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Homoclinic Orbits for Schrödinger Systems

Martin Schechter & Wenming Zou

1. Introduction

We consider the following Schrödinger system:{
∂tu−1xu+V(x)u = Hv(t, x, u, v)

−∂tv −1xv +V(x)v = Hu(t, x, u, v)
for (t, x)∈R × RN, (S)

whereV : RN → R andH : R×RN×R2M → R are periodic int andx; (u, v) ≡
(0,0)∈R2M is a stationary solution. Our purpose is to find a nonstationary solu-
tion z = (u, v) : R×RN → R2M of (S) satisfyingz(t, x)→ 0 as|t | + |x| → ∞.
In this case, it is called the homoclinic orbit that is homoclinic to the stationary
solution.

During the last ten years, the existence of homoclinic solutions has been studied
by variational methods (see e.g. [AB1; AB2; CR; ScZ; SZ; WZ] and the references
cited therein). Since there is no compactness of imbedding, the problem becomes
very complicated. The difficulty also occurs when we consider (S). Before stating
the main results, let us recall some well-known results related to (S). Brézis and
Nirenberg [BrN] considered the system{

∂tu−1xu = −v5+ f
−∂tv −1xv = u3+ g for (t, x)∈ (0, T )×�

satisfyingu = v = 0 on(0, T )×∂� andu(0, x) = v(T, x) = 0 in�. Here� is a
bounded domain ofRN andf, g ∈L∞(�). Using Schauder’s fixed point theorem,
they obtained a solution(u, v) with u∈L4((0, T )×�) andv ∈L6((0, T )×�).

In [CFM], the authors studied the following problem:{
∂tu−1xu = |v|q−2v

−∂tv −1xv = |u|p−2u
for (t, x)∈ (−T, T )×�,

where� is a smooth bounded domain inRN andN/(N +2) < 1/p+1/q < 1. By
the usual mountain pass theorem, they obtained at least one positive solution sat-
isfying u(t, ·)|∂� = v(t, ·)|∂� = 0 for all t ∈ (−T, T ) and foru(−T, ·) = u(T, ·)
andv(−T, ·) = v(T, ·).
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Very little is known for (S). In a more recent paper [BD2], system (S) was ex-
plored by a new linking theorem due to [KS] and [BD1]. The authors obtained one
nontrivial solution and, moreover, infinitely many solutions if the potential is even
in (u, v). In [BD1; BD2] (see also [KS]), the following Ambrosetti–Rabinowitz
global superquadratic condition plays an important role:

0< γH(t, x, z) ≤ Hz(t, x, z)z ∀(t, x)∈R × RN, ∀z 6= 0, (1.1)

whereγ > 2 is a constant. In the present paper, we shall study the weak super-
linear case without(1.1) and theasymptotically linear case. Without(1.1), theprob-
lem becomes quite different and complex. Because of the strong indefinite nature
of the energy functional, the main obstacle is the proof of the boundedness of the
(PS) (i.e. Palais–Smale) sequence. It is also not easy to derive a (PS) sequence for
the asymptotically linear case. It should be mentioned that the methods used in
[BD1; BD2; J; KS; Z] cannot be applied to our cases. By virtue of the new theory
established in [ScZ], we can easily obtain a bounded (PS) sequence directly from
the weak linking theorem for the modified functional and thereby have a sequence
of critical points, which provides a nontrivial solution of (S).

Throughout this paper, we always assume thatV andH satisfy the following
conditions.

(V) V ∈ C(RN,R), andV is Tj -periodic inxj for j = 1, . . . , N; furthermore, 0/∈
σ(−1x +V ),whereσ denotes the purely continuous spectrum of−1x +V.

(H) H ∈ C1(R × RN × R2M,R) is T0-periodic in t andTj -periodic inxj, j =
1, . . . , N; also,H(t, x, z) ≥ 0 for all (t, x, z), wherez = (u, v)∈R2M.

By [RS],σ(−1x +V ) is bounded below and consists of closed disjoint intervals.
We permit−1x +V to have essential spectrum below 0.

