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Constructions of Nontautological Classes
on Moduli Spaces of Curves

T. GRABER & R. PANDHARIPANDE

0. Introduction

The tautological ringsR*(Mg,n) are natural subrings of the Chow rings of the
Deligne—Mumford moduli spaces of pointed curves:

R*(My,,) C A" (Mg ,) @

(the Chow rings are taken wit@-coefficients). The system of tautological sub-
rings (1) is defined to be the set of small@ssubalgebras satisfying the following
three properties [FP].

(i) R*(M,,) contains the cotangent line classes
V1, ..., U € AM, ).
(ii) The system is closed under push-forward via all maps forgetting markings:
T R*(My,,) — R* (Mg ,—1).
(iii) The system is closed under push-forward via all gluing maps:
Tt R*(Mgg nioge)) ©0 R* Mgy npui) = R* (Meyigy nvns)s
Tt R* (Mg mugs) = R¥ (Mgyiny)-

The tautological rings possess remarkable algebraic and combinatorial struc-
tures with basic connections to topological gravity. A discussion of these proper-
ties together with a conjectural framework for the studwreM, ,) can be found
in [F; FP].

In genus 0, the equality

R*(Mo ) = A*(Mo,,)

for n > 3 is well known from Keel’s study [K].
Denote the image oR*(ngn) under the canonical map to the ringefenco-
homology classes by
RH*(M,,) C H*(M, ).

In genus 1, Getzler has claimed the isomorphisms

R*(My,) = RH*(My,,)
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and _ _
RH*(My,,) = H*(M,,)
forn > 1; see [G]].
Forg > 1, complete results are known only in codimension 1. The equality

RY (M, ) = A*(M, )

for2g — 2+ n > 0is a consequence of Harer’s cohomological calculations [Ha].

It is natural to ask whether all algebraic cycle classeM@,m are tautological.
The existence of nontautological cycles defined d@venay be deduced from the
odd cohomology oM, 11. There are two arguments which may be used.

(i) By atheorem of Jannsen, since the map to cohomology
A"(Myp1) - H*(Myn)
is not surjective, the map is not injective. We may then deduce the existence
of a nontautological Chow class itf(Mj 11) from Getzler’s claims (see [B]).

(ii) More precisely, the existence of a holomorphic 11-form and a theorem of
Srinivas together imply thato (M3 11) is an infinite-dimensional vector space,
whereasRo(My111) = Q; see [GrV].

These arguments do not produce an explicit algebraic cycle that is not tauto-
logical. Several further questions are also left open. Are there nontautological
cycles defined ove? Are there algebraic cycles with cohomological image not
contained inRH*(Mg,,,)? Are there nontautological classes on the noncompact
spacesV, ,?

We answer all these questions in the affirmative by explicit construction of inte-
grally defined algebraic cycles. Our basic criterion for detecting nontautological
cycles is the following proposition.

PROPOSITION 1. Lete: My, niop) X Mgy nouis) = Mg niin, D the gluing map to a

boundary divisor. Ify € RH*(Mg, 44, m+n), then*(y) has a tautological Kiin-
neth decomposition

L*(V) € RH*(Mgl,nlU{*]) ® RH*(Mgz,nzu[-})~

This result is well known to experts, but we know of no adequate reference and so
give a proof in the Appendix.

Our strategy for finding nontautological classes combines Proposition 1 with
the existence of odd cohomology on the moduli spaces of curves. We find loci in
moduli space that restrict to diagonal loci of symmetric boundary divisors. By the
existence of odd cohomology in certain cases, the Kiinneth decomposition of the
diagonal is not tautological.

Let h be anoddinteger and seg = 2. LetY C M, denote the closure of the
set of nonsingular curves of gengghat admit a degree-2 map to a nonsingular
curve of genug. Intersectingy’ with the boundary map fron;, ; x M, 1 yields
the diagonal. Pikaart has proven, for sufficiently lakgehat M, ; has odd coho-
mology [Pi]. Hence, we can conclude thHatis not a tautological class, even in
homology.
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THEOREM 1.  For all sufficiently large odd,
[Y]¢RH"(Map).

