2 ;\left|\left|\frac{k_{1}}{k_{2}}\right|-\right| \frac{l_{1}}{l_{2}} \| \neq 0}\left|k_{1}^{2} l_{2}^{2}-k_{2}^{2} l_{1}^{2}\right|^{-1} . \tag{3.3}
\end{align*}
$$

Either $\operatorname{sgn}\left(k_{1} l_{2}\right)=\operatorname{sgn}\left(l_{1} k_{2}\right)$ or $\operatorname{sgn}\left(k_{1} l_{2}\right)=-\operatorname{sgn}\left(l_{1} k_{2}\right)$. Without loss of generality, suppose that $k_{j}, l_{j}>0$. It follows that (3.3) is bounded by the expression of the form

$$
\begin{align*}
t \varepsilon^{-1} \sum_{m=0}^{\approx \log \left(\varepsilon^{-2}\right)} 2^{-m} \mid & \sum_{\substack{1 \leq k_{j}, l_{j} \leq \varepsilon^{-1-\delta}, j=1,2 ; \\
2^{m} \leq\left|k_{1} l_{2}-k_{2} l_{1}\right| \leq 2^{m+1}}} k_{1}^{-1} l_{2}^{-1} \mid \\
& \approx t \varepsilon^{-1} \sum_{m=0}^{\approx \log \left(\varepsilon^{-2}\right)} 2^{-m}\left|\int_{\substack{1 \leq x_{j}, y_{j} \leq \varepsilon^{-1} ; \\
2^{m} \leq\left|x_{1} x_{2}-y_{1} y_{2}\right| \leq 2^{m+1}}} x_{1}^{-1} x_{2}^{-1} d x d y\right| \tag{3.4}
\end{align*}
$$

Let

$$
\begin{equation*}
u_{1}=x_{1} x_{2}, \quad u_{2}=x_{2} ; \quad v_{1}=y_{1} y_{2}, \quad v_{2}=y_{2} \tag{3.5}
\end{equation*}
$$

It follows that

$$
\begin{array}{ll}
d u_{1}=x_{2} d x_{1}+x_{1} d x_{2}, & d u_{2}=d x_{2} \\
d v_{1}=y_{2} d y_{1}+y_{1} d y_{2}, & d v_{2}=d y_{2} \tag{3.6}
\end{array}
$$

Also, $x_{1}=u_{1} / u_{2}$ and so $x_{1} x_{2}=u_{1}$. Combining this with (3.5) and (3.6), we see that (3.4) is bounded by

$$
\begin{align*}
& t \varepsilon^{-1} \sum_{m=0}^{\approx \log \left(\varepsilon^{-2}\right)} 2^{-m}\left|\int_{\substack{1 \leq u_{1}, v_{1} \leq \varepsilon^{-2}, 1 \leq u_{2}, v_{2} \leq \varepsilon^{-1} ; \\
2^{m} \leq\left|u_{1}-v_{1}\right| \leq 2^{m+1}}} u_{1}^{-1} u_{2}^{-1} v_{2}^{-1} d u d v\right| \\
& \quad \lesssim t \varepsilon^{-1} \sum_{m=0}^{\approx \log \left(\varepsilon^{-2}\right)} 2^{-m}\left|\int_{\substack{1 \leq u_{1}, v_{1} \leq \varepsilon^{-2} ; \\
2^{m} \leq\left|u_{1}-v_{1}\right| \leq 2^{m+1}}} u_{1}^{-1} d u_{1} d v_{1}\right| \lesssim t \varepsilon^{-1} \leq t^{2} \tag{3.7}
\end{align*}
$$

Clearly, the same argument works if

$$
\left|\left|\frac{k_{1}}{k_{3}}\right|-\left|\frac{l_{1}}{l_{3}}\right|\right| \neq 0 \quad \text { or } \quad \| \frac{k_{2}}{k_{3}}\left|-\left|\frac{l_{2}}{l_{3}}\right|\right| \neq 0
$$

$$
\text { 4. }\left|\left|\frac{k_{1}}{k_{2}}\right|-\left|\frac{l_{1}}{l_{2}}\right|\right|+\left|\left|\frac{k_{1}}{k_{3}}\right|-\left|\frac{l_{1}}{l_{3}}\right|\right|+\left|\left|\frac{k_{2}}{k_{3}}\right|-\left|\frac{l_{2}}{l_{3}}\right|\right|=0
$$