1.1. TheSuperlinear Case

From now on, the letterc will be indiscriminately used to denote various constants
whose exact values are irrelevant. We need the following assumptions:

(S1) Hz(t, x, z) = o(|z|) asz→ 0 uniformly in t andx;
(S2) |Hz(t, x, z)| ≤ c|z|µ for all (t, x) and|z| ≥ R0, whereR0 > 0 andµ > 0

are constants, 1< µ < (N + 4)/N;
(S3) 1

2Hz(t, x, z)z−H(t, x, z) ≥ c|z|β for all (t, x, z), where we also haveβ >
max{2, (2N + 4)(µ2 −1)/(Nµ+ 4µ−N)}.

Our main result is as follows.

Theorem 1.1. Assume that(S1)–(S3) hold. Then(S) has at least one nontrivial
solution.

As an immediate consequence, we have the following corollary.

Corollary 1.1. Assume thatH is of the form

H(t, x, z) = A0|z|µ+1+G(t, x, z), A0 > 0, 1< µ < (N + 4)/N,
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where|Gz(t, x, z)| ≤ ((µ−1)A0/4)|z|µ for all (t, x, z). Then(S)has at least one
nontrivial solution.

Next, we consider the second case. The potential satisfies local conditions at zero
and at infinity.

(F1) There existν > p > 2, ν < (2N + 4)/N, andc1, c2, c3 > 0 such that

c1|z|ν ≤ Hz(t, x, z)z ≤ |Hz(t, x, z)||z| ≤ c2|z|ν + c3|z|p
for all (t, x, z)∈R × RN × R2M.

(F2) Hz(t, x, z)z− 2H(t, x, z) > 0 for all (t, x, z) 6= (0,0,0).
(F3) There existsγ0 > 2 such that

lim inf|z|→∞
Hz(t, x, z)z

H(t, x, z)
≥ γ0

uniformly for (t, x)∈R × RN.

(F4) There exists anα > p such that

lim inf
z→0

Hz(t, x, z)z− 2H(t, x, z)

|z|α ≥ c > 0

uniformly for (t, x)∈R × RN.

Theorem 1.2. Assume that(F1)–(F4) hold. Then(S)has at least one nontrivial
solution.

Remark 1.1. Compared with [BD2] (see also [BD1; KS; SZ]), our assumptions
are quite weak. In [BD2], besides(1.1) andothers, the following condition was
imposed:

|Hz(t, x, z)|α ′ ≤ cHz(t, x, z)z for all (t, x) and |z| ≥ 1,

whereα ′ = α/(α −1) andα ∈ (2, (2N + 4)/N ).

1.2. The Asymptotically Linear Case

We make the following assumptions.

(T1) H(t, x, z) = 1
2β0|z|2 + K(t, x, z), whereKz(t, x, z) = o(|z|) as|z| → ∞

uniformly for all (t, x); moreover,β0 > µ1, whereµ1 is the smallest posi-
tive point in the spectrum of−1x +V.

(T2) There existm∈ (2, (2N + 4)/N ) andR0 > 0 such that

c|z|m ≤ Hz(t, x, z)z ≤ |Hz(t, x, z)||z| ≤ c|z|m
for all (t, x)∈R × RN and|z| ≤ R0.

(T3) Kz(t, x, z)z− 2K(t, x, z) > 0 for all (t, x, z) 6= (0,0,0).
(T4) There exists aµ > 2 such that

lim inf
z→0

Hz(t, x, z)z

H(t, x, z)
= µ

uniformly for (t, x)∈R × RN.
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(T5) There exists anα ∈ (0,2) such that

lim inf|z|→∞
Kz(t, x, z)z− 2K(t, x, z)

|z|α ≥ c > 0

uniformly for (t, x)∈R × RN.

Remark 1.2. Conditions (T1)–(T5) imply that (S) is asymptotically linear at in-
finity and superlinear at the origin.

We shall prove the following result.

Theorem 1.3. Assume(T1)–(T5). Then(S) has at least one nontrivial solution.

