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1. Introduction

This paper is a continuation of studies initiated in [P1]. For the definition and basic
properties of the Seiberg–Witten monopole invariant, we refer the reader to the
bibliography in [P1]. Our hope is that these studies will ultimately yield a useful
theory of Floer-type cohomology for 3-manifolds that isinfinitelygenerated. The
present goal of this paper is to provide a method of computing the Seiberg–Witten
(SW) invariant of a smooth 4-manifold that can be decomposed into two parts
along an embedded 3-torus. Under some mild assumptions, we prove a gluing for-
mula for the SW invariant in terms of products of suitably perturbed relative SW
invariants of the two end pieces whose common boundary isT 3. In particular, our
formula does not require that one of the glued-up pieces beT 2×D2, as is the case
in [MMS]. We shall derive some interesting applications of this product formula
and others in future work [P2].
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2. Perturbed Solutions over the 3-Torus

We study the Seiberg–Witten equations over the 3-manifoldY = T 3. We shall
always viewY as the trivialS1 bundle over the 2-torus. Let6 be the base space
T 2; that is,Y = 6× S1. Note thatY is the unit circle bundle of the canonical line
bundleK6 over6 (deg(K6) = 0).

Choose a constant curvature connection on the unit circle bundleY and letiζ
denote the corresponding connection form. Letg6 be a constant curvature metric
on the surface6, normalized so that the area of6 is equal to 1. We endowY with
the metric

hY = ζ ⊗ ζ + π∗(g6),
whereπ : Y → 6 is the bundle projection map. Of course, the global 1-formζ
allows a reduction in the structure group ofTY to SO(2), and the Levi–Civita
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connection on6 induces a reducible connection onY that respects this splitting.
We study the moduli space of solutions to the Seiberg–Witten equations overY,

using the preceding metric and connection onTY.

We consider the followingperturbedSeiberg–Witten equations onY corre-
sponding to a Spinc(3) structureW :

FA = τ(9)+ irπ∗µ6,
6 ∂A9 = 0,

(2.1)

wherer ∈R is a fixed nonzero real parameter,µ6 is the volume form on6, and
π : Y → 6 is the projection map. Here,τ : 0(Y,W ) → �2(Y, iR) is the qua-
dratic map adjoint to the Clifford multiplication. We letγ = [{point} × S1] ∈
H1(Y ;Z) be the Poincaré dual of [µ6 ] ∈H 2(Y ;Z).

As in [MOY, Secs. 5.5–5.7], we identify the Seiberg–Witten moduli space with
the moduli space of Kähler vortices on6. (Contrary to the hypothesis in [MOY],
Y has degree 0 but the identification is still valid.) In the notation of [MOY], the
vortex equations read

2FB0 − FK6 = i(r + |α0|2 − |β0|2)µ6,
∂̄B0α0 = 0 and ∂̄∗B0

β0 = 0,

α0 ≡ 0 or β0 ≡ 0.

(2.2)

Here,B0 is a connection on a Hermitian line bundleE0 over6, andα0 andβ0 are
sections in0(6,E0) and0(6,K−1

6 ⊗ E0), respectively.
For genericr, we immediately see that there is no reducible solution to the per-

turbed SW equations (2.1). For generic negative values ofr with |r| very small,
there is only one Spinc(3) structure onY for which the corresponding SW mod-
uli space of irreducible solutions is not empty. This is because we must have, by
virtue of the vortex equations (2.2), deg(E0) = 0, β0 ≡ 0, andα0 = constant.
Thus the canonical Spinc(3) structure,C ⊕ K−1

6 , is the only Spinc(3) structure
that has nonempty SW solution space. We denote this trivial Spinc(3) structure by
L0. The connections in this solution space correspond to constant sections of the
trivial line bundle overT 2 and hence, after dividing by the gauge group action,
M(Y ) =Msw(Y,L0, rπ

∗µ6) = Sym0(6) = {point}.
Lemma 1 (cf. [MOY; P1]). The single point setM(Y ) is smooth(nondegener-
ate) in the sense that it is transversally cut out by the Seiberg–Witten equations
(2.1)modulo gauge.

For generic small positive values ofr, we similarly have deg(E0) = 0, α0 ≡ 0,
andβ0 = constant. As in the negative case, the SW moduli spaceM(Y ) consists
of a single smooth point corresponding toL0. Note that our philosophy diverges
from [MMS], wherein different choices of metric and Dirac operator were made,
resulting in reducible solutions of which some were actually degenerate.

Now suppose thatY is the boundary of some smooth 4-manifoldM. Then we
have a distinguished subgroup of the gauge groupG0(M) ⊂ G(Y ) consisting of



A Gluing Formula for the Seiberg–Witten Invariant alongT 3 595

mapsu that can be extended tou : M → U(1). Dividing out by the action of
G0(M) instead of the full gauge group, we obtain another moduli spaceM̃(Y ).

Of course this moduli space depends onM. Note that dividing byG(Y ) gives a
coveringp : M̃(Y )→M(Y ). The fiber ofp isH1(Y ;Z)/i∗(H1(M;Z)), where
i : Y ↪→M is the inclusion map.

3. Solutions over the Cylinder

We consider the infinite cylinderY ×R. Given a Spinc structure onY ×R, letW+
andW− be the associated Spinc bundles. Clifford multiplication defines a linear
map

ρ : i32→ EndC(W
+)

whose kernel isi3−. We denoteL = det(W+) and writeA(L) for the affine space
of connections onL. We pull back the perturbing form onY of the previous sec-
tion and obtain the following 4-dimensional Seiberg–Witten equations for a pair
(A, φ)∈A(L)× 0(W +):

6 ∂Aφ = 0,

ρ(FA − irπ∗1π∗µ6) = q(φ) = φ∗ ⊗ φ −
|φ|2
2

Id,
(3.1)

whereπ1 : Y × R → Y is the projection map. We identifyL = L0 × R, where
L0 is a complex line bundle overY. Similarly,W+ = W0 × R, whereW0 is the
Spinc bundle overY with respect to the Spinc structure inherited fromY ×R. As
shown in [KM], equations (3.1) then become the gradient flow equation for the
Chern–Simons–Dirac functionalC : A(L0)× 0(W0)→ R given by

C(A, φ) =
∫
Y

(FA0 + ξ) ∧ a +
1

2

∫
Y

a ∧ da +
∫
Y

〈φ, 6 ∂Aφ〉 d vol,

whereξ = −irπ∗1π∗µ6, A0 is a fixed connection onL0, anda = A− A0.

