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On the Distribution of the Farey Sequence
with Odd Denominators
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& Alexandru Zaharescu

1. Introduction and Statement of Results

Given a positive integer Q, we denote by FQ the set of irreducible rational frac-
tions in (0,1] whose denominators do not exceed Q. That is,

FQ = {a/q : 1 ≤ a ≤ q ≤ Q, gcd(a, q) = 1}.
Problems concerning the distribution of Farey fractions were studied in the

1920s by Franel [6] and Landau [15] and more recently in [1; 2; 3; 4; 7; 8; 9; 10;
11; 13; 14].

It is well known that

NQ = #FQ = 6Q2/π2 + O(Q log Q).

We denote by F <
Q the set of pairs (γ, γ ′) of consecutive elements in FQ.

In this paper we are concerned with the set

FQ,odd = {a/q ∈ FQ : q odd}
of Farey fractions of order Q with odd denominators. For instance,

F8 = {
1
8 , 1

7 , 1
6 , 1

5 , 1
4 , 2

7 , 1
3 , 3

8 , 2
5 , 3

7 , 1
2 , 4

7 , 3
5 , 5

8 , 2
3 , 5

7 , 3
4 , 4

5 , 5
6 , 6

7 , 7
8 ,1

}
,

F8,odd = {
1
7 , 1

5 , 2
7 , 1

3 , 2
5 , 3

7 , 4
7 , 3

5 , 2
3 , 5

7 , 4
5 , 6

7 ,1
}
.

The set of pairs (γ, γ ′) of consecutive elements in FQ,odd is denoted by F <
Q,odd.

It is not hard to prove (see [11]) that

NQ,odd = #FQ,odd = 2Q2/π2 + O(Q log Q). (1.1)

It is well known that �(γ, γ ′) := a ′q − aq ′ = 1 whenever γ = a/q < a ′/q ′ =
γ ′ are consecutive elements in FQ. This certainly fails when γ < γ ′ are con-
secutive in FQ,odd. A first step in the study of the distribution of the values of
�(γ, γ ′) for pairs (γ, γ ′) of consecutive fractions in FQ,odd was undertaken by
Haynes in [11]. He proved that if one denotes

NQ,odd(k) = #{γ < γ ′ successive in FQ,odd : �(γ, γ ′) = k},
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then the asymptotic frequency

ρodd(k) = lim
Q→∞

NQ,odd(k)

NQ,odd

exists and is expressed as

ρodd(k) = 4

k(k + 1)(k + 2)
, k ∈ N

∗.

This can be written as

ρodd(k) =
{

Area(Tk) if k ≥ 2,

1
2 + Area(T1) if k = 1,

(1.2)

where (as in [3]) we denote Tk = {
(x, y) ∈ T :

[1+x

y

] = k
}

for k ∈ N
∗ and T =

{(x, y) ∈ [0,1] : x + y > 1}.
In this note we study, for fixed h ≥ 1, the distribution of consecutive elements

γi < γi+1 < · · · < γi+h in FQ,odd and then compute the probability that such an
(h + 1)-tuple satisfies �(γi, γi+1) = �1, . . . , �(γi+h−1, γi+h) = �h. More pre-
cisely, we prove that if one denotes

NQ,odd(�1, . . . , �h) = #{i : γi < γi+1 < · · · < γi+h consecutive in FQ,odd

�(γi+j−1, γi+j ) = �j (j = 1, . . . , h)},
then

ρodd(�1, . . . , �h) = lim
Q→∞

NQ,odd(�1, . . . , �h)

NQ,odd

exists for all h ≥ 2, and we give an explicit formula for it.
To state the main result, we shall employ the area-preserving transformation T

of T , introduced in [3] and defined by

T(x, y) =
(

y,

[
1 + x

y

]
y − x

)
. (1.3)

We denote
Tk1,...,kh

= Tk1 ∩ T −1Tk2 ∩ · · · ∩ T −h+1Tkh
.

We notice that if γ = a/q < γ ′ = a ′/q ′ < γ ′′ = a ′′/q ′′ are consecutive ele-
ments in FQ, then T

( q

Q
,

q ′
Q

) = ( q ′
Q

,
q ′′
Q

)
. Moreover, if we set κ(x, y) = [1+x

y

]
,

then the positive integer κ
( q

Q
,

q ′
Q

) = [Q+q

q ′
]

coincides with the index νQ(γ ) of the
Farey fraction γ in FQ considered in [9].

It will be worthwhile to consider the tree Th defined by the following properties:

(a) vertices are labeled by O and E;
(b) the starting vertex � is labeled by O;
(c) there is exactly one edge starting from an E vertex, and such an edge always

ends into an O vertex;
(d) there are exactly two edges starting from an O vertex, and they end (respec-

tively) into an E vertex and into an O vertex;
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Figure 1 The tree T3

(e) the number of O vertices (besides �) on any path that originates at � is equal
to h.

