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A Gluing Formula for the
Seiberg-Witten Invariant alon?®

B. Douc Park

1. Introduction

This paper is a continuation of studies initiated in [P1]. For the definition and basic
properties of the Seiberg—Witten monopole invariant, we refer the reader to the
bibliography in [P1]. Our hope is that these studies will ultimately yield a useful
theory of Floer-type cohomology for 3-manifolds thairifinitely generated. The
present goal of this paper is to provide a method of computing the Seiberg-Witten
(SW) invariant of a smooth 4-manifold that can be decomposed into two parts
along an embedded 3-torus. Under some mild assumptions, we prove a gluing for-
mula for the SW invariant in terms of products of suitably perturbed relative SW
invariants of the two end pieces whose common boundafy .isn particular, our
formula does not require that one of the glued-up piecels®e D2, as is the case

in [MMS]. We shall derive some interesting applications of this product formula
and others in future work [P2].
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2. Perturbed Solutions over the 3-Torus

We study the Seiberg-Witten equations over the 3-manifol¢: 73. We shall
always viewY as the trivialS* bundle over the 2-torus. L& be the base space
T?2; thatis,Y = ¥ x S% Note thatY is the unit circle bundle of the canonical line
bundleKs overX (deg Ks) = 0).

Choose a constant curvature connection on the unit circle buhdied leti¢
denote the corresponding connection form. ¢gte a constant curvature metric
on the surfac&, normalized so that the area &fis equal to 1. We endow with
the metric

hy =¢®¢ +7"(gx),
wherer: Y — X is the bundle projection map. Of course, the global 1-fgrm
allows a reduction in the structure group B¥ to SQ2), and the Levi—Civita
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connection or induces a reducible connection @rthat respects this splitting.
We study the moduli space of solutions to the Seiberg—Witten equationg’pver
using the preceding metric and connection7dn

We consider the followingperturbed Seiberg—Witten equations on corre-
sponding to a Spiii3) structureWw:

Fy =t(V) +irnus,

0 =0 (2.1)

wherer € R is a fixed nonzero real parametgrg is the volume form ork, and
7:Y — X is the projection map. Here,: I'(Y,W) — Q?(Y,iR) is the qua-
dratic map adjoint to the Clifford multiplication. We let = [{point} x S']
Hy(Y; Z) be the Poincaré dual offs] € H*(Y; Z).

As in [MOY, Secs. 5.5-5.7], we identify the Seiberg—Witten moduli space with
the moduli space of Kéhler vortices ah (Contrary to the hypothesis in [MOY],
Y has degree 0 but the identification is still valid.) In the notation of [MOY], the
vortex equations read

2Fp, — Fxy = i(r + |aol® — | Bol) s,
dpoo =0 and 05 Bo=0, (2.2)
ap=0 or Bp=0.

Here,Bg is a connection on a Hermitian line bundig overX, andag andgo are
sections im'(X, Eg) andI'(X, Kgl ® Eg), respectively.

For generia, we immediately see that there is no reducible solution to the per-
turbed SW equations (2.1). For generic negative valuesvath || very small,
there is only one Spiit3) structure on for which the corresponding SW mod-
uli space of irreducible solutions is not empty. This is because we must have, by
virtue of the vortex equations (2.2), ddtp) = 0, 8o = 0, anday = constant
Thus the canonical SpiB) structure,C & Kgl, is the only Spifi(3) structure
that has nonempty SW solution space. We denote this triviaf &istructure by
L. The connections in this solution space correspond to constant sections of the
trivial line bundle overT'? and hence, after dividing by the gauge group action,
M(Y) = Msw(Y, Lo, ra*us) = SynP(T) = {point.

LemmMa 1 (cf. [MQOY; P1]). The single point setM (Y) is smooth(nondegener-
ate) in the sense that it is transversally cut out by the Seiberg-Witten equations
(2.1) modulo gauge.

For generic small positive values afwe similarly have de@Fy) = 0, «p = 0,
andpo = constantAs in the negative case, the SW moduli spAd€Y ) consists
of a single smooth point correspondingdg. Note that our philosophy diverges
from [MMS], wherein different choices of metric and Dirac operator were made,
resulting in reducible solutions of which some were actually degenerate.

Now suppose that is the boundary of some smooth 4-manifald Then we
have a distinguished subgroup of the gauge g@y@1) C G(Y) consisting of
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mapsu that can be extended 0: M — U(1). Dividing out by the action of
Go(M) instead of the full gauge group, we obtain another moduli spac#).
Of course this moduli space dependsMn Note that dividing byG(Y) gives a
coveringp: M(Y) — M(Y). The fiber ofp is HX(Y: Z)/i*(HY(M; Z)), where
i:Y — M isthe inclusion map.