LetM be a compact smooth 4-manifold whose boundary isY. Assume that the
2-form irπ∗µ6 onY extends to a closed 2-form onM. ThenC descends to a real-
valued function on the spacẽB := (A(L0) × 0(W0))/G0(M), whereG0(M) ⊂
G(Y ) is as in Section 2. From now on we shall always viewC as a functional on
B̃ for some fixedM. Note that the set of critical points ofC is the moduli space
M̃(Y ).

To ensure the compactness of the cylindrical end moduli spaces in the next sec-
tion, we need to further perturb equation (3.1) using a method due to Frøyshov.
This extra perturbation will allow us to treatC as if it were aperfectMorse func-
tion. We briefly recall the necessary definitions from [Fr]. Letf1 : R → [0,∞)
be a smooth function supported in the interval [−1,1] and satisfying

∫
f1 = 1.

Let f2 : R → R be a smooth function with compact support such thatf2(t) = t
on some interval containing all critical values ofC. If A is any connection onL
and ifφ is a section ofW +, then we letS = (A, φ) and define a smooth function
hS : R→ R by
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hS(T ) =
∫
R
f1(t1− T )f2

(∫
R
f1(t2 − t1)C(St2) dt2

)
dt1,

whereSt = S(t) is the restriction ofS to Y × {t}.
We choose a compactly supported 2-formω ∈ �2(Y × R) such that the norm
‖ω‖Ck is very small. (Here,k is some fixed integer that is sufficiently large.) We
require the support ofω to lie in a setY × 4, where4 is the result of removing
fromR a small open interval around each critical value ofC. Leth∗S(ω) denote the
pull-back ofω by the map(idY × hS) : Y ×R→ Y ×R. We study the following
translation invariant equations forS = (A, φ):

6 ∂Aφ = 0,

ρ(FA − irπ∗1π∗µ6 + ih∗(A,φ)(ω)) = q(φ).
(3.2)

Now, for a pair of nonnegative real numbersv andw, we letLp;v,wm be theLpm
Sobolev space overY ×R defined using a weighte−vt on the negative end andewt

on the positive end. (Of course,Lp;0,0m = Lpm.) LetB = L2;v,w
4 (Y ×R, i31⊕W +)

and
G = {u : Y × R→ U(1) | u∈L2

5,loc; du · u−1∈L2;v,w
4 }.

Let x, y ∈ M̃(Y ) be critical points ofC, that is, solutions to (2.1), the perturbed
Seiberg–Witten equations onY. We define the space of “perturbed flowlines” on
the cylinder betweenx andy to be the set

Fω(x, y) =
{
S ∈B satisfying (3.2)| lim

t→−∞[St ] = x; lim
t→∞[St ] = y

}/G.
Note that the elements ofFω(x, y) satisfy the gradient flow equation forC out-
side a compact subset ofY ×R. As shown in [Fr, p. 380, (2.3)], there is a natural
identification between theFω(x, y) defined using different exponential weights,
provided all the weightsv andw are sufficiently small. (Exactly how small de-
pends onx andy.) The following lemma shows that there are no nontrivial flow-
lines after the Frøyshov perturbation.

Lemma 2. For generic smallω ∈Ck, Fω(x, x) consists of a single smooth point
andFω(x, y) is empty whenx 6= y.
Proof. The first statement follows readily from [Fr, Lemma 4]. Although Frøyshov
concentrates only on the case when the 3-manifoldY is an oriented rational homol-
ogy sphere, the proof in [Fr,Apx.A] still goes through with very little modification.

Let�2
4 denote the space ofCk 2-forms onY × R with compact support con-

tained inY ×4. As in [Fr, Prop. 5], one can show that the linearization of equa-
tions (3.2) at a point(ω,A, φ),

F = F(ω,A,φ) : �2
4 × B→ L

2;v,w
3 (Y × R, i30⊕ i3+ ⊕W−),

is Fredholm on the slices{ω} × B and is surjective whenever(ω,A, φ) is a solu-
tion to equations (3.2). The Smale–Sard theorem then implies thatFω(x, y) is a
smooth manifold for genericω.
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Now we letP = P(0, ω) be the space ofL2
1 maps,

ν : [0,1]→ L
2;v,w
3 (Y × R,32),

satisfyingν(0) = 0 andν(1) = ω. We define a map

G : B × P(0, ω)× [0,1]→ L
2;v,w
3 (Y × R, i3+ ⊕W−)

by
G(a, φ, ν, t) = (F +A0+a + η(t)+ − τ(φ), 6 ∂A0+a(φ)),

whereη(t) = ih∗(A0+a,φ)(ν(t)) − irπ∗1π∗µ6. One can show that the differential
DG is surjective at every point(a, φ, ν, t) for whichG vanishes. LetM denote
the zero setG−1(0) modulo the weightedL2

5 gauge transformations. LetF be
a generic fiber of the projectionM → P onto the second factor. Note that the
boundary ofF consists of two ends, one of which is cut out by the gradient of
the Chern–Simons–Dirac functionalC (whose linearization always has index 0
on the critical set). Thus, the corresponding boundary components haveexpected
dimension 0. It follows thatF is a 1-dimensional smooth manifold with bound-
ary. Consequently, the expected dimension of the space of “perturbed flowlines”
modulothe weightedL2

5 gauge transformations must be zero. But recall from [Fr]
that the solutions to equations (3.2) are translation invariant in theR-direction.
Hence, after dividing out by the weightedL2

5,loc gauge, the expected dimension of
Fω(x, y) is (−1), which implies thatFω(x, y) is empty for genericω.