See Figure 1.
We also consider the set Lh of labeled paths

w =
(
� = O

k1
v1

k2
v2

k3 · · · k|w|
v|w|

)
, kj ∈ N

∗,

on the tree Th that start at � and pass through h+1 vertices labeled by O (including
�). That is, #{j : vj = O} = h. We set o(O) = odd and o(E) = even.

For each labeled path w ∈ Lh and each h-tuple � = (�1, . . . , �h) ∈ (N∗)h, we
define cOE(w) and c�(w) by induction as follows:

cOE

(
� = O

k1
E

k2
O

)
= k1, cOE

(
� = O

k1
O

)
= ∅;

c�1

(
� = O

k1
E

k2
O

)
= �1, c�1

(
� = O

k1
O

)
= ∅.

For w = w ′w ′′ ∈ Lh+1 with w ′ ∈ Lh and w ′′ = O
k

E
l

O or w ′′ =
O

k
O, we have

cOE(w) =
{

(cOE(w ′), k) if w ′′ = O
k

E
l

O,

cOE(w ′) if w ′′ = O
k

O;

c(�1,...,�h+1)(w) =
{

(c�(w ′), �h+1) if w ′′ = O
k

E
l

O,

c�(w ′) if w ′′ = O
k

O.
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For instance, if w is the labeled path

� = O
k1

E
k2

O
k3

O
k4

E
k5

O
k6

O
k7

E
k8

O

in L5, then

cOE(w) = (k1, k4, k7) and c(�1,...,�5)(w) = (�1, �3, �5).

We also denote by S� the set of labeled paths

v0 = � = O
k1

v1
k2 · · · k|w|

v|w|

such that cOE(w) = c�(w) and such that kj is even whenever it occurs as

E
kj

O E or as O
kj

O O and (respectively) odd whenever it
occurs as E

kj
O O or as O

kj
O E.

Having established this notation, we may state our main result.

Theorem 1.1. Let h ≥ 1, and let � = (�1, . . . , �h) ∈ (N∗)h. Then

ρQ,odd(�) := NQ,odd(�1, . . . , �h)

NQ,odd
= ρodd(�) + Oh

(
log2 Q

Q

)

as Q → ∞, where

ρodd(�) =
∑

w∈Lh∩S�

Area(Tk1,...,k|w|−1). (1.4)

For h = 1, this gives

ρodd(�1) =



∑
k1

Area(Tk1) + Area(T1) = 1
2 + Area(T1) if �1 = 1,∑

k2
Area(T�1 ∩ T −1Tk2 ) = Area(T�1) if �1 ≥ 2;

this is the aforementioned result of Haynes [11].
For h = 2, we obtain the following.

Corollary 1.2. ρQ,odd(�1, �2) tends to ρodd(�1, �2) for any �1, �2 ∈ N
∗ as

Q → ∞. Moreover, we have:

ρodd(1,1) =
∑

k1 even

Area(Tk1) +
∑
k1 odd

Area(Tk1,1) +
∑

k2 odd

Area(T1,k2 )(i)

+
∑

k2 even

Area(T1,k2,1);

(ii) if �2 ≥ 2, then

ρodd(1, �2) =
∑
k1 odd

Area(Tk1,�2 ) +
∑

k2 even

Area(T1,k2,�2 );
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(iii) if �1 ≥ 2, then

ρodd(�1,1) =
∑

k2 odd

Area(T�1,k2 ) +
∑

k2 even

Area(T�1,k2,1);

(iv) if min(�1, �2) ≥ 2, then

ρodd(�1, �2) =
∑

k2 even

Area(T�1,k2,�2 ).

Actually, it follows from Lemma 3.4 and Remark 3.5 that all sums in (ii), (iii),
and (iv) are finite.

In this kind of situation, one can give a short-interval version of Theorem 1.1.
For each interval I ⊆ [0,1] and for each � = (�1, . . . , �h) ∈ (N∗)h, let

NI
Q,odd = #{γ0 < · · · < γh consecutive in FQ,odd : γ0 ∈ I }

= 2|I |Q2/π2 + O(Q log Q),

NI
Q,odd(�) = #{i : γi ∈ I, γi < γi+1 < · · · < γi+h consecutive in FQ,odd

�(γi+j−1, γi+j ) = �j (j = 1, . . . , h)}.
Then the following result holds.

Theorem 1.3. Let h ≥ 1, and assume that � = (�1, . . . , �h) ∈ (N∗)h is such
that only finitely many nonvanishing terms appear on the right-hand side of (1.4).
Then, for any interval I ⊆ [0,1], we have

ρI
Q,odd(�) := NI

Q,odd(�)

NI
Q,odd

= ρodd(�) + Oh,ε(Q
−1/2+ε)

for every ε > 0.