Our other examples are loci in the moduli space of pointed genus-2 curves. We will
use the odd cohomology 81, 11 to find nontautological Kiinneth decompositions.
Leto in Sog be a product of ten disjoint 2-cycles,

o =@1,1H(2,12) --- (10, 20),

inducing an involution onl712,20. Let Z denote the component of the fixed locus of
the involution corresponding generically to a 20-pointed, nonsingular, bi-elliptic
curve of genus 2 with the ten pairs of conjugate markings. Thenof codimen-
sion 11inM, 5, and the intersection df with the boundary map

L: Ml,l_l X Ml,n—> Mz,zo )
yields the diagonal.

THEOREM 2. [Z] ¢ RH*(M3,20).

Although the methods used to prove Theorems 1 and 2 depend crucially on the
structure of the boundary of the moduli space, in Section 3 we use Getzler's re-
sults on the cohomology df; , to show that the clasg]] is nontautological even

on the interior.

THEOREM 3. [Z] ¢ R*(M3,20).

Finally, although the diagonal loci were used in our deductions of the preceding
results, we could not conclude that the diagonals were themselves nontautologi-
cal. We show that a diagonal locus is nontautological in at least one case. Let
denote the boundary inclusion

L: Ml,lz X Ml,lZ - Mz,zz,
and letA denote the class of the diagonaldAh(My 12 x M 12).

THEOREM 4. The push-forward,[A] is not a tautological class

t[A] ¢ RH*(M3,2,).

It seems likely the image of the diagonal by (2)Mp, » is not tautological, but
we do not have a proof.

To our knowledge there are still no (proven) examples of nontautological classes
on M,. Although the methods of our paper could perhaps be used to find such a
class (in particular, the class of Theorem 1 may be nontautological when restricted
to M,), our techniques are unlikely to produce nontautological classes of low codi-
mension. Because the tautological ringddf vanishes in codimension— 1 and
higher, the question of nontautological classesiinof codimension less than
g — Llis particularly interesting.
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1. Admissible Double Coverings

For the proofs of Theorems 1 and 2 we will require certain moduli spaces of double
covers. Choosg andh with ¢ > 2h — 1. We letM (g, k) denote the (open) space
parameterizingloublecovers,

7. Cy — Cy,

of curves of genug andh, respectivelyfogetherwith an ordering of the branch
points of the morphism. The spacé/ (g, h) is a finite étale cover a¥/,, ,,, where
b =2(g — 2h +1) is the number of branch points af The map

n:M(g, h) — My,
is simply defined by
M([T[]) = [Cha pla ey pb]a

wherepsy, ..., p, are the ordered branch points.
There is a natural compactification by admissible double covers,

M(g,h) C M(g, h),

over M, ,. An admissible double cover of a stable curve is branched over the
marked points and possibly the nodes. Over the nodes of the target, the imap
either étale or étale locally of the form

m: SpecClx, y]/(xy)) — SpecClu, v]/(uv)), u=x? v=y2

By construction, the spac¥ (g, &) is equipped with maps to bot#, , and M.
The latter map involves a stabilization process, since the source curve of an ad-
missible covering need not be stable.

We will also require pointed moduli spaces of admissible covisg, &).
These pointed spaces are finite coversfgf,. ;, which parameterizes admissible
double covers of & -+ k)-pointed nodal curve of genusby a curve of genug,
with the ramification over the firgt marked points and possibly the nodes of the
target curve together with an ordering of the fibers of thedasarked points. The
pointed spaces are equipped with natural morphism_ﬁ,,;mk andMgVZk. For the
latter map, we adopt the ordering convention that the two points in the fiber over
the (b + i)th marked point of the target curve have markingsmdk + i on the
source.

Essentially, we require only one fact about the moduli spaces of admissible cov-
ers: M(g, h) C M(g,h) is dense (and similarly for the open subsft(g, h) C
M, (g, h)). Over the complex numbers, the density is easily proven analytically:
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one can locally smooth the double cover of a small neighborhood of the node
and then glue the result together, with the restriction of the original cover away
from the node. The local description of our double covers ensures that they can
be smoothed locally. A treatment of the theory of admissible covers can be found
in [HM].