4. Moduli Space over a Cylindrical End Manifold

Now suppose thatX is a smooth oriented 4-manifold and that the end ofX is dif-
feomorphic toY × [0,∞). Assume that the intersection form ofX is not negative
definite and that the end perturbationξ = −irπ∗1π∗µ6 extends to a closed 2-form
ξ̄ over the whole manifoldX. Fix a Riemannian metrich on Y (as in the previ-
ous section) and a Riemannian metricg onX such thatg is equal toh+ dt 2 at the
cylindrical end ofX. We look at the perturbed SW equations

6 ∂Aφ = 0,

ρ(FA + η) = q(φ),
η = f · (ih∗(A,φ)(ω)− irπ∗1π∗µ6),

(4.1)

wheref : X → [0,1] is a suitable cut-off function that vanishes away from the
cylindrical end ofX. Note that the perturbing 2-formη actually depends on the
unknowns(A, φ).

We require our configuration(A, φ) to lie in AL2
4
(detL)× L2

4(X,W
+(L)),

whereAL2
4
(detL) denotes the space ofL2

4 unitary connections on the line bundle

detLandW +(L) is the positive spinor bundle for the Spinc structureL. Theenergy
of a solution(A, φ) is defined to be the total variation of the Chern–Simons–Dirac
functionalC over the cylindrical endY × [0,∞),
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sup{C(St )− C(St ′) | t, t ′ ∈ [0,∞)}.
As before,St denotes the restriction of(A, φ) to the sliceY ×{t}. The cylindrical
end moduli spaceMr

X(L, g, ω) is defined by dividing the space of finite energy
solutions by the action of theL2

5,loc gauge groupG(X). Note that every solution
to (4.1) is irreducible; that is,φ 6≡ 0.

Lemma 3. If L does not restrict toL0 on the sliceY, thenMr
X(L, g, ω) is empty.

If L|Y = L0, thenMr
X(L, g, ω) is a smooth oriented manifold of dimension

d = d(L) = 1
4(c1(detL)2 − 2e(X)− 3 sign(X)).

Moreover, by taking limits at the open noncompact end of the infinite cylinder
Y × [0,∞), we have a continuous map

∂∞ :Mr
X(L, g, ω)→ M̃(Y ).

For each pointx ∈ M̃(Y ), the preimage∂−1∞ (x) is compact. There is a con-
stantvr > 0 such that every solution[(A, φ)] ∈ ∂−1∞ (x) decays exponentially to
x with exponent at leastvr; that is, theL2

4 distance betweenx and the restriction
(A(t), φ(t)) is less thanexp(−vr t) for all t large.

Proof. Suppose that [(A, φ)] ∈Mr
X(L, g, ω). Since(A, φ) has finite energy, it

follows from [KM, Prop. 8] thatM(Y,L|Y ) is not empty. Now the results from Sec-
tion 2 imply thatL|Y = L0. The smoothness ofMr

X(L, g, ω) for a small generic
2-formω follows from what is now a “standard” argument, which we choose to
omit. As in the closed case, a cohomology orientation of the pair(X, ∂X) induces
an orientation ofMr

X(L, g, ω). The existence of the continuous map∂∞ follows
from the arguments in [MMS]. Given a pointx ∈ M̃(Y ), we can calculate the
formal dimension of∂−1∞ (x), and hence ofMr

X(L, g, ω), by the index formula of
[APS], which gives

dim(∂−1
∞ (x)) = dimMr

X(L, g, ω) = 1
4(c1(detL)2 − 2e(X)− 3 sign(X)).

Note that the eta invariant (or rho invariant) of the linearization of (2.1) onY is
zero. (This is becauseY admits an orientation-reversing self-diffeomorphism and
eta(−Y ) = −eta(Y ).) Lemma 2 implies that every finite energy flowline over the
cylinderY ×R is static—that is, pulls back fromY. Hence the arguments in [KM,
Lemma 4] imply that the preimage∂−1∞ (x) is compact. The statement about expo-
nential decay can be proved as in [MMR, Chap. 5].

5. Relative Seiberg–Witten Invariant

LetM be a smooth oriented compact 4-manifold with boundary, and suppose that
∂M is diffeomorphic toY. Let K(M) denote the set of isomorphism classes of
Spinc structures onM that restrict toL0 on ∂M.

Definition 4. Let γ denote the homology class of the circle fiber ofY as be-
fore, and leti : ∂M ↪→M be the inclusion map. We shall say thatM is admissible
if the following two conditions are satisfied:
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(i) mγ ∈Ker[i∗ : H1(∂M;Z)→ H1(M;Z)] for some positive integerm.
(ii) M is not negative definite.

Condition (ii) means that the quadratic form associated to the intersection pairing
onH 2(M, ∂M;Z) is not negative definite. For an admissibleM, we shall define
the corresponding noncompact cylindrical end manifoldM̂ := M ∪Y Y × [0,∞)
and then choose a cylindrical end metricg on M̂. Condition (i) ensures that the
perturbationξ extends to a closed 2-form̄ξ overM̂. The goal of this section is to
define the relative Seiberg–Witten invariant

SWM : K(M)× M̃(∂M)→ Z

using moduli spaces over̂M. GivenL∈K(M), we continue to denote the corre-
sponding Spinc structure onM̂ by L→ M̂. LetMr

M̂ (L, g, ω) be the cylindrical
end moduli space of the previous section. Now suppose thatd(L) ≡ 0 (mod 2).
We take a geometric representativeD of µ(pt)d/2 and define

NM(L, x; r, g, ω,D) :=Mr
M̂ (L, g, ω) ∩D ∩ ∂−1

∞ (x).

Note thatD is a genericd-codimensional stratified set in the space of configura-
tions, where we can chooseD to be supported in a small neighborhood of the base
fibration point. For the definition and properties of theµmap, we refer the reader
to [Sa] or the last section of [OS2].

Definition 5. Let M, M̂,L, g, η be as before. For a genericD, NM(L, x;
r, g, ω,D) is a compact oriented 0-dimensional manifold; by counting its points
with signs, we define

SWM(L, x) := #(NM(L, x; r, g, ω,D)).
If d(L) ≡ 1 (mod 2) then we define SWM(L, x) = 0. As in the closed case, we
say thatM is of simple typewhen SWM(L, x) 6= 0 only if d(L) = 0.