Acknowledgment. The second author, Wenming Zou, thanks the Department
of Mathematics at the University of California (Irvine) for offering a visiting po-
sition from 2001 to 2003. During that period, this work was done.

2. The Superlinear Case

Let

J :=
(

0 −I
I 0

)
, J0 :=

(
0 I

I 0

)
,

andA := J0(−1x+V ). Then (S) can be rewritten asJ∂tz = −Az+Hz(t, x, z) for
z = (u, v). In this way, (S) can be regarded as an unbounded infinite-dimensional
Hamiltonian system inL2(RN,R2M).

Let H̃0 := L2(RN,R2M); thenD(A) = D(JA) = W 2,2(RN,R2M) andH̃ :=
L2(R, H̃0) ∼= L2(R × RN,R2M) (cf. [BD2]). By (V), there is an associated or-
thogonal decompositioñH = H− ⊕H+ with z = z− + z+, wherez± ∈H±. Let
E := D(|L|1/2) be equipped with the inner product

〈z1, z2〉 = 〈|L|1/2z1, |L|1/2z2〉L2

and norm‖z‖ = 〈z, z〉1/2, whereL = J∂t + A. We then have the decomposi-
tion E = E+ ⊕ E−, whereE± = E ∩H± are orthogonal with respect to both
〈·, ·〉L2 and〈·, ·〉. By [BD2], E is continuously embedded inLr(R×RN,R2M) for
any r ≥ 2 if N = 1 and forr ∈ [2,2(N + 2)/N ] if N ≥ 2. In particular,E is
compactly embedded inLrloc(R × RN,R2M) for anyr ≥ 2 if N = 1 and forr ∈
[2,2(N + 2)/N ) if N ≥ 2.

Let

8(z) := 1

2
(‖z+‖2 − ‖z−‖2)−

∫
R×RN

H(t, x, z).

Then, under the assumptions of Theorems1.1–1.3,8 ∈ C1(E,R) and the critical
points of8 are weak solutions of (S).

Our results stated in Section 1 shall be proved with the help of the following
critical point theorem (cf. [ScZ]).

LetE be a Hilbert space with norm‖·‖ and inner product〈·, ·〉, and letN ⊂ E
be a separable subspace,E = N⊕N⊥. SinceN is separable, we can define a new
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norm|v|w satisfying|v|w ≤ ‖v‖ for all v ∈N and such that the topology induced
by this norm is equivalent to the weak topology ofN on a bounded subset ofN
(cf. [DS]). Forz = v + w ∈ E = N ⊕ N⊥ with v ∈ N andw ∈ N⊥, we define
|z|2w = |v|2w + ‖w‖2. Then|z|w ≤ ‖z‖ for all u∈E.

In particular, ifzn = vn +wn is bounded andzn→ z is in the norm|·|w, then:
vn ⇀ v weakly inN; wn → w strongly inN⊥; andzn ⇀ v + w weakly inE
(cf. [DS]).

LetQ ⊂ N be a bounded open convex subset and letp0 ∈Qbe a fixed point. Let
F be a|·|w-continuous map fromE ontoN that satisfies the following conditions:

(1) F |Q = id andF maps bounded sets to bounded sets;
(2) there exists a fixed finite-dimensional subspaceE0 of E such that

F(u− v)− (F(u)− F(v)) ⊂ E0 ∀v, u∈E;
(3) F maps finite-dimensional subspaces ofE to finite-dimensional subspaces

of E.

Set
A := ∂Q, B := F −1(p0).

Remark 2.1. There are many examples.
(i) Let N = E− andN⊥ = E+ for E = E− ⊕ E+, and letQ := {u ∈ E− :
‖u‖ < R} with p0 = 0 ∈Q. For anyu = u− ⊕ u+ ∈ E, defineF : E 7→ N by
Fu := u−. ThenA := ∂Q andB := F −1(p0) = E+ satisfy conditions (1)–(3).