In this case,

$$
\begin{equation*}
\left|\frac{k_{1}}{l_{1}}\right|=\left|\frac{k_{2}}{l_{2}}\right|=\left|\frac{k_{3}}{l_{3}}\right| \tag{4.1}
\end{equation*}
$$

It follows that $k=\alpha l$. Dominating $\left|I_{k, l}(t)\right|$ by 1 , we have

$$
\begin{equation*}
t^{2} \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta ;} ;\left|\frac{k_{1}}{l_{1}}\right|=\left|\frac{k_{2}}{l_{2}}\right|=\left|\frac{k_{3}}{l_{3}}\right|}|k|^{-2}|l|^{-2} I_{k, l}(t) . \tag{4.2}
\end{equation*}
$$

We are summing over the set where $l=\alpha k$. Observe that α must be of the form $m / \operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right)$. It follows that the expression in (4.2) is bounded by a constant multiple of

$$
\begin{align*}
& \lesssim t^{2} \sum_{1 \leq|k| \lesssim \varepsilon^{-1-\delta}} \sum_{\alpha=m / \operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right) \lesssim \varepsilon^{-1-\delta}} \alpha^{-2}|k|^{-4} \\
& =t^{2} \sum_{1 \leq|k| \lesssim \varepsilon^{-1-\delta}} \sum_{m=1} \frac{\varepsilon^{-1-\delta / \operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right)}}{\left(\operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right)\right)^{2}} m^{2}|k|^{-4} \\
& \lesssim t^{2} \sum_{1 \leq|k| \lesssim \varepsilon^{-1-\delta}}\left(\operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right)\right)^{2}|k|^{-4} \\
& =t^{2} \sum_{n=1}^{\approx \log \left(\varepsilon^{-1-\delta}\right)} 2^{-4 n} \sum_{|k| \approx 2^{n}} \sum_{j=1}^{\approx \varepsilon^{-1-\delta}} \sum_{\operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right)=j} j^{2} \\
& \approx t^{2} \sum_{n=1}^{\approx \log \left(\varepsilon^{-1-\delta}\right)} 2^{-4 n} \sum_{|k| \approx 2^{n} / j} \sum_{j=1}^{\varepsilon^{-1-\delta}} \sum_{\operatorname{gcd}\left(k_{1}, k_{2}, k_{3}\right)=1} j^{2} \\
& \lesssim t^{2} \sum_{n=1}^{\sum_{j=1}\left(\varepsilon^{-1-\delta}\right)} \sum_{j=\varepsilon^{-1-\delta}}^{2^{-4 n}} \frac{2^{3 n}}{j^{3}} j^{2} \\
& =t^{2} \sum_{n=1} \sum_{j=1}^{\log \left(\varepsilon^{-1-\delta}\right)} 2^{\varepsilon^{-1-\delta}} 2^{-n} j^{-1} \lesssim t^{2} .
\end{align*}
$$

This completes the three-dimensional proof. We now outline the two-dimensional argument. The determinant of the Hessian matrix of $\Phi_{k, l}$ in two dimensions is given by (3.1). When $\left|\frac{k_{1}}{k_{2}}\right| \neq \pm\left|\frac{l_{1}}{l_{2}}\right|$, a calculation identical to the one contained in (3.3)-(3.7) does the job. If $\left|\frac{k_{1}}{k_{2}}\right|= \pm\left|\frac{l_{1}}{l_{2}}\right|$, we repeat the argument in (4.2) and (4.3) as follows:

$$
\begin{aligned}
& t \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta ;} ;\left|\frac{k_{1}}{l_{1}}\right|=\left|\frac{k_{2}}{l_{2}}\right|}|k|^{-\frac{3}{2}}|l|^{-\frac{3}{2}} I_{k, l}(t) \\
& \lesssim t \sum_{1 \leq\left|k_{j}\right|,\left|l_{j}\right| \lesssim \varepsilon^{-1-\delta} ;\left|\frac{k_{1}}{l_{1}}\right|=\left|\frac{k_{2}}{l_{2}}\right|}|k|^{-1}|l|^{-1} I_{k, l}(t) \\
& \lesssim t \sum_{1 \leq|k| \lesssim \varepsilon^{-1-\delta}} \sum_{\alpha=m / \operatorname{gcd}\left(k_{1}, k_{2}\right) \lesssim \varepsilon^{-1-\delta}} \alpha^{-1}|k|^{-2} \\
& =t \sum_{1 \leq|k| \lesssim \varepsilon^{-1-\delta}} \sum_{m=1}^{\approx^{-1-\delta} / \operatorname{gcd}\left(k_{1}, k_{2}\right)} \frac{\operatorname{gcd}\left(k_{1}, k_{2}\right)}{m}|k|^{-2} \\
& \lesssim t \sum_{1 \leq|k| \lesssim \varepsilon^{-1-\delta}} \operatorname{gcd}\left(k_{1}, k_{2}\right)|k|^{-2}
\end{aligned}
$$