Theorem 6. The functionSWM is independent of generic choices ofg, ω, andD.
Furthermore, for any orientation-preserving self-diffeomorphismf : M → M,we
have

SWM(L, x) = (−1)εSWM(f
∗(L), f ∗(x)),

whereε ∈Z/2 is the sign of the action off ∗ on the cohomology orientation of the
pair (M, ∂M).

Proof. The statements can be proved exactly the same way as in the closed case.

Remark 7. We shall see in [P2] that the function SWM may actually depend on
the sign of the real parameterr 6= 0 in the perturbation.

6. Stretching Out the Neck

LetMj (j = 1,2) be smooth compact oriented 4-manifolds with boundary∂Mj =
Y = T 3. For any orientation-reversing self-diffeomorphismϕ : ∂M1 → ∂M2,
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we define a closed oriented 4-manifoldM(ϕ) = M1 ∪ϕ M2. Given the identifi-
cations∂Mj = Y, we can form the closed 4-manifolds̄Mj = Mj ∪Y (T 2 ×D2),

where the circleγ ⊂ ∂Mj is identified with [{pt} × ∂D2]. We shall sometimes
callM(ϕ) afiber sumand write it asM̄1 #ϕ M̄2. Let (ij )∗ : H1(Y )→ H1(Mj ) and
(ij )
∗ : H1(Mj )→ H1(Y ) be the homomorphisms induced by the inclusion maps.

Let nj = dim Ker(ij )∗.

Definition 8. We shall say that the triple(M1,M2, ϕ) is admissibleif the fol-
lowing four conditions are satisfied.

(i) mγ ∈ Ker(ij )∗ for j = 1,2, andmϕ∗(γ ) ∈ Ker(i2)∗ for some positive inte-
germ.

(ii) ϕ∗( Image(i2)∗) ⊂ Image(i1)∗.
(iii) Let Hj = Coker(ij )∗. Then theHj are torsion-free forj = 1,2.
(iv) Mj are not negative definite forj = 1,2.

From now on we will concern ourselves only with admissible triples. Note that
a generalized (or topological) logarithmic transformation—withM1 = T 2 × D2

and the complementM2 having neither a cusp nor a fishtail neighborhood—may
form an admissible triple.

Given an admissible triple(M1,M2, ϕ), letmγ denote the smallest possible pos-
itive integer satisfying condition (i). We can choosebj ∈H2(Mj, ∂Mj) such that
∂b1 = mγ γ and∂b2 = mγϕ∗(γ ). Let6j ⊂ Mj be smoothly embedded surfaces
with boundaries, representingbj . Let [µ] ∈ H 2(M(ϕ);Z) denote the cohomol-
ogy class that is Poincaré dual to the homology class represented by the closed
smooth surface(61∪mγ γ 62) in M(ϕ).

We define a family of metrics onM(ϕ) as follows. First we have the decom-
position

M(ϕ) ∼= M1∪ Y × [−1,1] ∪M2.

Suppose we are given a metricg onM(ϕ) that is of the formh+ dt 2 on the neck
Y × [−1,1], whereh is a metric onY as in Section 2. For each̀≥ 1, let λ`(t) be
a positive smooth function on the interval [−1,1] that is identically equal to 1 on
[−1,−1/2] ∪ [1/2,1] and satisfies∫ 1

−1
λ`(t) dt = 2`.

We define a metricg` to beg on the two endsM1∪M2 andh+ λ`(t)2 dt 2 along
the neckY × [−1,1]. We think of the family{g`} as stretching out the neckY ×
[−1,1] isometrically intoT` = Y × [−`, `]. We denote the Riemannian manifold
(M(ϕ), g`) byM(ϕ)`.

Next we construct a family of perturbing 2-forms that are supported on the neck
T`. As in Section 3, we choose a compactly supported 2-formω ∈ �2(Y × R)
such that‖ω‖L2

k
is very small. Letk` : T` ↪→ Y × R be the inclusion map. Let

W0 denote the Spinc bundle overY corresponding toL0 and letL0 = detL0 =
detW0. As in Section 3, we letW+ = W0 × R andL = detW+. Suppose that
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L is a Spinc structure onM(ϕ)` that restricts toL0 onY and thatW±(L) are the
associated Spinc bundles. Given a pair(A, φ) ∈A(detL) × 0(W+(L)), we de-
fine the “push-forward”(k`)∗(A, φ)∈A(L)×0(W +) as follows. We extend the
restriction(A, φ)|T` over the whole infinite cylinderY × R by constants; that is,

(k`)∗(A, φ)|Y×{t} =


(A, φ)|Y×{−`} if t ≤ −`,
(A, φ)|Y×{t} if −` ≤ t ≤ `,
(A, φ)|Y×{`} if t ≥ `.

Using the same notation as before, we define

η` = f` · (k`)∗
(
ih∗(k`)∗(A,φ)(ω)− irπ∗1π∗µ6

)
,

wheref` : M(ϕ)→ [0,1] is a suitably chosen cut-off function that vanishes away
from the interior of the neckT`.

Now we consider the following perturbed Seiberg–Witten equations on the
closed manifoldM(ϕ)`: 6 ∂Aφ = 0,

ρ(FA + η`) = q(φ). (6.1)

The corresponding moduli space—or the set of solutions to (6.1) divided by the
action of the gauge group—will be denoted byMr

M(ϕ)(L, g`, ω).
Lemma 9. SupposeS = (A, φ) is a solution to the perturbed Seiberg–Witten
equations(6.1)onM(ϕ)` corresponding to theSpinc structureL.
(i) There is a constantK > 0 independent of the neck length` and theSpinc

structures such that

0 ≤ C(S`)− C(S−`) ≤ K + 2πr

mγ
[µ] · c1(detL).

(ii) There is a constantK ′ > 0 independent of the neck length` (but depending
on L) such that theL2

4 distance between the restriction(A(t), φ(t)) and a
static solution is less than

K ′ · exp(−vr ·min{t + `, `− t})
for everyt ∈ [−`, `], wherevr is the constant in Lemma 3.