2. Proof of Theorems 1 and 2

Let 4 be an odd positive integer, and fet= 2h. Consider the morphism
¢ M(g, h) > Mg.

The image cycle, B
Y =¢(M(g,h)),

consists of those curves of gengthat are admissible double covers of a curve of
genusk. Equivalently,Y is the closure of the set of nonsingular curves of genus
g that admit a degree-2 map to a nonsingular curve of génWige want to apply
Proposition 1 to conclude thaY| is not tautological. We will examine the pull-
back of [Y'] under the gluing map

[ Mh,l X Mh,l — Mg.
LemMma 1. (*([Y]) = c[A] for some positive constant

Proof. We first proveA c (=(Y). Let[C, p] € 1\71;,71. We will construct an admis-
sible double cover with targ&t union a rational tail glued gt carrying the two
branch markings. A double cover is given by two disjoint copie€ ¢dined by a
rational curve with a degree-2 mapping to the rational tail of the target branched
over the two markings. Under stabilization, the domain is mapped to the diagonal
point

u([C, p] x [C, pD.

An easy count showa to be an irreducible component of'(Y) of expected
dimension.

To prove the lemma we need only show that= :~1(Y). Suppose there were
another irreducible component Let

w: Cy — Cy

be an admissible double cover corresponding to a general painTéenC, may
be expressed as a union of two curves of arithmetic gkijnised at a single node.
The chosen node @, must map to a node af;,. Since the space of admissible
coverings is a finite cover df71;,72, the preimage of the locus of curves with two
or more nodes is not a divisor. Hence, we conclude @hatasexactlyone node.
The node ofC;, must be disconnecting because there are no reducible admis-
sible double covers of an irreducible curve with branch points. We wjte=
T, U T,. Sinceh is odd, we may assume (without loss of generality) thahas
genus greater thaky 2.
SinceC;, has one nod&;, must have either one or two nodes. Since any cover
of T by a curve of genus must be unramified;,, cannot have exactly one node.
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The domainC, must therefore have two nodes lying over the nod€oflf the
induced cover of’; were connected then neither nodefcould be disconnect-
ing. Hence, the cover df; must be disconnected.

Therefore, each component of the covepimust map isomorphically t@;.
The cover ofT,; must be connected and of genus 0 in order for the assumed de-
composition ofC, into curves of arithmetic genusto exist. Therefore, we find
that we are in the componentof . 1(Y). O

Pikaart [Pi] has shown that, for all sufficiently large value% of
H33¥(M), 1) # 0.

Hence, the diagonal im_lh,l X Mh’l does not have tautological Kiinneth decompo-
sition. By Proposition 1, the proof of Theorem 1 is complete.

The argument for the nontautological cycle m,zo is similar. LetZ be the
image ofM1o(2, 1) in M3 5. Consider the boundary stratum,

12 My x My — M2 o0,

obtained by (a) attaching at the last point on each marked curve and (b) number-
ing the markings of the glued curve in order, with the first ten markings from the
first factor and the last ten from the second factor.

LEmMMA 2. (*([Z]) = c[A] for some positive constant

The proof of this lemma is essentially identical to the proof of Lemma 1. Theo-
rem 2 is then a consequence of Proposition 1 and the existence of odd cohomology
on Ml,ll-

3. Proof of Theorem 3

To deduce Theorem 3 from Theorem 2, we will need the following results an-
nounced by Getzler: ) )
RH*(My,) = H*(Ma,,) 3

and, for all oddk < 11,
Hk(Ml,n) =0. (4)

The statement (3) is equivalent to the generation of even cohomology by the classes
of boundary strata fod1 ,. Actually, we require the following consequences of
Getzler's results.

Lemma 3. My, exhibits the following three properties.