The main techniques of a proof involve the basic properties of Farey fractions,
the transformation T from (1.3), and estimates of Weil type for Kloosterman sums
(see [5; 12; 16]).

2. Reduction of NQ,odd(�1,. . . ,�h)

We set throughout

Z
2
pr = {(a, b) ∈ Z

2 : gcd(a, b) = 1}
and, for any subset $ of R

2 and for Q ∈ N
∗, denote

∂$ = the boundary of $, Q$ = {(Qx, Qy) : (x, y) ∈ $};
M($) = #($ ∩ Z

2),

Modd($) = #{(x, y) ∈ $ ∩ Z
2 : x odd},

Meven($) = {(x, y) ∈ $ ∩ Z
2 : x even} = M($) − Modd($);
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N($) = #($ ∩ Z
2
pr),

Nodd($) = #{(x, y) ∈ $ ∩ Z
2
pr : x odd},

Neven($) = N($) − Nodd($) = {(x, y) ∈ $ ∩ Z
2
pr : x even},

Nodd,odd($) = {(x, y) ∈ $ ∩ Z
2
pr : x odd, y odd},

Nodd,even($) = {(x, y) ∈ $ ∩ Z
2
pr : x odd, y even},

Neven,odd($) = {(x, y) ∈ $ ∩ Z
2
pr : x even, y odd}.

If γi0 = ai0/qi0 < γi0+1 = ai0+1/qi0+1 < · · · < γi0+h = ai0+h/qi0+h are con-
secutive in FQ, then (cf. [3])(

qi0+r

Q
,

qi0+r+1

Q

)
= T r

(
qi0

Q
,

qi0+1

Q

)
.

There is a one-to-one correspondence between Z
2
pr ∩ QTk1,...,kr

and the set
FQ,k1,...,kr

of consecutive elements γ0 < γ1 < · · · < γr in FQ, with νQ(γj−1) =
kj (j = 1, . . . , r), that is given by

(q0, q1) �→ (γ0, γ1, . . . , γr),

where (γ0, γ1) is the unique pair in F <
Q with denominators q0 and q1 and where

(γj, γj+1) is the unique pair in F <
Q with denominators QT j

( q0
Q

,
q1
Q

)
, j = 1, . . . , r.

This also shows that the set

F odd,odd/even
Q,k1,...,kr

= {(γ0, . . . , γr) ∈ FQ,k1,...,kr
: q0 odd, q1 odd/even}

has cardinality Nodd,odd/even(QTk1,...,kr
).

Suppose that γ = a/q < a ′′/q ′′ = γ ′′ are two consecutive elements in FQ,odd

and that �(γ, γ ′′) = a ′′q − aq ′′ > 1. Since two fractions with even denomina-
tors cannot occur as consecutive elements in FQ, it follows that there is precisely
one fraction γ ′ = a ′/q ′ in FQ such that γ < γ ′ < γ ′′ are consecutive in FQ. One
readily finds (see e.g. [11, p. 4]) that

�(γ, γ ′′) = νQ(γ ) =
[

Q + q

q ′

]
= κ

(
q

Q
,

q ′

Q

)
. (2.1)

To summarize, suppose that γ < γ ′ < γ ′′ < γ ′′′ < γ IV are consecutive in
FQ and that q is odd. Denote by q, q ′, . . . , qIV (respectively) the denominators of
γ, γ ′, . . . , γ IV. Denote also

kj = kj(q, q ′) = κ

(
T j−1

(
q

Q
,

q ′

Q

))
, j ≥ 1.

Then q ′′ = k1q ′ −q, q ′′′ = k2q ′′ −q ′, and so forth. The following situations may
occur.

(O) q ′ is odd and thus �(γ, γ ′) = 1. Next, it could be either that
(OO) q ′′ is odd (if k1 is even), in which case (γ ′, γ ′′) ∈ F <

Q,odd and
�(γ ′, γ ′′) = 1, or that

(OEO) q ′′ is even (if k1 is odd), in which case q ′′′ = k2q ′′ − q ′ is odd,
(γ ′, γ ′′′) ∈ F <

Q,odd, and �(γ ′, γ ′′′) = k2.
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(E) q ′ is even and thus q ′′ is odd, (γ, γ ′′) ∈ F <
Q,odd, and �(γ, γ ′′) = k1. Next,

we have either that
(EOO) q ′′′ is odd (if k2 is odd), in which case (γ ′′, γ ′′′) ∈ F <

Q,odd and
�(γ ′′, γ ′′′) = 1, or that

(EOEO) q ′′′ is even (if k2 is even), in which case qIV = k3q ′′′ − q ′′ will also
be odd, (γ ′′, γ IV ) ∈ F <

Q,odd, and �(γ ′′, γ IV ) = k3.