(ii) Let E = E−⊕E+ andz0 ∈E+ with ‖z0‖ = 1. For anyu∈E,we writeu =
u− ⊕ sz0⊕w+ with u− ∈E−, s ∈R, andw+ ∈ (E− ⊕Rz0)

⊥ := E+1 . LetN :=
E− ⊕ Rz0. ForR > 0, letQ := {u := u− + sz0 : s ∈ R, u− ∈ E−, ‖u‖ < R}
with p0 = s0z0 ∈Q. Let F : E 7→ N be defined byFu := u− + s‖z0 +w+‖z0.

ThenF,Q,p0 satisfy the conditions (1)–(3) with

B = F −1(s0z0) = {u := sz0 + sw+ : s ≥ 0, w+ ∈E+1 , ‖u‖ = s0}.
For8∈ C1(E,R), we define

0 := {h : [0,1]×Q̄ 7→E andh is |·|w-continuous; for any(s0, u0)∈ [0,1]×Q̄,
there is a|·|w-neighborhoodU(s0,u0) such that

{u− h(t, u) : (t, u)∈U(s0,u0) ∩ ([0,1]× Q̄)} ⊂ Efin,

h(0, u) = u, 8(h(s, u)) ≤ 8(u) ∀u∈ Q̄}.
Here and henceforth, we useEfin to denote various finite-dimensional subspaces
of E whose exact dimensions are irrelevant. Note that0 6= ∅ since id∈0.

The variant weak linking theorem may be stated as follows.

Theorem 2.1 [ScZ]. Let

8λ(u) := I(u)− λJ(u) ∀(λ∈ [1,2], u∈E)
be a family ofC1-functionals and assume that

(a) J(u) ≥ 0 for all u∈E, where81 := 8;
(b) I(u)→∞ or J(u)→∞ as‖u‖ → ∞;
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(c) 8λ is |·|w-upper semicontinuous,8′λ is weakly sequentially continuous, and
8λ maps bounded sets to bounded sets;

(d) supA8λ < infB 8λ for all λ∈ [1,2].

Then, for almost allλ∈ [1,2], there exists a sequence(un) such that

sup
n

‖un‖ <∞, 8′λ(un)→ 0, 8λ(un)→ Cλ,

where
Cλ := inf

h∈0 sup
u∈Q̄

8λ(h(1, u))∈
[

inf
B
8λ, sup

Q̄

8
]
.

In order to study (S), we consider

8λ(z) := 1

2
‖z+‖2 − λ

(
1

2
‖z−‖2 +

∫
R×RN

H(t, x, z)

)
, u∈E.

By (S1) and (S2), for any ε > 0 there exists aCε > 0 such thatH(t, x, z) ≤
ε|z|2 + Cε|z|µ+1. Therefore,

8λ(z
+) ≥ 1

2‖z+‖2 − λε‖z+‖22 − Cε‖z+‖µ+1
µ+1 ≥ b > 0 ∀λ∈ [1,2]

for b > 0 andz ∈B := {z : z ∈E+, ‖z‖ = r0}. The constantsb andr0 are inde-
pendent ofλ. Here and in the sequel,‖·‖r denotes the usual norm ofLr(R1+N).
On the other hand, by (S1) and (S3),H(t, x, z) ≥ c|z|β for all (t, x, z). Then, for
fixed z0 ∈E+ with ‖z0‖ = 1 andz = z− + sz0, we have

8λ(z) ≤ 1
2s

2 − 1
2‖z−‖2 − c‖z‖ββ ≤ 0

for z ∈A := ∂{z = z− + sz0 : ‖z‖ ≤ R, R > 0, s ∈ R}, givenR large enough.
Moreover, it is easy to check that8λ is |·|w-upper semicontinuous and that8′λ is
weakly sequentially continuous. Combining the argument here with Remark 2.1
and Theorem 2.1, we have the following lemma.