Proof. These estimates can be derived exactly as in [P1] and [MST].

7. The Product Formula

Suppose(M1,M2, ϕ) is admissible. As before, let̃Mj(Y ) denote the SW moduli
space ofY that is obtained by dividing out the solution space of equations (2.1) by
the action of the restricted gauge groupG0(Mj ). Note thatM̃j(Y ) is aZnj affine
space (i.e., there is a set-theoretic one-to-one correspondence betweenM̃j(Y )

and Coker(ij )∗ ∼= Znj ). More precisely, we choose a solutionx0 = (A0, 90),

whereA0 is the trivial connection. Every other solutionx ∈M̃j(Y ) is of the form
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x = u∗(x0) for some gauge transformationu : Y → S1. Such a mapu gives rise
to a well-defined element [ux ] ∈H1(Y )/(ij )

∗(H1(Mj )).

Let K(M(ϕ)) denote the set of isomorphism classes of Spinc structures on
M(ϕ) that restrict toL0 on Y. Given a Spinc structureL ∈ K(M(ϕ)), let L|j
denote its restriction to the halfMj. Note thatc1(det(L|j )) can be lifted to an ele-
ment ofH 2(Mj, Y ). We letxjL ∈M̃j(Y ) be the element satisfyingc1(det(L|j )) =
∂∗([u

x
j

L
]), where∂∗ : Coker(ij )∗ → H 2(Mj, Y ) is the coboundary map in the

long exact sequence for the pair(Mj, Y ). If no suchxjL exists then we just let
x
j

L := x0 of the previous paragraph. Hence an elementL∈K(M(ϕ)) gives us an
identificationM̃j(Y ) ∼= Hj, where the base pointxjL is identified with the zero
element inHj .

The gluing mapϕ induces a homomorphismϕ∗ : H2→ H1. Using the preced-
ing identifications, we thus obtain a mapϕ∗L : M̃2(Y ) → M̃1(Y ) and define the
“graph” set

GL(ϕ) := {(x, y)∈M̃1(Y )× M̃2(Y ) | x = ϕ∗L(y)}.
(In particular, ifn1 = n2 = n, thenGL(ϕ) looks like the graph set of a matrix
in GLn(Z).) Given the Spinc structuresLj ∈K(Mj ), there is the obvious gluing
mapP : K(M1)×K(M2)→ K(M(ϕ)). We define the subset

Mr1

M̂1
(L1, g1, ω1)×ϕMr2

M̂2
(L2, g2, ω2) ⊂

∏
Mrj

M̂j
(Lj, gj, ωj )

to be{([A1, φ1], [A2, φ2]) | ∂1∞[A1, φ1] = ϕ∗P(L1,L2)
∂2∞[A2, φ2]},where the maps

∂
j
∞ : Mrj

M̂j
(Lj, gj, ωj )→ M̃j(Y ) are as in Lemma 3.

Lemma 10. For generic choice of parameters and all` sufficiently large, there is
a diffeomorphism

Mr
M(ϕ)(L, g`, ω)

∼=−→
∐

P−1(L)
Mr

M̂1
(L1, g1, ω1)×ϕM−r

M̂2
(L2, g2, ω2).

Proof. The statement follows readily from the previous lemmas and the standard
limiting and gluing arguments as in [MM], [T1], and [T2].

Theorem 11 (Product Formula). Given any admissible triple(M1,M2, ϕ) and
Spinc structureL∈K(M(ϕ)), we have

SWM(ϕ)(L) =
∑
P−1(L)

∑
GL(ϕ)

SWM1(L1, x) · SWM2(L2, y),

where the outer sum on the right side is taken over all pairs(L1,L2) in the pre-
imageP−1(L) and where the inner sum is taken over all points(x, y)∈GL(ϕ).
Proof. As shown in [P1], the spaceMr

M(ϕ)(L, g`, ω) is smoothly cobordant to a
standard Seiberg–Witten moduli space and hence can be used to compute SWM(ϕ).
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8. Applications

SupposeX is a closed oriented smooth 4-manifold withb+2(X) > 1. LetS(X) be
the set of isomorphism classes of Spinc structures onX, and letZ[G] denote the
group ring of the Abelian groupG = H2(X;Z). The usual addition inG becomes
multiplication inZ[G].

Definition 12. We define theSeiberg–Witten series ofX to be the element of
Z[G] given by

SWX :=
∑
L∈S(X)

SWX(L)PD(c1(detL)),

where PD:H 2(X;Z)→ G is the Poincaré duality isomorphism.

If b+2(X) = 1 then letCX = {α ∈ H 2(X;R) | α · α > 0}. Suppose we have a
smoothly embedded torus6 ↪→ X with [6] 6= 0∈H2(X;Z) and [6] · [6] = 0.
Then such a torus6 determines a preferred component ofCX that contains those
classesα with 〈α, [6] 〉 > 0. As in [FS3], we can define a pair of functions

SW+X : S(X)→ Z, SW−X : S(X)→ Z.
LetZ[[G]] denote the formal power series ring of the groupG = H2(X;Z),where
the underlying set is the set of integer-valued functions onG and the multiplication
rule is given by the convolution product

(∑
g agg

)·(∑g bgg
) =∑fg=h(af ·bg)h.

Definition 13. Givenb+2(X) = 1 and6 ↪→ X a torus embedding as before,
we define the [6]⊥-restrictedSeiberg–Witten series ofX to be the elements of
Z[[G]] given by

SW±X,6 :=
∑
L∈K(X)

SW±X (L)PD(c1(detL)),

whereK(X) = {L∈S(X) | 〈c1(detL), [6] 〉 = 0}.
Now supposeM is a compact oriented smooth 4-manifold with boundary∂M =
T 3 = 6×S1. Letj : (M,∅)→ (M, ∂M)be the inclusion map, and defineb≥0

2 (M)

to be the dimension of the maximal submodule ofH2(M;Z) on which the inter-
section form

H2(M;Z)⊗H2(M;Z) id⊗j∗−−−→ H2(M;Z)⊗H2(M, ∂M;Z) −−−→ Z
is positive semidefinite. Whenb≥0

2 (M) = 1, we can also define the functions

SW±M : K(M)× M̃(∂M) −→ Z
just as in the closed manifold case. We have the following commutative diagram:

H3(M, ∂M)
∂∗ // H2(∂M)

i∗ // H2(M)
j∗ // H2(M, ∂M)

∂∗ // H1(∂M)

H1(M)

PD

OO

i∗ // H1(∂M)

PD

OO

∂∗ // H 2(M, ∂M)

PD

OO

j∗
// H 2(M)

PD

OO

i∗ // H 2(∂M).