This suggests that one may express NQ,odd(�1, . . . , �h) for any h ≥ 1 by an in-
ductive procedure. Note first that

NQ,odd(�1) =




∑
k1

Nodd,odd(QTk1) + ∑
k2

Nodd,even(QT1,k2 )

= Nodd,odd(QT ) + Nodd,even(QT�1) if �1 = 1,∑
k2

Nodd,even(QT�1,k2 ) = Nodd,even(QT�1) if �1 ≥ 2.

One may also express NQ,odd(�1, �2) as


∑
k1 even Nodd,odd(QTk1) + ∑

k1 odd Nodd,odd(QTk1,1)

+ ∑
k2 odd Nodd,even(QT1,k2 )

+ ∑
k2 even Nodd,even(QT1,k2,1) if �1 = �2 = 1,∑

k1 odd Nodd,odd(QTk1,�2 )

+ ∑
k2 even Nodd,even(QT1,k2,�2 ) if �1 = 1 and �2 ≥ 2,∑

k2 odd Nodd,even(QT�1,k2 )

+ ∑
k2 even Nodd,even(QT�1,k2,1) if �1 ≥ 2 and �2 = 1,∑

k2 even Nodd,even(QT�1,k2,�2 ) if �1, �2 ≥ 2.

For h ≥ 2, we may express ρQ,odd(�1, . . . , �h) as in the following proposition.

Proposition 2.1. Assume that h ≥ 2 and � = (�1, . . . , �h) ∈ (N∗)h. Then

ρQ,odd(�) = 1

NQ,odd

∑
w∈Lh∩S�

Nodd,o(v1)(QTk1,...,k|w|−1). (2.2)

3. Estimating Nodd,odd(	) and Nodd,even(	)

For a bounded region $ in R
2 with rectifiable boundary and for a function f de-

fined on $, we set

Sf ($) =
∑

(a,b)∈$∩Z2

f(a, b), S ′
f ($) =

∑
(a,b)∈$∩Z

2
pr

f(a, b),

Sf,odd/even($) =
∑

(a,b)∈$∩Z
2

a odd/even

f(a, b), S ′
f,odd/even =

∑
(a,b)∈$∩Z

2
pr

a odd/even

f(a, b),
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S ′
f,odd,odd/even($) =

∑
(a,b)∈$∩Z

2
pr

a odd, b odd/even

f(a, b),

‖Df ‖L∞($) = sup
(x,y)∈$

(∣∣∣∣∂f

∂x
(x, y)

∣∣∣∣ +
∣∣∣∣∂f

∂y
(x, y)

∣∣∣∣
)

.

Lemma 3.1. Let R1, R2 > 0, and let R ≥ min(R1, R2). Then, for any region
$ ⊆ [0, R1] × [0, R2 ] and any function f that is C1 on $, we have

S ′
f,odd($) = 4

π2

∫∫
$

f(x, y) dx dy + O(Af,R,$).(i)

S ′
f,odd,odd/even($) = 2

π2

∫∫
$

f(x, y) dx dy + O(Af,R,$).(ii)

S ′
f,even,odd($) = 2

π2

∫∫
$

f(x, y) dx dy + O(Af,R,$),(iii)

where

Af,R,$ = ‖f ‖L1($)

R
+ ‖Df ‖L∞($) Area($) log R

+ ‖f ‖L∞($)(R + length(∂$) log R).

Proof. (i) It is well known (see e.g. [3, Lemma 1]) that

Sf ($) =
∫∫
$

f(x, y) dx dy + O(Bf,$),

where

Bf,$ = ‖Df ‖L∞($) Area($) + ‖f ‖L∞($)(1 + length(∂$)).

Denoting $′ = {(x/2, y) : (x, y) ∈ $}, we have that Sf,even($)—and eventu-
ally Sf,odd($)—can be expressed as∑

(a,b)∈$′∩Z2

f(2a, b) =
∫∫
$′

f(2x, y) dx dy + O(Bf,$′)

= 1

2

∫∫
$

f(x, y) dx dy + O(Bf,$). (3.1)

We now proceed to estimate S ′
f,odd($), which is written as∑

(a,b)∈$
a odd

f(a, b) −
∑

(a,b)∈$/3
a odd

f(a, b) −
∑

(a,b)∈$/5
a odd

f(a, b) − · · ·

=
∑

1≤n≤R
n odd

µ(n)
∑

(a,b)∈$/n
a odd

f(na, nb). (3.2)
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The inner sum in (3.2) is expressed by means of (3.1) as

1

2

∫∫
$/n

f(nx, ny) dx dy

+ O

(‖Df ‖L∞($) Area($)

n
+ ‖f ‖L∞($)

(
1 + length(∂$)

n

))
. (3.3)

Changing (nx, ny) to (x, y) in the double integral and summing over n, we infer
from (3.2) and (3.3) that

S ′
f,odd($) = 1

2

∑
1≤n≤R

n odd

µ(n)

n2

∫∫
$

f(x, y) dx dy + O(‖Df ‖L∞($) Area($) log R)

+ O
(‖f ‖L∞($)(R + length(∂$) log R)

)
.