Lemma 2.1. For almost allλ∈ [1,2], there exist{zn} ⊂ E such that, asn→∞,
sup
n

‖zn‖ <∞, 8′λ(zn)→ 0, 8λ(zn)→ Cλ ∈ [b, d ],

whered := supQ̄ 8 andQ̄ := {z = z− + sz0 : s ∈R, z− ∈E−, ‖z‖ ≤ R0}.
Lemma 2.2. For almost allλ ∈ [1,2], there exists awλ such that8′λ(wλ) = 0
and8λ(wλ) ≤ d.
Proof. For {zn} in Lemma 2.1, writezn := z+n + z−n with z±n ∈E±. We claim that
there existα > 0 and a sequence{yn} ∈ R1+N such that limn→∞

∫
B(yn,1)

|z+n |2 ≥
α > 0, whereB(y, r) denotes the ball centered aty with radiusr. In fact, if this
is not true then, by a variation of Lions’s concentration compactness lemma [L],
we have thatz+n → 0 inLt(R1+N) for 2< t < (2N +4)/N. By (S1) and (S2), for
anyε > 0 there exists aCε > 0 such that∣∣∣∣∫

R1+N
Hz(t, x, zn)z

+
n

∣∣∣∣ ≤ ε ∫
R1+N
|zn||z+n | + Cε

∫
R1+N
|zn|µ|z+n |,



Homoclinic Orbits for Schrödinger Systems 65

which implies that the left-hand side converges to 0. Consequently,

28λ(zn) ≤ ‖z+n ‖2 = 8′λ(zn)z+n + λ
∫

R1+N
Hz(t, x, zn)z

+
n → 0,

a contradiction. Therefore, our claim is true, and we may assume that there exist
r > 0 (independent ofn) andy∗ := (ȳ0, ȳ1, . . . , ȳN )∈ T0Z×· · ·×TNZ such that∫
B(0,r)|z̄+n |2 ≥ α/2, wherez̄n := z̄+n + z̄−n = zn(t + ȳ0, x1+ ȳ1, . . . , xN + ȳN ).

By periodicity, {z̄n} is still bounded and we have limn→∞8λ(z̄n) ∈ [b, d ] and
lim n→∞8′λ(z̄n) = 0. Without loss of generality, we may suppose thatz̄+n → w+λ
and z̄−n → w−λ . The compactness of the embedding ofE+ into Ltloc(R

1+N) for
2 ≤ t < 2(N + 2)/N implies thatw+λ 6= 0, and consequentlywλ := w+λ +w−λ 6=
0. Evidently,8′λ(wλ) = 0. Finally, by (S3) and Fatous’s lemma, we have

8λ(wλ) = 8λ(wλ)− 1
2〈8′λ(wλ), wλ〉

= λ
∫

R1+N

(
1
2Hz(t, x, wλ) · wλ −H(t, x,wλ)

)
= λ

∫
R1+N

lim
n→∞

(
1
2Hz(t, x, z̄n) · z̄n −H(t, x, z̄n)

)
≤ lim

n→∞
(
8λ(z̄n)− 1

2〈8′λ(z̄n), z̄n〉
)

= lim
n→∞8λ(z̄n)

≤ d.
Lemma 2.3. There existλn→ 1andwn 6= 0such that8′λn(wn) = 0, 8λn(wn) ≤
d, and {wn} is bounded.

Proof. By Lemma 2.2, we need only prove the boundedness of{wn}. Since
8λn(wn) − 1

2〈8′λn(wn), wn〉 ≤ d, condition (S3) implies that
∫

R1+N |wn|β ≤ c.

By (S2)–(S3), we may assume thatβ ≤ µ+1. We have∫
R1+N
|wn|µ+1

≤
(∫

R1+N
|wn|β

)(1−t)(1+µ)/β(∫
R1+N
|wn|(2N+4)/N )

)Nt(µ+1)/(2N+4)

≤ c‖wn‖t(µ+1)
(2N+4)/N

≤ c‖wn‖(µ+1)t ,

wheret := (2N+4)(1+µ−β)
(1+µ)(2N+4−βN ) ∈ [0,1). Therefore,

‖w+n ‖2 = λn
∫

R1+N
Hz(t, x, wn)w

+
n

≤ cε
∫

R1+N
|wn||w+n | + c

∫
R1+N
|wn|µ|w+n |

≤ cε‖w+n ‖2 + ‖w+n ‖tµ+1.
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From the arbitrariness ofε and the fact thattµ + 1< 2, we conclude that{w+n },
and hence{wn}, is bounded.