(i) Every algebraic cycle oM 11 x My 11 of complex codimensioa 11is ho-
mologous to a tautological class.
(i) Every algebraic cycle oM, x M1, x [[; Mo,, is homologous to a tauto-
logical class form < 11
(iii) Every algebraic cycle oMy , x []; Mo, is homologous to a tautological
class.
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Proof. Let V be an algebraic cycle oﬂl’ﬂ X 1\711,]_1 of complex codimension:

11 Consider the Kuinneth decomposition &f][ There can be no odd terms by
(4). Thus, by (3) we can writel[] as a sum of products of tautological classes,
proving (i). By (4) and Poincaré duality, all the cohomologyM ,, is tautolog-

ical whenm < 11 By Keel's results, all the cohomology @1, is tautological.
Hence, in the Kiinneth decomposition of our cycle in parts (ii) and (iii), none of
the odd cohomology 0{t7117,1 can appeatr. O

Consider the classZ]] on 1\712,20 constructed in Theorem 2. We claim that the
image of [Z] in A*(M> o) is not tautological. The argument is by contradiction.
Suppose the image is tautological. There must exist a collection of ¥gelefs

codimension 11 ier 20 that are supported on boundary strata for widch )" Z;
is tautological. Hencg _ Z; is not homologous to a tautological class when inter-
sected withM 11 x My 11.

By Lemma 3(i), if any cycleZ; is supported on the image stratuméf 11x My 11
thenZ; is homologous to a tautological class (since the codimensiah of less
than 11 in the divisor). We discard &}, contained in the image d#fy 11 x My 11.

Let X be the union of boundary divisors supporting the remaiipgrhe sum
of the remainingZ; is homologically nontautological when pushed infg > and
restricted toMl 11 X Ml 1. However, it is clear that the push—pull will produce an
algebraic cycle class supported on

XN Ml,]_’l. X M_‘]_’_‘]_’]_. (5)

Since X does not contain the image 0?1,11 X Mlyu, the locus (5) is contained

in boundary strata that either have a genus-1 factor with fewer than 11 points or
have fewer than two genus-1 factors. Parts (ii) and (iii) of Lemma 3 show that
there are no homologically nontautological classes supported on these loci. This
contradiction completes the proof of Theorem 3.

4. Proof of Theorem 4

4.1. Odd Cohomology d#; ,,

We will require several properties of the odd cohomology of the moduli spaces
M, for the proof of Theorem 4. The first is a well-known specialization of (4).

ProposiTION 2. The odd cohomology groups &f; ,, vanish in casé < n < 10.

Observe that cusp forms of weightnay be used to construct conomology classes
in H"*lO(Mlyn_l, C). The discriminant form\, t_he unique cusp form of weight
12, yields a canonical nonzero elemert H%(M; 11, C).

ProrosiTiON 3. The odd cohomology alfll,ﬂ is concentrated in
H™(My11,C) =C
HOY(My 4, C)=C

Moreover, theS;;-module in both cases is the alternating representation.
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By the_Su-moduIe identification, the classis not Syi-invariant. Now lettr €
Hovﬂ(Ml,n, C) denote the uniquely defined Poincaré dual class to

/_ sUr=1
Min

Propositions 2 and 3 are both well known. Proofs can be found, for example,
in [G2], where theS,,-equivariant Hodge polynomials af, ,, are calculated for
all n. We will need a dimension calculation in the= 12-pointed case [G2] as
follows.

ProposITION 4. The dimension off *2%(M 15, C) is 11

In fact, the odd cohomology d¥; 1, is concentrated ilH™°, H%1 A1 and
H%% (all of which are 11-dimensional).
4.2. A Basis forH2%(My 15,C)
LetS =1{1,2,3,...,11 p}. Foreachindexk i <11 let
mii Mys— Mys ;i = Min
denote the forgetful map. Since we consider
S—i=1{123,...,i,...,11 p}

as anorderedset, the last isomorphism above is canonical. Define the classes
andb; by:

a; = 7}(s) € HYO(My g, C);
bi=n't)e HO’H(MLS, ©).

For eachindex ki <11 lete; be the map defined by the inclusion
gir Min= Mys_; — Mys.