$$
\begin{align*}
& =t \sum_{n=1}^{\approx \log \left(\varepsilon^{-1-\delta}\right)} 2^{-2 n} \sum_{|k| \approx 2^{n}} \sum_{j=1}^{\approx \varepsilon^{-1-\delta}} \sum_{\operatorname{gcd}\left(k_{1}, k_{2}\right)=j} j \\
& \approx t \sum_{n=1}^{\approx \log \left(\varepsilon^{-1-\delta}\right)} 2^{-2 n} \sum_{|k| \approx 2^{n} / j} \sum_{j=1} \sum_{\operatorname{gcd}\left(k_{1}, k_{2}\right)=1} j \\
& \lesssim t \sum_{n=1}^{\approx \log \left(\varepsilon^{-1-\delta}\right)} \sum_{j=1}^{\varepsilon^{-1-\delta}} 2^{-2 n} \frac{2^{2 n}}{j^{2}} j \\
& =t \sum_{n=1}^{\approx \log \left(\varepsilon^{-1-\delta}\right) \sum_{j=1}^{\varepsilon^{-1-\delta}} 2^{-n} j^{-1} \lesssim t .} \tag{4.4}
\end{align*}
$$

5. Appendix: Oscillatory Integrals of the First Kind

In this paper we made use of the following basic facts about oscillatory integrals of the form

$$
\begin{equation*}
I(t)=\int_{\mathbb{R}^{d}} e^{i t f(x)} \psi(x) d x \tag{5.1}
\end{equation*}
$$

where ψ is a smooth cutoff function and f is smooth. See for example [St] or [BNW] for related information.

Theorem 5.1. Suppose that f is convex and of finite type, and supose that the Hessian matrix of f contains an $M \times M$ submatrix of determinant $\geq c_{0}$. Then

$$
\begin{equation*}
|I(t)| \lesssim t^{-\frac{M}{2}} c_{0}^{-\frac{1}{2}} \tag{5.2}
\end{equation*}
$$

Theorem 5.2. Suppose that $|\nabla f(a)| \gtrsim c_{0}$. Then

$$
\begin{equation*}
|I(t)| \lesssim t^{-1} c_{0}^{-1} \tag{5.3}
\end{equation*}
$$

We note that, in both theorems, the constants may depend on the upper bounds of derivatives of f and ψ.

References

[BNW] J. Bruna, A. Nagel, and S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. (2) 127 (1988), 333-365.
[H-B] D. R. Heath-Brown, Lattice points in the sphere, Number theory in progress, vol. 2 (Zakopane-Koscielisko, 1997), pp. 883-892, de Gruyter, Berlin, 1999.
[H] C. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81-92.
[Hu] M. N. Huxley, Area, lattice points, and exponentials sums, London Math. Soc. Monogr. (N.S.), 13, Oxford Univ. Press, New York, 1996.
[ISS] A. Iosevich, E. Sawyer, and A. Seeger, Mean square discrepancy bounds for the number of lattice points in large convex bodies, J. Anal. Math. 87 (2002), 209-230.
[M] W. Muller, On the average order of the lattice rest of a convex body, Acta Arith. 80 (1997), 89-100.
[Sz] G. Szegö, Beitrage zur Theorie der Laguereschen Polynome II: Zahlentheoretische Anwendungen, Math. Z. 25 (1926), 388-404.
[St] E. M. Stein, Harmonic analysis, Princeton Univ. Press, Princeton, NJ, 1993.
[TP] J. Toth and Y. Petridis, The remainder in Weyl's law for random two-dimensional flat tori, Geom. Funct. Anal. 12 (2002), 756-775.
[V] I. M. Vinogradov, On the number of integer points in a sphere, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 957-968.
S. Hofmann

Department of Mathematics
University of Missouri
Columbia, MO 65211
hofmann@math.missouri.edu
D. Weidinger

Department of Physics
University of Illinois
Urbana, IL 61801
weidinge@students.uiuc.edu

A. Iosevich
Department of Mathematics
University of Missouri
Columbia, MO 65211
iosevich@math.missouri.edu

[^0]: Received July 22, 2002. Revision received July 21, 2003.
 Research supported in part by NSF Grant no. DMS00-87339.