Proof of Theorem1.1. Since8′λn(wn) = 0, we see that

‖w+n ‖2 = λn
∫

R1+N
Hz(t, x, wn)w

+
n

≤ c
∫

R1+N
(ε|wn| + Cε|wn|µ)|w+n |

≤ cε‖w+n ‖2 + c‖w+n ‖µ+1.

Therefore,‖w+n ‖ ≥ c > 0.We know that there existε0 > 0 and a sequence{yn} ⊂
R1+N such that limn→∞

∫
B(yn,1)

|w+n | ≥ ε0 > 0. Otherwise, by Lions’s concentra-

tion compactness lemma,w+n → 0 in Lt(R1+N) for 2 < t < (2N + 4)/N. This
is impossible because‖w+n ‖ ≥ c. Therefore, by standard arguments, there exists
a z∗ = z+ + z− such thatz+ 6= 0 and8′(z∗) = 0.

Proof of Theorem 1.2.Under the assumptions (F1)–(F4), the conclusions of
Lemmas 2.1–2.3 are still true. It suffices to prove the boundedness of{wn} in
Lemma 2.3. Now

‖w+n ‖2 − λn‖w−n ‖2 = λn
∫

R1+N
Hz(t, x, wn)wn ≥ c‖wn‖νν . (2.1)

By (F3), there existR0 > 0 andε0 > 0 such thatr0 − ε0 > 2 and

Hz(t, x, wn)wn ≥ (r0 − ε0)H(t, x,wn) for |wn| ≥ R0. (2.2)

By (F2) and (F4), there exists ac > 0 such that

Hz(t, x, wn)wn − 2H(t, x,wn) ≥ c|wn|α for |wn| ≤ R0. (2.3)

Since8λn(wn) ≤ d and8′λn(wn) = 0, it follows that(
1

2
− 1

r0 − ε0

)
(‖w+n ‖2 − λn‖w−n ‖2)

+ λn
∫

R1+N

(
1

r0 − ε
)
(Hz(t, x, wn)wn −H(t, x,wn)) ≤ d.

Therefore, by (F1),

‖w+n ‖2 − λn‖w−n ‖2

≤ c + c
(∫
|wn|≤R0

+
∫
|wn|≥R0

)(
H(t, x,wn)− 1

(r0 − ε)Hz(t, x, wn)wn

)
≤ c + c

∫
|wn|≤R0

(
H(t, x,wn)− 1

r0 − εHz(t, x, wn)wn

)
≤ c + c

∫
|wn|≤R0

Hz(t, x, wn)wn

≤ c + c
∫
|wn|≤R0

(|wn|ν + |wn|p).
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On the other hand,8λn(wn)− 1
28
′
λn
(wn)wn ≤ d and hence—by (2.2), (2.3), and

(F1)—we see that

c ≥
∫

R1+N

(
1
2Hz(t, x, wn)wn −H(t, x,wn)

) ≥ c ∫
|wn|≤R0

|wn|α (2.4)

and

c ≥
∫

R1+N

(
1
2Hz(t, x, wn)wn −H(t, x,wn)

)
≥ c

∫
|wn|≥R0

(
r0 − ε0

2
−1

)
H(t, x,wn)

≥ c
∫
|wn|≥R0

|wn|ν . (2.5)

Consequently,
∫
|wn|≥R0

|wn|p ≤ c. Assumptions (F1) and (F4) imply that either
ν > α > p or α ≥ ν > p.