The equality (i) now follows from∑
1≤n≤R

n odd

µ(n)

n2
= 8

π2
+ O

(
1

R

)
.

The equality (ii) follows by combining (i) with

S ′
f,odd,even($) =

∑
(a,b)∈$′′∩Z

2
pr

a odd

f(a, 2b),

where we set $′′ = {(x, y/2) : (x, y) ∈ $}, and then using∫∫
$′′

f(x, 2y) dx dy = 1

2

∫∫
$

f(x, y) dx dy.

The equality (iii) now follows from symmetry.

We need the following improvement of Lemma 1 in [11].

Corollary 3.2. Let R1, R2 > 0, and let R ≥ min(R1, R2). Then, for any re-
gion $ ⊆ [0, R1] × [0, R2 ] with rectifiable boundary, we have

(i) Nodd($) = 4 Area($)/π2 + O(CR,$),

(ii) Neven($) = 2 Area($)/π2 + O(CR,$),

(iii) Nodd,even($) = 2 Area($)/π2 + O(CR,$),

(iv) Nodd,odd($) = 2 Area($)/π2 + O(CR,$), and
(v) Neven,odd($) = 2 Area($)/π2 + O(CR,$),

where
CR,$ = Area($)/R + R + length(∂$) log R.

The following lemma is contained in [3]. We include the proof for the reader’s
convenience.

Lemma 3.3. For any integers k1, . . . , kr ≥ 1, the set Tk1,...,kr
is a convex polygon.



566 F. P. Boca, C. Cobeli , & A. Zaharescu

Proof. If for (x, y) ∈ R
2 we define L0(x, y) = x, L1(x, y) = y, and Li+1(x, y) =

kiLi(x, y) − Li−1(x, y) for i ≥ 1, then Tk1,...,kr
is defined by the following

inequalities:

1 ≥ L0(x, y), L1(x, y), . . . , Lr+1(x, y) > 0,

L0(x, y) + L1(x, y), L1(x, y) + L2(x, y), . . . , Lr(x, y) + Lr+1(x, y) > 1.

Because L0, L1, . . . , Lr+1 are linear functions, the set Tk1,...,kr
is the intersection

of finitely many convex polygons.

Lemma 3.4. (i) Let r ≥ 1. Then, for any m ≥ cr = 4r + 2, we have that all sets
T −iTm (i = 0,1, . . . , r) are convex. Moreover,

T −1Tm ⊂ T1,

r⋃
i=2

T −iTm ⊂ T2,

and, for all (x, y) ∈ Tm and i ∈ {1, 2, . . . , r},
T −i(x, y) = (x − iy, x − (i − 1)y).

(ii) For any m ≥ cr ,

T Tm ⊂ T1,

r⋃
i=2

T iTm ⊂ T2,

and, for all (x, y) ∈ Tm and i ∈ {2, . . . , r},
T i(x, y) = ((m + 2 − i)y − x, (m + 1 − i)y − x).

(iii) Let j ∈ {1, . . . , r}. Then

length(∂T j−1Tk1,...,kr
) � r

1

kj

uniformly in k1, . . . , kj−1, kj+1, . . . , kr as kj → ∞.

Proof. (i) In the beginning we follow closely the proof of Lemma 5 in [3]. The
inverse of the transformation T is given by

T −1(x, y) =
([

1 + y

x

]
x − y, x

)
, (x, y) ∈ T . (3.4)

Since 0 ≤ 1 − y < x, we also have
[1−y

x

] = 0 and thus, for all (x, y) ∈ T ,

κ(T −1(x, y)) =
[

1 + [1+y

x

]
x − y

x

]
=

[
1 + y

x

]
+

[
1 − y

x

]
=

[
1 + y

x

]
. (3.5)

Consider next a fixed element (x, y) ∈ Tm with m ≥ cr . Since m ≥ 5, we have

m ≤ 1 + x

y
< m + 1 and x >

m − 1

m + 1
.

This leads to
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1 <
1 + y

x
≤ 1 + 1+x

m

x
= x + m + 1

mx
<

m−1
m+1

+ m + 1

m · m−1
m+1

= m + 3

m − 1
≤ 2,

showing that κ(T −1(x, y)) = 1 and—using also (3.4)—that

T −1(x, y) = (x − y, x) ∈ T1. (3.6)

Next, the inequality m ≥ cr gives

1 + 2(2r − 1)

m
≤ 1 + m − 4

m
≤ 1 + m − 3

m + 1
= 2(m − 1)

m + 1
. (3.7)

Hence the inequalities x > m−1
m+1 and y ≤ 2

m
, fulfilled by (x, y) ∈ Tm (see [3, Fig-

ure 1]), imply in conjunction with (3.7) that 2x > 1 + (2i − 1)y for all (x, y) ∈
Tm and i ∈ {2, . . . , r}, or equivalently that

1 + y

x − (i − 1)y
< 2, i ∈ {2, . . . , r}.