PD

OO

(8.1)
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As before, we letH = Coker[i∗ : H1(M)→ H1(∂M)]. Note that the composi-
tion (i∗ BPD) is well-defined on the quotientH = H1(∂M)/i∗H1(M). Recall that
there exists a canonical identificatioñM(∂M) = H. There also exists an orthog-
onal decomposition

H2(M) = H⊥2 (M)⊕ i∗(H2(∂M)),

where the image ofi∗ is the radical (kernel) of the intersection form. The mapj∗
is injective on the summandH⊥2 (M) ⊂ H2(M) and hence we can define its in-
verse,j−1∗ : Ker(∂∗)→ H⊥2 (M). Given any Spinc structureL ∈K(M), we have
i∗(c1(detL)) = 0 and hence PD(c1(detL)) lies in the kernel of∂∗ : H2(M, ∂M)→
H1(∂M).

Definition 14. LetM be as before with a chosen factorization∂M = 6 × S1.

If b≥0
2 (M) > 1, then we define the Seiberg–Witten series ofM to be the element

of Z[[H2(M;Z)]] given by

SWM :=
∑
L∈K(M)

∑
x∈H

SWM(L, x)[(j−1
∗ B PD)(c1(detL))+ (i∗ B PD)(x)].

If b≥0
2 (M) = 1, letH(6) := {x ∈H | (i∗ [6]) · (i∗ B PD)(x) = 0} and define the

[6]⊥-restricted Seiberg–Witten series ofM to be

SW±M :=
∑
L∈K(M)

∑
x∈H(6)

SW±M (L, x)(i∗ B PD)(x).

With this notation in place, the product formula in Theorem 11 can be restated in
the following form.

Corollary 15 (Product Formula II). Suppose that(M1,M2, ϕ) is an admis-
sible triple. Letkj : Mj → M(ϕ) be the inclusion maps(j = 1,2) and let
(kj )∗ : H2(Mj ;Z) → H2(M(ϕ);Z) be the induced homomorphisms. Then we
have

SWM(ϕ) = (k1)∗(SWM1) · (k2)∗(SWM2),

where the maps(kj )∗ : Z[[H2(Mj ;Z)]] → Z[[H2(M(ϕ);Z)]] are defined by
(kj )∗

(∑
g agg

) =∑g ag(kj )∗(g). The displayed formula remains valid when the
terms in it are replaced by[6]⊥-restricted Seiberg–Witten series of the same sign.

For each integern > 0, letE(n)be a simply connected elliptic surface with no mul-
tiple fibers and with geometric genuspg = n−1. LetF denote a generic torus fiber
of E(n) whose tubular neighborhood is a trivial productF ×D2. We shall com-
pute the Seiberg–Witten series of the complementsE0(n) := E(n)− (F ×D2).

Recall the standard decomposition

E(m+ n) = [E(m)− (F ×D2)] ∪ϕ [E(n)− (F ×D2)],

where the gluing mapϕ : F × S1 → F × S1 is given byϕ(x, ζ) = (x, ζ−1) for
anyx ∈F andζ = eit ∈ S1. Since the manifoldsE0(n) are simply connected, we
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can easily verify that any triple(E0(m),E0(n), ϕ) is admissible. Lett := [F ] de-
note the homology class of a fiber inH2(E0(n);Z) orH2(E(n);Z), and letγ̃ ∈
H1(F × S1;Z) denote the dual element ofγ = [{point} × S1] ∈H1(F × S1;Z)
under the universal coefficient theorem. Note thatH1 = H2 = H1(F × S1;Z)
andϕ∗(γ̃ ) = −γ̃ . Also note that(i∗ B PD)(γ̃ ) = t, wherei : (F × S1)→ E0(n)

are the inclusion maps.

Lemma 16 (cf. [FS2]). We haveSWE(n) = (t−1− t)n−2.

Let us start out with the decompositionE(4) = E0(2)∪ϕ E0(2). Corollary15 says
that

(t−1− t)2 = (k1)∗(SWE0(2)) · (k2)∗(SWE0(2)).

From the symmetry of the situation we can easily conclude that (up to sign)

(k1)∗(SWE0(2)) = t m(t−1− t),
(k2)∗(SWE0(2)) = t−m(t−1− t)

(8.2)

or vice versa. Next we need an analogue of the adjunction inequality (cf. [FS1;
KM; MST; OS1]) for a 4-manifold whose boundary isT 3.

Proposition 17 (cf. [P1; P2]). Suppose thatM is a compact oriented smooth
4-manifold with∂M = T 3 andb≥0

2 (M) > 1. We choose a factorization∂M =
T 2 × S1 and letγ = [{point} × S1] ∈ H1(∂M;Z) as before. Assume thatM is
admissible(in the sense of Definition 4) and of simple type. Letσ be a compact
oriented smooth2-dimensional surface insideM such that, if∂σ 6= ∅, then∂σ ⊂
∂M and furthermore the homology class[∂σ] equals some integer multiplemγ
insideH1(∂M;Z). If SWM(L, x) 6= 0, then we must have

|[(j−1
∗ B PD)(c1(detL))+ (i∗ B PD)(x)] · [σ]| + [σ] · [σ] + e(σ) ≤ 0,

where(j−1∗ B PD) and (i∗ B PD) are the compositions of maps in(8.1) as before
and wheree(σ) is the Euler characteristic ofσ .

