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On the Boundary Accumulation Points for the
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1. Introduction

For a domain� in Cn, we denote by Aut(�) the group of holomorphic automor-
phisms of�. It is obvious that Aut(�) is a topological group with respect to the
law of composition and the compact-open topology. In particular, it is a theorem
of H. Cartan that Aut(�) is in fact a Lie group if� is bounded.

In light of the outstanding question “Which domains possess noncompact auto-
morphism group?” there is much interest focused upon the existence and nonexis-
tence of orbits of the automorphism group action accumulating at a given bound-
ary point. The well-known Greene–Krantz conjecture belongs to such a line of
research. In this paper, we discuss thefinite-type boundary points that repel auto-
morphism orbits.

Denote byτ6(q) the D’Angelo type (see [10]) atq of the real hypersurface6
in Cn. Now we present our main theorem.

Theorem 1.1. Let� be a domain inC2. Assume that there exists a pointp ∈ ∂�
admitting an open neighborhoodU in C2 satisfying the conditions

(1) the boundary∂� isC∞-smooth pseudoconvex inU, and
(2) τ∂�(q) < τ∂�(p) <∞ for everyq ∈U ∩ ∂� \ {p}.
Then there are no automorphism orbits in� accumulating atp.

In particular, this implies the following theorem of Byun.

Theorem 1.2 [8]. In the Kohn–Nirenberg domain defined by the inequality

Rew + |zw|2 + |z|8+ 15

7
|z|2 Rez6 < 0,

there does not exist any automorphism group orbit accumulating at the origin.

Although several experts commented that the nonconvexifiability of the boundary
at the origin should be the reason for the conclusion of Byun’s theorem, it is now
apparent by our main theorem that the essential reason in fact lies elsewhere: any
isolated maximum finite-type boundary point repels automorphism orbits.
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Another important theme in the study of pseudoconvex domains concerns the
setS(�) of all orbit accumulation boundary points of the given domain�. Fu,
Isaev, and Krantz [11] analyzed the structure ofS(�) for the case when� is Rein-
hardt, showing thatS(�) forms a manifold of odd dimension between1and 2n−1
inclusive. Isaev and Krantz [15] showed that it is a perfect set if� is a bounded
pseudoconvex domain with finite type boundary and ifS(�) contains at least three
points. Huang [14] analyzed the rank of Levi forms at the boundary accumula-
tion point. We present in this article a resonant result in a more general situation,
without assuming the boundedness or the Rienhardtness condition.

Theorem 1.3. Let� be a domain inC2 with a boundary pointp ∈ ∂� admit-
ting an open neighborhoodU in which∂� is C∞-smooth pseudoconvex of finite
type in the sense of D’Angelo. Ifp is an automorphism orbit accumulation point,
thenp is also an accumulation point of the setS(�).

Corollary 1.4. If � is a pseudoconvex domain withC∞-smooth boundary of
D’Angelo finite type, thenS(�) is a perfect set.

Acknowledgment. This work is part of the author’s dissertation for his Doc-
toral degree at the Pohang University of Science and Technology in Korea. He
would like to express his gratitude to his advisor Kang-Tae Kim for guidance and
encouragement throughout this work.

Terminology and Notation. Throughout this paper,(z, w) denotes the stan-
dard Euclidean coordinate system ofC2.

From now on,P(z) will be understood as a real-valued polynomial. Then we
define the following concepts.

(1) aj � bj if and only if there is aC > 0 such thataj ≤ Cbj for all j, where
aj, bj are positive real numbers.

(2) P2k denotes the set of all real-valued polynomials with degree less than 2k+1
that has no harmonic terms. This is a finite-dimensionalR-vector space.
‖P(z)‖ represents the maximum of absolute values of all coefficients of the
polynomialP(z). Naturally,‖·‖ defines a norm onP2k.

(3) H2k is a set of all homogeneous subharmonic polynomials of degree 2k with-
out harmonic terms.