At the same time, it is clear that
1+y

x−(i−1)y
> 1, so that[

1 + x − (i − 2)y

x − (i − 1)y

]
= 1 +

[
1 + y

x − (i − 1)y

]
= 2, i ∈ {2, . . . , r}. (3.8)

For i = 2, equalities (3.5), (3.7), and (3.8) give

κ(T −2(x, y)) =
[

1 + x

x − y

]
= 2,

T −2(x, y) = (2(x − y) − x, x − y) = (x − 2y, x − y);
thus, by (3.5) and by (3.8) with i = 3 we have

κ(T −3(x, y)) =
[

1 + x − y

x − 2y

]
= 2,

T −3(x, y) = (2(x − 2y) − x + y, x − 2y) = (x − 3y, x − 2y).

Arguing by induction, it follows at once that, for all i ∈ {2, . . . , r},

κ(T −i(x, y)) =
[

1 + x − (i − 2)y

x − (i − 1)y

]
= 2,

T −i(x, y) = (x − iy, x − (i − 1)y).

As a consequence, T −iTm is the quadrangle with vertices at
(
1− 2i

m
,1− 2(i−1)

m

)
,(

1 − 2i
m+1,1 − 2(i−1)

m+1

)
,
(
1 − 2(i+1)

m+2 ,1 − 2i
m+2

)
, and

(
1 − 2(i+1)

m+1 ,1 − 2i
m+1

)
. This quad-

rangle is obviously contained in T2.

(ii) Let (x, y) ∈ Tm. Then T(x, y) = (y, my − x) and so

κ(T (x, y)) =
[

1 + y

my − x

]
≥ 1.
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Since m ≤ 1+x

y
< m + 1 and y ≤ 2

m
≤ 1

3 , it follows that (2m − 1)y ≥
1+(2m+2)y−2 > 1+2x. This leads to 1+y

my−x
< 2, and so we obtain κ(T (x, y)) =

1. Therefore,
T 2(x, y) = (my − x, (m − 1)y − x).

On the other hand, y ≤ 1+x

m
< 1+x

m−i
; whence

2 ≤
[

1 + (m + 2 − i)y − x

(m + 1 − i)y − x

]
= 1 +

[
1 + y

(m + 1 − i)y − x

]
, i ≥ 1. (3.9)

The inequality m ≥ 4r + 2 leads to m − 2r ≥ (2r + 1)x, which is equivalent
to (m + 1)(1 + 2x) ≤ (2m + 1 − 2r)(1 + x). Since 1 + x < (m + 1)y, we infer
that 1 + 2x < (2m + 1 − 2r)y ≤ (2m + 1 − 2i)y. That is,

1 + y

(m + 1 − i)y − x
< 2, i ∈ {1, . . . , r}. (3.10)

By (3.9) and (3.10), we gather that[
1 + (m + 2 − i)y − x

(m + 1 − i)y − x

]
= 2, i ∈ {2, . . . , r}. (3.11)

Now we infer inductively that T i(x, y) ∈ T2 and that

T i(x, y) = ((m + 2 − i)y − x, (m + 1 − i)y − x), i ∈ {2, . . . , r}.
(iii) We use the fact that if $1 and $2 are convex polygons with $1 ⊆ $2,

then length(∂$1) ≤ length(∂$2). For kj > cr this yields, in conjunction with (i)
and (ii),

length(∂T j−1Tk1,...,kr
) ≤ length(∂Tkj

) � r

1

kj

uniformly in k1, . . . , kj−1, kj+1, . . . , kr .

Remark 3.5. Suppose that (x, y) ∈ Tm with m ≥ 3. Then 1+x

y
< m +1 and y ≤

2
m

; hence
1+y

my−x
<

1+2/m

1−y
≤ 1+2/m

1−2/m
= m+2

m−2 and thus⋃
m≥6

T Tm ⊂ T1, T (T4 ∪ T5) ⊂ T1 ∪ T2, and T T3 ⊂ T1 ∪ T2 ∪ T3 ∪ T4.

If (x, y) ∈ T2, then y > 1+x

3 ≥ x

2 + 1
6 ≥ 1

3 + 1
6 = 1

2 and so

T T2 ⊂ T1 ∪ T2 ∪ T3.

On the other hand, if (x, y) ∈ Tm (m ≥ 2) then it follows from the proof of
Lemma 3.4(i) that κ(T −1(x, y)) < m+3

m−1 . Therefore,⋃
m≥5

T Tm ⊂ T1, T (T3 ∪ T4) ⊂ T1 ∪ T2, and T T2 ⊂ T1 ∪ T2 ∪ T3 ∪ T4.