Here, anS-pointed curve is obtained from &8 — i)-pointed curve by attaching a
rational tail containing the markingsandp to the pointp of the latter curve. The
mape; is simply the inclusion of the boundary divisdr;, with genus splitting
1+ 0 and point splitting

L ...,0,...., 13 U{i, p}.
Define the classas andd; by:
ci = ix(s) € H? (M35, C);
di = €i.(1) € H*?(My 5, C).
Here, the cohomological push-forward is defined by the equivalent equalities

fﬁ si*(x)Uy=f, xUeg(y),
My, s M1

f, yUE;*(X)fo ef(y)Ux.
My, s M1
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ProPOSITION 5. Th_e setday, ..., an} ar_1d {d1, ..., d1} form a pair of Poincaré
dual bases oM, 5, C) and HY*2(M; 5, C).

Proof. By the dimension result of Proposition 4, it suffices to prove

/ a; U dj = Sij' (6)
Ml,s
By definition of the cohomological push-forward,
[ mouan=[ sur=1 @)
Ml,s Ml,:l.’l.

The first equality in (7) is true exactly (not up to sign) by the precise ordering con-
ventions used.

The vanishing of (6) when £ j is a direct consequence of Proposition 2. We
find

/7 ni*(s)Uej*(t)sz eim(s)Ut. 8

My, s M1

The compositionr; o ¢; has image isomorphic b1 10. Since the image supports
no odd cohomology, the integral (8) vanishes. O

An identical argument proves the duality result for the classasdb;.

PROPOSITION 6. Th_e setqcy, ..., cu} ar_1d {by, ..., by} form a pair of Poincaré
dual bases of1*>Y(M 5, C) and H%(M; s, C). The intersection form is

/_ Ci Ubj =6ij~
M s

4.3. The Action ofyr,

Lety, € HYY(M s, C) denote the cotangent line class at the ppinMultiplica-
tion by v, defines linear maps:

W: HRO(My g, C) — H2Y(My 5, C);

v HOM M, 5, C) — HY (M, C).
These maps are completely determined by the following result.
ProrosiTiION 7. Forall 1 <i <11 W¥(a;) = ¢; and ¥ (b;) = d;.

Proof. Consider the morphism; : MLS — 1\711,3,,-. A standard comparison re-
sult governing the cotangent line class is

Yp = ni*(Wp) + [Dip],

wherern(v,) denotes the pull-back of the cotangent class\brg_;. We then
find that
Wp Uﬂ[*(s) =7Tl-*(1//pUS)+[Dip] UT[,'*(S)- 9)
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SinceM; 11 has odd cohomology only in degree 11, the first summand of (9) van-
ishes. The second summand is exactly equalta) (using the ordering conven-
tions). We conclude thab(a;) = ¢;. The derivation of'(b;) = d; is identical.

U

4.4, Proof of Theorem 4
SetS = {1, 2,...,11 p}. Consider the boundary map
i Mg x My — Ma o)
defined by attaching to p (and ordering the markings arbitrarily). Defipeby
y = LA] € H?®(M3 ),
whereA is the diagonal subvariety @ff; s x 1\711,3 (under the canonical isomor-
phismMy s = M, g).
Here,. is easily seen to define ambeddingThe normal bundle toin M »,
has top Chern classy, — ;. By the self-intersection formula,
Ci[A] = [A]U (=¥ — ¥p).

Let X, ..., X,, be abasis off (My 5). Let Xy, ..., X,, denote the correspond-
ing basis ofH *(M, 3). The Kinneth decomposition o\]] is determined by

[A]l = g'X; ® X; € H*(My5) x H*(My3),
ivj
where

8ij = /ﬁ X,’ UXj.
My s

In particular, ifXy, ..., X,, is a self-dual basis, then

[A] =) (D" X ® X/,

wherey; andv; are the degrees df; andX,’, respectively.
We are interested in the Kiinneth componentsdfdf odd type—that is, Kiin-
neth components lying in

H%(M; 5) ® HOYM, ;).

By Propositions 5 and 6, the odd type summandsdfdre
11
Z_ai ®d; + b; ®E; — ¢ ®b; +d; ®6Z
Hence, the odd summandsf.[A] are
1

Y W) ®d; —Yb) @& + ¢ @ V(b)) — di © V(@)

i=1
By Proposition 7, we find that the odd summands*off A] equal
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1
Y 2c®d;—2di ®3F.
i=1
Since the odd summands (10) do not vanish,
[A] ¢ RH*(M2,22)

by Proposition 1. The proof of Theorem 4 is complete. O

Appendix A. Pull-backs in the Tautological Ring

A.l. Stable Graphs
The boundary strata of the moduli space of curves correspostdidte graphs
A=(V,H L, g:V —7Zso,a:H—V,i: H— H)

satisfying the following properties.