If p < α < ν, then by (2.4) we have
∫
|wn|≤R0

|wn|ν ≤ c and, fort small enough,∫
|wn|≤R0

|wn|p =
∫
|wn|≤R0

|wn|(1−t)p|wn|tp

≤
(∫
|wn|≤R0

|wn|α
)(1−t)p/α(∫

|wn|≤R0

|wn|tpq
)1/q

≤ c
(∫
|wn|≤R0

|wn|tpq
)1/q

≤ c‖wn‖tp, (2.6)

where 1/q + (1− t)p/α = 1.
If p < ν ≤ α then, by (2.4) and (2.5), we have that∫

|wn|≤R0

|wn|p ≤ c‖wn‖tp,
∫
|wn|≤R0

|wn|ν ≤ c‖wn‖tν . (2.7)

Combining (2.4)–(2.7) yields the following estimates:

‖w+n ‖2 = λn
∫

R1+N
Hz(t, x, wn)w

+
n

≤ c
∫

R1+N
(|wn|ν−1+ |wn|p−1)|w+n |

≤ c‖w+n ‖
(∫
|wn|≥R0

|wn|ν +
∫
|wn|<R0

|wn|ν
)(ν−1)/ν

+ c‖w+n ‖
(∫
|wn|≥R0

|wn|p +
∫
|wn|<R0

|wn|p
)(p−1)/p

≤ c‖w+n ‖(c + ‖wn‖t(ν−1) + ‖wn‖t(p−1)).

Sincet can be taken arbitrarily small, it follows that{‖w+n ‖}, and hence{‖wn‖},
is bounded.
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3. Asymptotically Linear Case

In order to prove Theorem 1.3, we first check the conditions of Theorem 2.1.

Lemma 3.1. There existr0 > 0 andb > 0 (independent ofλ) such that8λ|B ≥
b for all λ∈ [1,2], whereB = {z : z∈E+, ‖z‖ = r0}.
Proof. The proof is similar to the argument in the previous section.

Lemma 3.2. There existz0 ∈ E+, ‖z0‖ = 1, andR > r0 (independent ofλ)
such that8λ|A ≤ 0, whereA = ∂{z = z− + sz0 : z− ∈E−, ‖z‖ ≤ R, R > 0}.
Proof. Sinceβ0 > µ1, we can find āz0 ∈ E+\{0} such that the quadratic form
corresponding to−1x + V − β0 is negative onR z̄0 ⊕ E−. Hence,‖z̄0‖2 −
β0
∫

R1+N z̄2
0 < 0. We choosez0 = z̄0/‖z̄0‖. Now we need only prove8|A ≤

0 for largeR, sinceH is positive. If this is not true, then we may findwn =
snz0 + w−n with ‖wn‖ → ∞ such that8(wn) ≥ 0. Settingtn = sn/‖wn‖ and
u−n = w−n /‖wn‖, it follows that tn ≥ ‖u−n ‖. Sincet 2n + ‖u−n ‖2 = 1, we may as-
sumetn → t∗ > 0 andu−n ⇀ u− weakly inE. Denoteu = t∗z0 + u−. Since
〈z0, u

−〉L2 = 0, we have

t 2∗ − ‖u−‖2 − β0

∫
R1+N

u · u = t 2∗ − ‖u−‖2 − β0

∫
R1+N

(t∗z0 + u−)(t∗z0 + u−)

≤ t 2∗ − ‖u−‖2 − β0t
2
∗

∫
R1+N

z2
0 − β0

∫
R1+N

(u−)2

≤ t 2∗
(

1− β0

∫
R1+N

z2
0

)
< 0.

Hence, there exists a bounded set� such thatt 2∗ − ‖u−‖2− β0
∫
�
u2 < 0. On the

other hand,8(wn) ≥ 0 implies that

0 ≤ 1

2
t 2n −

1

2
‖u−n ‖2 −

∫
R1+N

H(t, x,wn)

‖wn‖2

≤ 1

2
t 2n −

1

2
‖u−n ‖2 −

∫
�

H(t, x,wn)

‖wn‖2

= 1

2
t 2n −

1

2
‖u−n ‖2 −

∫
�

1
2β0|wn|2 +K(t, x,wn)

‖wn‖2 .

By (T1) and the Lebesgue dominated convergence theorem,

lim
n→∞

∫
�

K(t, x,wn)

‖wn‖2 = 0.