Now we apply Proposition 17 to a punctured sectionσB of E(2) insideE0(2) that
satisfies

t · σB = 1, σB · σB = −2, e(σB) = 1;
we conclude thatm = 0 in (8.2). (We could instead have used a punctured torus
coming from the homology classt + [σB ∪D2] ∈H2(E(2);Z) to draw the same
conclusion.) We remark thatm 6= 0 also contradicts the logarithmic transforma-
tion formula in [FS2]. Hence we haveSWE0(2) = t−1− t. From the decomposition
E(3) = E0(2) ∪ϕ E0(1), we have

t−1− t = (t−1− t) · (k2)∗(SWE0(1)),

which immediately implies thatSWE0(1) = 1. Finally, from the recursive relation
E(n+1) = E0(n) ∪ϕ E0(1) we conclude that

SWE(n+1) = SWE0(n).
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In summary, we have proved the following.

Theorem 18. If E0(n) = E(n)− (F ×D2) then we have

SWE0(n) = (t−1− t)n−1,

where t = [F ] ∈ H2(E0(n);Z) is the homology class of a regular fiber. We
also have

SW−
T 2×D2 = 1

t−1− t = t + t
3+ t 5+ · · · = SW−E(1),F ,

SW+
T 2×D2 = 1

t−1− t = −t
−1− t−3− t−5− · · · = SW+E(1),F ,

wheret = [T 2 × {point}] ∈H2(F ×D2;Z).
Perhaps it would be instructive to see what the “graph” setGL(ϕ) in Section 7 looks
like for the decompositionE(4) = E0(2) ∪ϕ E0(2). Let Tm denote the Spinc

structure onE(4) such thatc1(detTm) is Poincaré dual tomt. SinceSWE(4) =
t−2 − 2 + t 2, the SW moduli space forT0 consists of two negatively oriented
points and each of the moduli spaces forT2 andT−2 consists of a single positively
oriented point. Note thatt = 0 insideH2(E0(2), ∂E0(2)) and so we always have
c1(det(Tm|E0(2))) = 0 insideH 2(E0(2)). In Figures 1 and 2, we look at only the 1-
dimensional submodule ofH1= H2

∼= Z3 generated bỹγ . In the figures, we blur
the distinction betweeñγ and its Poincaré dualt. The homomorphismϕ∗ : H2→
H1 restricts to multiplication by−1 on the submodule generated byγ̃ . Figure 1
shows how the moduli space forT0 is obtained. It shows how the gluing occurs
for two possible pairs of compatible lifts of the zero classc1(det(T0|E0(2))) into
H 2(E0(2), ∂E0(2)). Similarly, the moduli space forT2 is depicted in Figure 2,
wherein two different pairs of compatible lifts of the zero classc1(det(T2|E0(2)))

intoH 2(E0(2), ∂E0(2)) are shown.
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Corollary 19. Let6g denote a Riemann surface of genusg, and define6◦g :=
6g−D2 to be a once-punctured Riemann surface of genusg.We haveSWT 2×6◦g =
(t−1 − t)2g−1 and SWT 2×6g = (t−1 − t)2g−2, where t is the homology class
[T 2 × {point}].
Proof. BecauseT 4 is a complex surface, the adjunction inequality implies that
SWT 4 = 1. Since we know thatSW±

T 2×D2 = (t−1−t)−1, it follows thatSWT 2×6◦1 =
t−1− t. Now we can proceed by induction as follows. Ifg = 2n then

SWT 2×6◦g =
(SWT 2×6◦n)

2

SW±
T 2×D2

= (SWT 2×6◦n)
2 · (t−1− t),

and ifg = 2n−1 then

SWT 2×6◦g =
(SWT 2×6◦n)

2

SWT 2×6◦1
= (SWT 2×6◦n)

2

t−1− t .

More generally we have the following result, whose proof is immediate (cf. [FS3,
Thm. 2.1]).

Corollary 20. LetX be a closed oriented smooth4-manifold withb+2(X) >
1. Suppose we have a smoothly embedded torus6 ↪→ X such that[6] 6= 0 ∈
H2(X;Z) and [6] · [6] = 0. Let ν(6) denote the tubular neighborhood of6
and leti∗ : H1(X − ν(6)) → H1(∂ν(6)) be the homomorphism induced by the
inclusion map. IfX − ν(6) is admissible as in Definition 4 and ifCoker(i∗) is
torsion-free, then we have

SWX−ν(6) = SWX · ([6]−1− [6]).

The following is a direct generalization of [FS2, Thm. 8.6].
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Corollary 21 (Logarithmic Transformation).LetX and6 be as in Corollary
20. Given any orientation-reversing diffeomorphismψ : T 2×S1→ ∂(X−ν(6))
such that the triple(T 2 × D2, X − ν(6), ψ) is admissible, the Seiberg–Witten
series ofXψ := (T 2 ×D2) ∪ψ (X − ν(6)) is

SWXψ = SWX · [6]−1− [6]

(i B ψ)∗(t)−1− (i B ψ)∗(t) ,

wheret = [T 2×{point}] ∈H2(T
2× ∂D2) andi : ∂(X− ν(6))→ (X− ν(6)) is

the inclusion map. Ifb+2(X) = 1, then the displayed formula remains valid when
the terms in it are replaced by[6]⊥-restricted Seiberg–Witten series of the same
sign.

Proof. Notice that, for an admissible triple(T 2 × D2, X − ν(6), ψ), we have
thatH1

∼= Z and the homomorphismψ∗ : H2→ H1 can be viewed as a map into
the 1-dimensional submoduleZγ̃ ⊂ H2.

Corollary 22. Letψ : F × S1→ F × S1 be any orientation-reversing diffeo-
morphism. We define a family of closed4-manifolds

X(m, n;ψ) := E0(m) ∪ψ E0(n).

Let tj := (kj )∗ [F ] ∈ H2(X(m, n;ψ)), wherek1 : E0(m) ↪→ X(m, n;ψ) and
k2 : E0(n) ↪→X(m, n;ψ) are the inclusion maps. Then we have

SWX(m,n;ψ) = (t−1
1 − t1)m−1 · (t−1

2 − t2)n−1.