(i) V is avertex set with a genus functign
(ii) H is ahalf-edge set equipped with a vertex assignmeamnid fixed point—free
involutioni.
(iii) E, the edge set, is defined by the orbits @ H (self-edges at vertices are
permitted).
(iv) (V, E) define aconnectedyraph.
(v) L is asetof numbered legs attached to the vertices.
(vi) For each vertex, the stability condition holds:

2g(v) —24+n() >0,
wheren(v) is the valence oft atv including both half-edges and legs.
The genus ofA is defined by

g(A) =) ) +hkA).
veV
Letv(A), e(A), andn(A) denote the cardinalities df, E, and L, respectively.
A boundary stratum oM, , naturally determines a stable graph of gegusith
n legs by considering the dual graph of a generic pointed curve parameterized by
the stratum.
Let A be a stable graph. Define the moduli spateby the product

Ma= [] Mewnw-
veV(A)

Let, denote the projection fromi, to Mg@),n(v) associated to the vertex There

is a canonical morphisty, : M4 — ng,l with image equal to the boundary stra-
tum associated to the graph To construct,, a family of stable pointed curves
overM, is required. Such a family is easily defined by attaching the pull-backs of
the universal families over each of th&,,) ., along the sections corresponding
to half-edges.
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A.2. Specialization
Our main goal in the Appendix is to understand the fiber product

FA73 e MB

Lol

My — M,,.

Toward this end, we will require additional terminology. A stable gré@pbaspe-
cialization of a stable grapi if C is obtained fromA by replacing each vertex
v of A with a stable graph of genygv) with n(v) legs. Specialization of graphs
corresponds to specialization of stable curves.

There is a subtlety involved in the notion of specialization: A given gré&ph
may arise as a specialization afin more than one way. Ad-graph structure
on a stable grapld’ is a choice of subgraphs @f in bijective correspondence
with V(A) such thatC can be constructed by replacing each verted diy the
corresponding subgraph. @f has anA-structure, then (a) every half-edge 4f
corresponds to a particular half-edgetoind (b) every vertex of is associated
to a particular vertex ofi.

A point of M, is given by a stable curve together with a choicetetructure
on its dual graph. In fact, we can naturally identify the statkwith a stack de-
fined in terms ofA-structures. This identification will be useful for analyzing the
fiber products of strata.

Define a stablet-curve over a connected baSe

7:C— S,

to be a stable (A)-pointed curve of genug(A) over S together with:

(i) e(A) sectionsyy, ..., 0.4 Of r with image in the singular locus ¢,
(ii) 2e(A) sections of the normalization Gfalong the sectiongs;} correspond-
ing to the nodal separations;
(iii) v(A) disjointr-relative components @ \ {o;} whose union i€ \ {o;}; and
(iv) an isomorphism betweeA and the canonical stable graph defined by the
dual graph of the/(A) w-relative components ana2A) sections of the nor-
malization (corresponding to half-edges).

Here, ar-relative component is a connected componerg §f{o;} that remains
connected upon pull-back under an arbitrary morphism of connected schemes
h: T — S.

The data of a stabld-curve can be pulled back under any morphism of base
schemes. After pull-back to a geometric point Aurve is exactly ar -structure
on the dual graph of the corresponding curve.

A stackM 1 of curves withA-structure morphisms and respecting structure
may be defined. However, we find the following result.

ProposiTION 8. There is a natural isomorphism betwegh and M.
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Proof. A natural morphism fromd, to M} is obtained by assigning the canon-

ical A-structure to the universal curve ovif,. In the other direction, given an
S-valued point ofM, we naturally obtain a collection af(A) stable curves by
analyzing ther-relative components of normalized at the(A) nodes. Since

we have a bijection between these curves &) as well as a bijection between

the new markings and theeA) sections, we obtain as-valued point ofM,.