Hencet 2∗ − ‖u−‖2 − β0
∫
�
u2 ≥ 0, and we have a contradiction. Consequently,

there exists anR > 0 such that8λ(z) ≤ 8(z) ≤ 0 for all z∈A.
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Lemma 3.3. There existλn ∈ [1,2] and wn ∈ E\{0} such thatλn → 1,
8λn(wn) ≤ d, and8′λn(wn) = 0. In particular, {wn} is bounded.

Proof. We only prove the boundedness of{wn}; the proofs of the existence ofwn
andλn are similar to those in Section 2. Since8λn(wn) ≤ d and8′λn(wn) = 0,
we have(

1
2 − 1

µ

)
(‖w+n ‖2 − λn‖w−n ‖2)

+ λn
∫

R×RN

(
1
µ
Hz(t, x, wn)wn −H(t, x,wn)

) ≤ d. (3.1)

On the other hand, by (T2)–(T5) we may assume that

Hz(t, x, z)z ≥ µH(t, x, z) for |z| ≤ R0, (3.2)

Kz(t, x, z)z− 2K(t, x, z) ≥ c|z|α for |z| ≥ R0. (3.3)

Therefore, by (3.1) and (3.2),

‖w+n ‖2 − λn‖w−n ‖2

≤ c + c
∫

R×RN

(
H(t, x,wn)− 1

µ
Hz(t, x, wn)wn

)
= c + c

(∫
|wn|≤R0

+
∫
|wn|≥R0

)(
H(t, x,wn)− 1

µ
Hz(t, x, wn)wn

)
≤ c +

∫
|wn|≥R0

(
H(t, x,wn)− 1

µ
Hz(t, x, wn)wn

)
≤ c +

∫
|wn|≥R0

(
1
2 − 1

µ

)
Hz(t, x, wn)wn

≤ c + c
∫
|wn|≥R0

|wn|2.

Since8λn(wn)− 1
2〈8′λn(wn), wn〉 ≤ d, it follows that

c ≥
∫

R×RN
(Hz(t, x, wn)wn − 2H(t, x,wn))

=
(∫
|wn|≤R0

+
∫
|wn|≥R0

)
(Hz(t, x, wn)wn − 2H(t, x,wn))

≥ c
∫
|wn|≤R0

|wn|m + c
∫
|wn|≥R0

|wn|α. (3.4)

Chooset := (N + 2)(2− α)/(2(N + 2)− αN ). Thent ∈ (0,1) and∫
|wn|≥R0

|wn|2 =
∫
|wn|≥R0

|wn|(1−t)2|wn|2t

≤
(∫
|wn|≥R0

|wn|α
)(1−t)2/α(∫

|wn|≥R0

|wn|(2N+4)/N

)2tN/(2N+4)

≤ c‖wn‖2t . (3.5)
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Combining (3.1)–(3.5), we have the following estimates:

‖w+n ‖2 = λn
∫

R×RN
Hz(t, x, wn)w

+
n

≤ c
(∫
|wn|≥R0

+
∫
|wn|≤R0

)
|Hz(t, x, wn)||w+n |

≤ c
∫
|wn|≥R0

|wn||w+n | + c
∫
|wn|≤R0

|wn|m−1|w+n |

≤ c
(∫
|wn|≤R0

|wn|m
)(m−1)/m(∫

|wn|≤R0

|w+n |m
)1/m

+ c
(∫
|wn|≥R0

|wn|2
)1/2(∫

|wn|≥R0

|w+n |2
)1/2

≤ c‖w+n ‖ + c‖wn‖t‖w+n ‖,
which imply that{w+n }, and hence{wn}, is bounded.

Proof of Theorem 1.3.By the assumptions of Theorem 1.3, for anyε > 0 we have

‖w+n ‖2 = λn
∫

R1+N
Hz(t, x, wn)w

+
n ≤ ε‖wn‖2 + c‖wn‖p,

‖w−n ‖2 = −
∫

R1+N
Hz(t, x, wn)w

−
n ≤ ε‖wn‖2 + c‖wn‖p,

wherep > 2. It follows that‖wn‖ ≥ c > 0. Similarly, there exists az∗ 6= 0 such
that8(z∗) = 0.
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