Owing to the presence of the term R in CR,$, we need one more fact, which was
noticed already (in a different form) in [4].
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Lemma 3.6. Let k ∈ N
∗ and let D be a subset of T . Then the following equalities

hold.

(i) For k even:

Nodd,even(Q(Tk ∩ D)) = Neven,odd(QT(Tk ∩ D)),

Neven,odd(Q(Tk ∩ D)) = Nodd,even(QT(Tk ∩ D)),

Nodd,odd(Q(Tk ∩ D)) = Nodd,odd(QT(Tk ∩ D)).

(ii) For k odd:

Nodd,even(Q(Tk ∩ D)) = Neven,odd(QT(Tk ∩ D)),

Neven,odd(Q(Tk ∩ D)) = Nodd,odd(QT(Tk ∩ D)),

Nodd,odd(Q(Tk ∩ D)) = Nodd,even(QT(Tk ∩ D)).

Proof. We denote by Tk the linear transformation defined on R
2 by Tk(x, y) =

(y, ky − x). Assume that k is even and let (a, b) ∈ Q(Tk ∩ D). Then T
(

a
Q

, b
Q

) =(
b
Q

, kb
Q

− a
Q

)
, so

QT(Tk ∩ D) = {(b, kb − a) : (a, b) ∈ QTk ∩ QD} = Tk(Q(Tk ∩ D)).

Moreover, since the matrix that defines Tk is unimodular, the elements of Z
2
pr ∩

Q(Tk ∩D) are in 1–1 correspondence with the elements of Z
2
pr ∩Tk(Q(Tk ∩D)) =

Z
2
pr ∩ Q(T(Tk ∩ D)). Besides, we see that a is odd and b is even if and only if b

is even and kb − a is odd, implying that

#{(a, b) ∈ Z
2
pr ∩ Q(Tk ∩ D) : a odd, b even}

= #{(c, d ) ∈ Z
2
pr ∩ QT(Tk ∩ D) : c even, d odd}.

The other five equalities follow in a similar way.

Proof of Theorem 1.1. We wish to apply Corollary 3.2 to $ = QTk1,...,kr
. Note

first that, since T is area-preserving, we have

Area(Tk1,...,kr
) ≤ Area(T −j+1Tkj

) = Area(Tkj
) � 1

k3
j

, j ∈ {1, . . . , r}.

We claim that (for every j ∈ {1, . . . , r}) all the numbers Nodd,odd(QTk1,...,kr
),

Nodd,even(QTk1,...,kr
), and Neven,odd(QTk1,...,kr

) can be expressed as

2Q2

π2
Area(Tk1,...,kr

) + Or

(
Q

kj

log Q

)
(3.12)

uniformly in k1, . . . , kj−1, kj+1, . . . , kr as Q → ∞.

If j ≥ 2, we apply Lemma 3.6 successively j − 1 times: to k1 and D =
T −1Tk2,...,kr

; to k2 and D = T Tk1 ∩ T −1Tk3,...,kr
; . . . ; and to kj−1 and D =

T j−2Tk1,...,kj−2 ∩ T −1Tkj,...,kr
. This yields

Nodd,odd(QTk1,...,kr
) = Nδ1,δ2(QT j−1Tk1,...,kr

)
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for some pair (δ1, δ2) ∈ {(odd, odd), (odd, even), (even, odd)} that depends on
k1, . . . , kj−1. We may now apply Corollary 3.2 to $ = QT j−1Tk1,...,kr

⊆
QTkj

⊂ [0, Q]× [0, 2Q/kj ], with R � Q/kj, Area($) ≤ Area(QTkj
) � Q2/k3

j ,

and (according to Lemma 3.4) length(∂$) � r Q/kj . Therefore, we gather that
Nodd,odd(QTk1,...,kr

) is indeed given by (3.12). The same estimates are proved for
Nodd,even(QTk1,...,kr

) and Neven,odd(QTk1,...,kr
) in a similar fashion.

We may now complete the proof of Theorem 1.1. If kj ≥ cr , then we infer
from Lemma 3.4(i) that Tk1,...,kr

= ∅ unless k1 = · · · = kj−2 = kj+2 = · · · =
kr = 2 and kj−1 = kj+1 = 1. On the other hand, we see from [4, Rem. 2.3] that
QTk1,...,kr

∩ Z
2 = ∅ unless max(k1, . . . , kr ) ≤ 2Q.

As a result, the only nonzero terms that may appear in the sum from (2.2) arise
from paths w having all labels kj ≤ 2Q and at most one > c2h−1. Taking now
also into account (3.12), the sum

∑
w∈Lh∩S�

Nodd,o(v1)(QTk1,...,k|w|−1) can be ex-
pressed as

2Q2

π2

∑
w∈Lh∩S�

Area(Tk1,...,k|w|−1) + Oh

( 2Q∑
k=1

Q log Q

k

)

= 2Q2

π2

∑
w∈Lh∩S�

Area(Tk1,...,k|w|−1) + Oh(Q log2 Q). (3.13)

The statement in Theorem 1.1 now follows from Proposition 2.1, (3.13), and
equation (1.1).