(4) P(z) ∼ Q(z) (i.e.,P is equivalent toQ) if and only if there exist a real num-
berγ > 0 as well as a holomorphic polynomialr(z) and an automorphism
g(z) of C such that

P(z) = γ Rer(z)+ γQ(g(z)).
(5) P ∗(z) denotes a polynomialQ(z) whose terms consist of all terms inP(z)

exceptharmonic terms.
(6) P h(z) = P(z)− P ∗(z).
(7) MQ = {(z, w) ∈C2 | Rew +Q(z) < 0}, whereQ ∈P2k is called themodel

domainof Q.
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(8) LetD andDj be domains inC2. We say thatDj convergestoD if the follow-
ing two properties hold:
(a) for every compact setK ⊂ D, there is an integerN such thatK ⊂ Dj if

j ≥ N;
(b) if K is a compact set that is contained inDj for all sufficiently largej,

thenK ⊂ D.
This is, in effect, equivalent to the local Hausdorff set convergence ofDj to
D in C2.

2. The Scaling Method and Its Convergence

The content of this section follows the treatment in [6]. However, for the sake of
a smooth exposition, we choose to include some details.

LetD be a domain inC2 and letp0 ∈ ∂D. Assume that∂D is smooth and pseu-
doconvex of finite type in a neighborhood ofp0. Let 2k be the type of∂D atp0

in the sense of D’Angelo [10]. We further assume thatp0 = (0,0) and that Re∂
∂w

is an outward normal vector to∂D atp0.

Let {pj} be a sequence of points inD that converges top0. For everyj suffi-
ciently large, there exists a unique pointqj ∈ ∂D such that

pj + (0, εj ) = qj, εj > 0.

Write qj = (aj, bj ) ∈ ∂D. According to [9, Prop.1.1], there is a neighborhood
U of p0 such that

(z, w)∈D ∩ U ⇐⇒ Rew +H(z)+ R( Imw, z) < 0,

whereH ∈ H2k andR( Imw, z) ∼ o(|z|2k + |Imw|). Consider a sequence of
maps8j defined by

(8j : C2→ C2) : (z, w) 7→ (z− aj, w − bj + cj(z− aj )),
wherecj ∈C is chosen so that the complex tangent line of∂8j(D) atp0 is {(z, w) |
w = 0}. Then we have

8j(qj ) = (0,0), 8j(pj ) = (0,−εj ),
and

(z, w)∈8j(D ∩ U) ⇐⇒ Rew +
2k∑
l=2

Pl,j(z)+ Rj( Imw, z) < 0,

where thePl,j(z) are homogeneous polynomials of degreel and whereRj =
O(|z|2k+1+ |Imw|).

We may letPl,j(z) = P ∗l,j(z) + P h
l,j(z). SinceP h

l,j is harmonic, there exist
αl,j ∈C such that

P h
l,j(z) = αl,j z l + αl,j z l .
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For eachj, we define a map9j by

(9j : C2→ C2) : (z, w) 7→
(
z,w + 2

2k∑
l=2

αl,j z
l(z)

)
.

Then

(z, w)∈9j B8j(D ∩ U) ⇐⇒ Rew +
2k∑
l=2

P ∗l,j(z)+ R ′j( Imw, z) < 0.

We chooseδj > 0 such that∥∥∥∥ε−1
j

2k∑
l=2

P ∗l,j(δj z)
∥∥∥∥ = 1. (2.1)

Since limP ∗l,j = 0 (l < 2k) and limP ∗2k,j = H, we obtainδj � ε1/2k
j .

Finally, the scaling map3j is defined by

3j(z,w) =
(
z

δj
,
w

εj

)
for every(z, w)∈C2. Then

(z, w)∈3j B9j B8j(D ∩ U)

⇐⇒ Rew + 1

εj

2k∑
l=2

P ∗l,j(δj z)+
1

εj
R ′j(εj Imw, δj z) < 0.