In particular, ifm > 1, n > 1, andt1 6= ±t2, then the manifoldX(m, n;ψ) is not
diffeomorphic toE(m+ n).
Proof. Since the manifoldsE0(n) are simply connected,(E0(m),E0(n), ψ) are
always admissible. The last statement follows from the comparison of divisibili-
ties of the basic classes.

Remark 23. As an example of Corollary 22, letp > 1 be an integer and consider
the self-diffeomorphismψp specified by the matrix 1 0 0

0 0 1
0 1 p


for a suitable choice of basis{α, β, γ } onH1(T

2 × S1;Z). It is easy to see that
X(m, n;ψp) is homeomorphic toE(m + n). Notice that the vanishing disk that
bounds the cycleβ in E0(m) can be glued to a punctured section inE0(n).

This internal sum of disks produces a homologically nontrivial sphereσ inside
X(m, n;ψp). It is readily seen thatσ · t1 = 0 butσ · t2 = 1. Hencet1 6= ±t2 and
X(m, n;ψp) is not diffeomorphic toE(m+ n), providedm, n > 1. More gener-
ally, different integer partitions

n = r + s (s ≥ r ≥ 0; r = 0,1, . . . , [n/2])
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give rise to a pairwise nondiffeomorphic family,X(r, s;ψp), each homeomorphic
toE(n). (Here, we can defineE0(0) := F ×D2, and [x] denotes the greatest in-
teger less than or equal tox.) To get more new exotic smooth structures, we may
form the fiber sums

X(r0, s0;ψp0 ) #ψq1 X(r1, s1;ψp1) #ψq2
· · · #ψqm X(rm, sm;ψpm),

which are homeomorphic toE
(∑

(ri + si)
)
.

Now consider a smooth knotK in S3 and letm denote a fixed meridian ofK. Let
MK be the result of Dehn surgery with coefficient 0 onK ⊂ S3;MK has the same
homology asS2 × S1 with the class ofm generatingH1(MK). In MK × S1 we
have a torusTm = m× S1 of self-intersection 0.

Corollary 24. Let1K(t) be the symmetrized Alexander polynomial of a knot
K ⊂ S3 as in [FS3]. Then we have

SW±
MK×S1,Tm

= 1K([Tm]2)

([Tm]−1− [Tm])2
.

Proof. In [FS3], Fintushel and Stern constructed fiber sums

E(2)K = [(MK × S1)− (Tm ×D2)] ∪ϕ [E(2)− (F ×D2)],

where the gluing mapϕ identifiesTm with the fiberF. They showed that

SWE(2)K = 1K([Tm]2).

We know that the complement [(MK × S1) − ν(Tm)] has the same homology as
T 2 ×D2 and also thatE0(2) is simply connected; hence it is easily checked that
((MK × S1) − ν(Tm), E0(2), ϕ) is admissible. From our product formula and
Corollary 20, we must have

1K([Tm]2) = SW±
MK×S1,Tm

([Tm]−1− [Tm]) · ([F ]−1− [F ]).

Sinceb−2 (MK × S1) = 1, [FS3, Lemma 5.1] implies that the Seiberg–Witten se-
riesSW±

MK×S1,Tm
involves only powers of [Tm]. Since [F ] = [Tm] in E(2)K, our

result follows.

Remark 25. (i) LetX = CP2 #CP2. Let H andE denote the generators of
H2(CP2) andH2(CP2), respectively. Then the homology classH − E is rep-
resented by a smoothly embedded sphere inX. Attaching a trivial handle to that
sphere yields a torusT representingH − E. Let Xp,q denote the result of loga-
rithmic transformations of ordersp andq on two parallel copies ofT, and letL
be a Spinc structure onX with PD(c1(detL)) = aH + bE. If SWX(L) 6= 0, then
by the dimension formula we must have

c1(detL)2 − 2e(X)− 3 sign(X) = a2 − b2 − 8≥ 0.

Thus it follows that PD(c1(detL)) · [T ] = a+b 6= 0. Consequently we must have
SW±X,T = 0, and Corollary 21 implies thatSW±Xp,q,T = 0 as well. We conjecture
that one can prove that theXp,q are all diffeomorphic toX via Kirby calculus.
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(ii) Let M̃1,2(Y ) denote the solution space of the 3-dimensional Seiberg–Witten
equations (2.1) modulo the gauge subgroupG0(M1) ∩ G0(M2) (i.e., the subgroup
of mapsu : Y → S1 that can be extended to bothM1 andM2). Even if(M1,M2, ϕ)

is not admissible, we should still be able to compare the elements of the covers
M̃1(Y ) andM̃2(Y ) by considering the following commutative diagram.

M̃1(Y )

��
??????

M̃1,2(Y )

�������

��
?????

M(Y )

M̃2(Y )

��������

?oo

We hope to generalize Theorem 11 to this situation in [P2].
(iii) While an earlier version of this paper was being refereed, Taubes pub-

lished a paper [T3] that contains a product formula similar to ours. One of the
main differences between his approach and ours is that he proves the compact-
ness of cylindrical end moduli spaces by brute analytical force, whereas we have
employed a simpler method of nonconstant perturbation that is more readily ap-
plicable to other 3-manifolds (cf. (3.2) and (4.1)).

9. Extension to Other 3-Manifolds

It is fairly straightforward to prove an analogue of Theorem 11 for many other 3-
manifolds. For example, one can do it for a certain class of Seifert fibered spaces—
in particular,S1 bundles over 2-dimensional orbifolds whose corresponding line
bundle hasc1 that is torsion. In [P2] we shall study gluing along these and other
more general 3-manifolds. We plan to work with a more sophisticated version of
the relative Seiberg–Witten invariant that is a function of the form

SWM : Spinc(M)→ Nov(H),
whereH is some infinite group determined by the moduli spaceM̃(∂M) and
Nov(H) is a suitably defined Novikov ring. As alluded to in Section 1, we hope
that this will be a germ of a new theory of infinitely generated Floer-type coho-
mology for the pairs(M, ∂M).
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