This correspondence induces a bijection on the space of morphisms between cor-
responding objects. O

A.3. Fiber Products

By definition, anS-valued point ofF,  is anS-valued point ofM,, an S-valued
point of M3, and a choice of isomorphism between the two pull-backs of the uni-
versal curve oveMg,n under the boundary inclusions. §fis SpecC), we find

that the dual graplt of the curve ovelS defined by the map tMg,n is natu-
rally equipped with both am-structure and &-structure. Conversely, given a
curveC together with two such structures on the dual graph, we naturally obtain
a point of F4 5. A graphC equipped with boti - and B-structures will be called
an(A, B)-graph.

An (A, B)-graphC is genericif every half-edge of® corresponds to a half-edge
of A or a half-edge oB. The irreducible components @f, 5 will correspond to
generic(A, B)-graphs. A graph with apA, B)-structure is canonically a special-
ization of a unique generi¢A, B)-graph: the generic graph is obtained by con-
tracting all those edges that do not correspond to edgasoofB.

Associated to aA, B)-graphC, we obtain a moduli spack/ that naturally
maps toF,, 5. The moduli space may be described githeﬂ%gv(c) Mg(v),,,(v) or
in stack terms analogous to the preceding definitioM§f(the stack does not de-
pend on thgA, B)-structure orC, although the map t&, z does). We find the
following result.

ProrosiTION 9. There is a canonical isomorphism betwe@n and the disjoint
union of M over all generic(A, B)-graphscC.

Proof. It will suffice to identify the categories involved over connected base
schemess. We will give the morphisms in both directions.

If Cisan(A, B)-graph, then we clearly have a morphism frafa to bothM,
andMj, as well as a choice of isomorphism between the induced maliz_lgyl;o

In the other direction, suppose data corresponding,tg is given overs. In
particular, we have a stable curve over

7:C— S.

Consider ther-fiber over a geometric point of. The z-fiber has a dual graph
equipped with ariA, B)-structure by virtue of the maps #d, andM;. Let C be
the unique generi¢A, B)-graph that specializes to tlid, B)-structure found at
the geometric point.
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There is a canonicdl-structure or€. The half-edges of are already naturally
identified with half-edges of the graplsor B; sinceC hasA- and B-structures,
it follows thatr is equipped with sections associated to all of the half-edges. The
C-structure is constant ahbecause of the connectedness of

The morphisms in the two categories are the same by a straightforward check.
However, it is important to note that an automorphism of an objeé} of must
induce a trivial automorphism of the graphbecause each half-edge corresponds
to an edge of eithed or B. O

A.4. Pull-backs of Strata

The pull-backs of tautological classes to the boundary may now be explicitly de-
termined. The basic calculation is the pull-back of the fundamental class of one
boundary stratum to another. In terms of the diagram of Section A.2, we want
to compute;j;(sg*[MB]). Because we have identifigd p explicitly as a smooth
stack, the pull-back will be straightforward to compute. The intersection product
is a sum of contributions of each componen#yfs, and each contribution is the
Euler class of an excess bundle on the component.

The components of, s have been identified in Proposition 9. LEtbe a
generic(A, B)-graph, and led be the corresponding componentif 3. The
excess bundle is easily identified &f¢. First, we observe that the normal bun-
dle to&4 naturally splits as a copy @f A) line bundles. Let the edgebe the join
of the distinct half-edges, #’ incident to the vertices, v’ (which may coincide).

The line bundle associated ¢as

T, ® Ty,

whereT;, and T, are the tangent lines atand”’ of the factorsMg(u),n(U) and
M.y, TESPECtively. The normal bundle 8¢ in M, is a sum of the analo-
gous line bundles for those edges ®fthat do not correspond to edges 4f
Precisely the same situation holds with respe@® t&Ve can conclude that the ex-
cess normal bundle of/., viewed as a component @, g, is exactly the sum
of the line bundles corresponding to those edges tfat correspond to edges of
both A and B.

We have deduced the following formula:

ExEp([Mp])) = ZEC,A*( H —,(Yn) — ﬂ:/(l/fh’)) (1)
C e=h+n

The sum is over all genericA, B)-graphsC. The product is over all edgesof

C that come from both an edge dfand an edge oB, andv, v’ are the vertices

joined bye. The morphisng. 4 denotes the natural map fromfi- to M.