SetTj = 3j B9j B8j . Since the norm is fixed independently ofj, the sequence
of polynomials

{
ε−1
j

∑2k
l=2P

∗
l,j(δj z)

}
converges, choosing a subsequence if neces-

sary, to some polynomialQ of degree at most 2k (we callQ the limit polynomial
with respect topj ). Since the remainder term of the defining function tends to zero
asj →∞, we see that the sequence of domainsTj(D ∩U) converges to a model
domain

{(z, w) | Rew +Q(z) < 0}
and that‖Q‖ = 1. The following theorem by Berteloot guarantees that the se-
quence of such scaling maps forms a normal family and that the limit polynomial
becomes a homogeneous polynomial.

Theorem 2.1 [6]. Let� be a domain inC2 and letp0 be a point on∂�. Suppose
that ∂� is of classC∞, pseudoconvex, and of finite type in a neighborhood ofp0.

Let φj ∈Aut(�) satisfy
lim
j→∞φj(z0) = p0

for a pointz0 ∈�. Then� is biholomorphically equivalent to the model domain
MH, whereH ∈Hτ∂�(p0).
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3. Proofs

Let1 denote the open unit disc inC.

Lemma 3.1. Let�be a domain inCn and letp be a boundary point of�. Assume
that there exist an open neighborhoodU of p in Cn and a sequence of injective
proper holomorphic mapsgj : 1→ � satisfying the following conditions:

(1) U ∩� is pseudoconvex; and
(2) limj→∞ gj(0) = p.
LetE =⋃∞j=1 gj(1) ∩ ∂�. Thenp is not an isolated point ofE.

Proof. Expecting a contradiction, we suppose thatp is an isolated point ofE. So,
there exists aδ > 0 such that

‖p − q‖ ≥ δ ∀q ∈E \ {p}.
Choosing a subsequence if necessary, we may assume that

gj(0)∈B
(
p; δ

4

)
∀j = 1,2, . . . .

Now, for eacht with δ/3< t < 2δ/3, we let

St = {z∈Cn | ‖p − z‖ = t},
Bt = {z∈Cn | ‖p − z‖ < t}.

Applying the Morse–Sard theorem to the smooth map

F : gm(D)→ R

defined byF(ζ) = ‖ζ −p‖2,we infer that,for each positive integerm and for al-
most all values fort, the setSt ∩gm(1) is in fact a real one-dimensional manifold
without boundary.We can also conclude thatBt ∩gm(D) is a smooth submanifold
with boundary inSt ∩ gm(1).

Moreover, we shall verify thatSt∩gm(1) is a compact set. Since it is a bounded
subset ofCn, we need only prove that it is closed.

Letx ∈ St ∩ gm(1). Then we have a sequencexk ∈ St∩gm(1) such thatxk → x

ask→∞. Sincexk ∈gm(1), there exists a sequenceζk ∈1 such thatgm(ζk) =
xk for eachk. Becausē1 is compact, there exist a pointζ ∈ 1̄ and a subsequence
ζkl such thatζkl → ζ asl → ∞. If ζ ∈ ∂1 then, by virtue of the properness of
gm, we have

x = lim
l→∞ xkl

= lim
l→∞ gm(ζkl )

∈ ∂�.
This leads us to‖x − p‖ = t andx ∈E \ {p}. Since this is impossible, we must
haveζ ∈1. Hencex = gm(ζ)∈ gm(1). This implies thatSt ∩ gm(1) is closed.
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LetXm denote the connected component ofBt ∩ gm(1) with gm(0)∈Xm, and
letGm = g−1

m (Xm). ThenGm is a domain in1.

Claim. There exists a simple closed curveγm in 1 satisfying

(1) gm(γm) ⊂ St and
(2) 0 is an interior point ofγm.