4. Consecutive Farey Fractions with Odd Denominators
in Short Intervals

For each interval I ⊆ [0,1] and each subset $ ⊆ R
2, we set

$I = {(a, b) ∈ $ ∩ Z
2
pr : b̄ ∈ Ia},

where b̄ denotes the unique number in {1, . . . , a − 1} for which bb̄ = 1 (mod a).

If I = [α, β], then we also set Ia = [a(1 − β), a(1 − α)].
For any function f defined on $, denote

SI
f,odd,odd/even($) =

∑
(a,b)∈$∩Z

2
pr

a odd, b odd/even
b̄∈Ia

f(a, b).

The following analogue of Proposition 2.1 holds and is similarly proved.

Proposition 4.1. Let h ≥ 1, and let � = (�1, . . . , �h) ∈ (N∗)h. Then, for any
interval I ⊆ [0,1],

NI
Q,odd(�) =

∑
w∈Lh∩S�

Nodd,o(v1)((QTk1,...,k|w|−1)
I ).

Proposition 4.2. Assume that $ ⊆ [0, R1]× [0, R2 ] is a convex region and that
f is a C1 function on $. Then SI

f,odd,odd/even($) is given by
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|I |S ′
f,odd,odd/even($) + Oε

(‖f ‖L∞($)(R2 log R1 + mf R
1/2+ε

1 (R1 + R2))
)

for every ε > 0, where mf is an upper limit for the number of intervals of mono-
tonicity of the functions y �→ f(x, y).

Proof. The proof is similar to that of Lemma 8 in [3]. As in [3, (65)], we write

SI
f,odd,odd/even($) = S1 + S2, (4.1)

where

S1 =
∑

(a,b)∈$∩Z
2
pr

a odd, b odd/even

f(a, b)
∑
x∈Ia

1

a

=
∑

(a,b)∈$∩Z
2
pr

a odd, b odd/even

f(a, b)
1

a
(|Ia| + O(1))

= |I |S ′
f,odd,odd/even($) + O(‖f ‖L∞($)R2 log R1) (4.2)

and

S2 =
∑

(a,b)∈$∩Z
2
pr

a odd, b odd/even

f(a, b)
∑
x∈Ia

1

a

a−1∑
l=1

e

(
l(b̄ − x)

a

)
.

As in [3, (67)], we write

S2 =
∑

a∈pr1($)
a odd

1

a

a−1∑
l=1

( ∑
x∈Ia

e

(
− lx

a

))
Sf,odd/even,I ′

a
(l, a), (4.3)

where I ′
a = {b : (a, b) ∈ $} is an interval for every a in the projection pr1($) of

$ on the first coordinate. Here, for any interval J we denote

Sf,odd/even,J(l, a) =
∑
b∈J

b odd/even
gcd(a,b)=1

f(a, b)e

(
lb̄

a

)
(4.4)

and

Sf,J(l, a) =
∑
b∈J

gcd(a,b)=1

f(a, b)e

(
lb̄

a

)
.

By [3, Lemma 9] we have

|Sf,J(l, a)| �ε R$,f,J,l,a,ε, (4.5)

where

R$,f,J,l,a,ε = mf‖f ‖L∞($)(|J |a−1/2+ε + a1/2+ε) gcd(l, a)1/2.
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Writing now

Sf,even,J(l, a) =
∑

c∈J/2
gcd(a,c)=1

f(a, 2c)e

(
2̄lc̄

a

)
= Sf2,J/2(2̄l, a),

where f2(x, y) = f(x, 2y), and then using (4.5) and Sf,odd,J(l, a) = Sf,J(l, a) −
Sf,even,J(l, a), we infer that

max(|Sf,even,J(l, a)|, |Sf,odd,J(l, a)|) �ε R$,f,J,l,a,ε. (4.6)

As in [3, (67)–(69)], we infer—from (4.3), (4.4), (4.6), the fact that the inner
sum in (4.3) is a geometric progression � (

a
l
, a

a−l

)
, and |I ′

a| ≤ R2—that

|S2| �
R1∑

a=1

1

a

a−1∑
l=1

a

l
|Sf,odd/even,I ′

a
(l, a)|

�ε mf‖f ‖L∞($)R
1/2+ε

1 (R1 + R2). (4.7)

The desired conclusion now follows from (4.1), (4.2), and (4.7).

Corollary 4.3.

Nodd,odd/even((QTk1,...,kr
)I ) = |I |Nodd,odd/even(QTk1,...,kr

) + Oε(Q
3/2+ε).

Theorem 1.3 is now a consequence of Proposition 4.1 and Corollary 4.3.
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