Formula (11) yields an explicit tautological Kiinneth decomposition of the pull-
back class, since the morphisfa 4 is simply the product of various boundary
strata maps over the factors &f; .

We will compute a simple example toillustrate the formula. Consider the bound-
ary divisorA in M, corresponding to the morphism
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i: Mg_Lz — Mg

The graphA of Ay has one vertex of gengs— 1 and one self-edge. We will com-
pute the self-intersection of the stratuif(&a.[M4]).

We first write down all generi¢A, A)-graphs. They ard itself with the obvi-
ous(A, A)-structure, and then one graph for each integer from|@go- 1)/2].
ThenCy is the graph with one vertex of gengs- 2 and two loops. Observe that
Co has two distinct isomorphism classeq af A)-structures but only one of them
is generic: th€ A, A)-structure where the edge contracted for the firsttructure
is different from the edge contracted for the secanstructure. SimilarlyC; is
the graph with a vertex of genusnd another vertex of gengs- i — 1 connected
to each other by two edges. The unique geneficA)-structure is obtained by
contracting a different edge for the twb-structures. Applying formula (11), we
find that

L(g—D/2]
E1(Ea([MA]) = =1 — V2 + &0 ([Mg_24]) + Z Ei([Mi 2 x Mg_i—12])
i=1
with hopefully evident notation.
Notice that the boundary strata corresponding4gs x Mg,i,u do not ap-
pear in this formula because the corresponding dual graphs do not admit a generic
(A, A)-structure. In more geometric terms, these strata do not contribute an extra
term because they have only one nondisconnecting node.

A.5. Pull-backs of Tautological Classes

We observe that our calculations easily generalize to computing pull-backs of ar-
bitrary tautological classes to boundary strata.
Define the tautologicat classes by

(Y1) = K € R* (M, ),

wherer is the map forgetting the last markingt- 1. The first observation is the
following result concerning the push-forwards of theand« classes.

ProposITION10.  Letw: M, ..., — M, , be the map forgetting the lagtpoints.
Ther push-forward of any element of the subringRj‘f(ng,Hm) generated by

V1, oo Vs {Kidiezoo
lies in the subring oR*(Mg,n) generated by
1//1’ LX) I/fn’ {Ki}iEZZo-

A proof can be found in [AC]. .
We can now describe a set of additive generatorsf@n, ). Let B be a sta-
ble graph of genug with n legs. For each vertexof B, let

9,) € R*(Mg(v),n(v))
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be an arbitrary monomial in the cotangent line antasses of the vertex moduli
space.

PROPOSITION 11. R*(ngn) is generated additively by classes of the form

EB*< [1 ev>.

veV(B)

Proof. By the definition ofR*(Mg,n), the claimed generators lie in the tautologi-
cal ring.

We first show that the span of the generators is closed under the intersection
product. The closure follows from:

(i) the pull-back formula (11) for strata classes;
(ii) the trivial pull-back formula for cotangent lines under boundary maps; and
(iii) the pull-back formula forc classes under boundary maps,

Ep(ki) = Z Ki
veV(B)
(see [AC)).

To prove that the claimed generators sgifiM, ,), we must prove that the
system defined by the generators is closed under push-forward by the forgetting
maps and the gluing maps. Closure under push-forward by the forgetting maps is
a consequence of Proposition 10. Closure under push-forward by the gluing maps
is a trivial condition. O

COROLLARY 1. R*(Mg,n) is a finite-dimensional-vector space.

Proof. The set of stable graphs for fixed ¢ andn is finite, and there are only
finitely many nonvanishing monomiads for each vertex. O

ProposITION 12. Lety € R*(Mg,n). Let A be a stable graph, and let
éA: MA — Mg,n-

Then&}(y) has a tautological Kinneth decomposition with respect to the product
structure ofM,.

Proof. This follows from Proposition 11 together with the pull-back formulas.
The pull-back formulas for the three types of classes all yield tautological Kin-
neth decompositions. O
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