Proof of Claim.Notice that 0 is an interior point ofGm and thatg−1
m (St ∩ gm(1))

is a finite union of circles. Therefore, the claim follows by the argument principle
as soon as we prove that∂Gm ⊂ g−1

m (St ∩ gm(1)).
Step 1: Ifx ∈ ∂Gm ∩ 1, thenx ∈ g−1

m (St ∩ gm(1)). Sincex ∈ 1 ∩ ∂Gm, we
obtaingm(x) ∈ Xm \ Xm. Sincegm(x) ∈ �, we havegm(x) ∈ � ∩ Xm \ Xm ⊂
St ∩ gm(1). Therefore,x ∈g−1

m (St ∩ gm(1)).
Step 2:∂Gm ⊂ g−1

m (St ∩gm(1)). In order to prove this, we suppose that there is
a pointx ∈ ∂1 ∩ ∂Gm. We can chooser0 < 1 so thatg−1

m (St ∩ gm(1)) ⊂ {z∈C |
|z| < r0}. Now, we have only to show thatCr = {z∈C | |z| = r} is contained in
Gm if r0 < r < 1. The existence ofx ∈ ∂1 guarantees thatCr ∩Gm is nonempty.
If Cr 6⊂ Gm, then there is a pointq ∈Cr ∩ ∂Gm. By step 1,q ∈g−1

m (St ∩ gm(1))
and|q| = r. This is a contradiction.

Now let γm be the simply connected curve selected in the preceding claim. Let
0m be the set of all interior points ofγm, which contains the origin by construc-
tion. We then choose a Riemann mapfm : 1 → 0m with fm(0) = 0. Then the
compositionhm = gm B fm : 1→ � defines an analytic disc satisfying

hm(0) = gm(0),
hm(∂1) = gm(γm) ⊂ St .

Since� is pseudoconvex, it follows that−logd(x, ∂�) : � → R is a plurisub-
harmonic function, whered(x, ∂�) denotes the Euclidean distance fromx to the
boundary∂�. Consequently,

d(hm(∂1), ∂�) = d(hm(1), ∂�)
≤ d(hm(0), ∂�)
≤ d(gm(0), p)
→ 0 asm→∞.

In particular, there existqm ∈ hm(∂1) ⊂ St such that

d(qm, ∂�) = d(hm(∂1), ∂�)→ 0

asm → ∞. Thus, there exists aq ∈ St ∩ ∂� such thatq is a limit point of the
sequenceqm. Namely, we have found a pointq ∈E ∩ St . By the choice oft, we
have arrived at the desired contradiction, completing the proof of Lemma 3.1.

Proof of Theorem 1.3.Suppose there exist a sequence{φj} ⊂ Aut� and a point
x ∈� such that
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lim
j→∞φj(x) = p.

By [6], there is a biholomorphism9 between� and the domainMH = {(z, w) |
Rew+H(z, z̄) < 0},whereH is a homogenous subharmonic polynomial without
harmonic terms. Also, we have degH = τ∂�(p). SinceH is homogeneous, the
model domainMH has a two-parameter family of the following automorphisms:

lt(z, w) = (z, w + it) for all t ∈R,
hλ(z, w) = (λz, λ2kw) for all λ > 0.

The planeP = {(0, w) | Rew < 0} is contained in the orbit of(0,−1) by the
action of Aut(MH). Define an injective proper holomorphic mapµ : 1→ MH by

µ(z) =
(

0,
z−1

z+1

)
for everyz ∈ 1. We consider a sequence of injective proper holomorphic maps
gj := φj B9−1 B µ from the unit disc into� satisfying

φj B9−1 B µ(0) = φj B9−1(0,−1)

= φj(q),
whereq = 9−1(0,−1). Moreovergm(1) is contained in the orbit ofq by an ac-
tion of Aut(�). By Lemma 3.1,p is not an isolated point of

⋃∞
j=1gj(1) ∩ ∂�.

Sincegm(1) is contained in the orbit ofq, it follows that
⋃∞
j=1gj(1) ∩ ∂� ⊂

S(�). Therefore, Theorem 1.3 is proved.

Proof of Theorem1.1. Sincep is an accumulation point ofS(�), there is a point
p̃ ∈ U ∩ S(�) with τ(p̃) < τ(p). Applying the scaling theory to this point̃p,
we have another model domainMQ and a biholomorphism8 between� andMQ.

By [20], we see that degQ = degH sinceMH ' MQ. Thus,τ(p̃) = τ(p). This
contradiction completes the proof.
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