3. Solutions over the Cylinder

We consider the infinite cylindéf x R. Given a Spifi structure or¥ xR, let W+
andW~ be the associated Sgibundles. Clifford multiplication defines a linear
map

p:iA%> — Endc (W)

whose kernel isA~. We denotd. = det(W ) and write A(L) for the affine space
of connections orl.. We pull back the perturbing form on of the previous sec-
tion and obtain the following 4-dimensional Seiberg-Witten equations for a pair
(A,9) e A(L) x T(W):
dadp =0, ,
. * %k * 3.1

p(Fp —irgim us) =q(p) =¢ ®¢—%|d, (31)
wheren;: Y x R — Y is the projection map. We identify = Lo x R, where
Lo is a complex line bundle ovef. Similarly, W+ = Wy x R, whereW, is the
Spirf bundle overy with respect to the Spfrstructure inherited fron¥ x R. As
shown in [KM], equations (3.1) then become the gradient flow equation for the
Chern-Simons—Dirac function@l: A(Lg) x I'(Wp) — R given by

1
C(A,d)):/(FAO—i—é)/\a—i——/a/\da—i—/(qb, dagp) d vol,
Y 2 Jy Y

where¢ = —irnfn*us, Ao is afixed connection ofig, anda = A — Ag.

Let M be a compact smooth 4-manifold whose boundaty &ssume that the
2-formirm*us onY extends to a closed 2-form ad. ThenC descends to a real-
valued function on the spacté:: (A(Lg) x T'(Wy))/Go(M), whereGo(M) C
G(Y) is as in Section 2. From now on we shall always viévas a functional on
BB for some fixedM. Note that the set of critical points @f is the moduli space
M(Y).

To ensure the compactness of the cylindrical end moduli spaces in the next sec-
tion, we need to further perturb equation (3.1) using a method due to Frgyshov.
This extra perturbation will allow us to tre@tas if it were gperfectMorse func-
tion. We briefly recall the necessary definitions from [Fr]. lfget R — [0, c0)
be a smooth function supported in the intervall[1] and satisfying/ /1 = 1.

Let fo: R — R be a smooth function with compact support such thdt) = ¢
on some interval containing all critical values®©f If A is any connection oL
and if ¢ is a section oV T, then we letS = (A, ¢) and define a smooth function
hs: R — R by
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hs(T) = Afl(tl_ T)fz(/];{ fita — tl)C(Stz)dt2> dn,

whereS; = S(¢) is the restriction oS to Y x {r}.

We choose a compactly supported 2-faine Q2(Y x R) such that the norm
lwllcx is very small. (Herek is some fixed integer that is sufficiently large.) We
require the support ab to lie in a sett x E, whereZ is the result of removing
fromR a small open interval around each critical valu€ol et 3 (w) denote the
pull-back ofw by the map(idy x hg): ¥ x R — Y x R. We study the following
translation invariant equations f6r= (A, ¢):

¢ =0,

. - (3.2)
p(Fy — Irmymw iy + lh(A,¢)(a))) =q(¢9).

Now, for a pair of nonnegative real numberandw, we letL, " be theL?,
Sobolev space oveaf x R defined using a weight " on the negative end ard’
on the positive end. (Of course’®® = L2,) LetB = Li"'“""(Y xR, it W)
and

G={u: Y xR— U®D |ueld; du-uteli"").

Letx, y € M(Y) be critical points ofC, that is, solutions to (2.1), the perturbed
Seiberg-Witten equations dh We define the space of “perturbed flowlines” on
the cylinder between andy to be the set

Fo(x,y) = {s € B satisfying (3.2) lim [5,] =x; lim[5] = y}/g.

Note that the elements of,,(x, y) satisfy the gradient flow equation far out-
side a compact subset Bfx R. As shown in [Fr, p. 380, (2.3)], there is a natural
identification between th&, (x, y) defined using different exponential weights,
provided all the weights andw are sufficiently small. (Exactly how small de-
pends onx andy.) The following lemma shows that there are no nontrivial flow-
lines after the Frgyshov perturbation.

Lemma 2. For generic smalw € C*, 7, (x, x) consists of a single smooth point
and F,(x, y) is empty when # y.

Proof. The first statement follows readily from [Fr, Lemma 4]. Although Frgyshov
concentrates only on the case when the 3-manifdiian oriented rational homol-
ogy sphere, the proof in [Fr, Apx. A] still goes through with very little modification.

Let Q2 denote the space @f* 2-forms onY x R with compact support con-
tained inY x E. As in [Fr, Prop. 5], one can show that the linearization of equa-
tions (3.2) at a pointw, A, ¢),

F=Foagp: Q2xB— L5 (Y xR, iNN@®iAt @ W),

is Fredholm on the slicelev} x B and is surjective whenevéw, A, ¢) is a solu-
tion to equations (3.2). The Smale—Sard theorem then impliesA@at, y) is a
smooth manifold for generie.
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Now we letP = P(0, w) be the space dt% maps,
v:[0,1] = L5""(Y x R, A?),
satisfyingv(0) = 0 andv(1) = w. We define a map
G:BxP0,w) x[0,1] = L5"" (Y xR, iA* & W")

by
Ga,p,v,1) = (FATW + 0T = T(P), Fagra(@)).

wheren(t) = ih?Ao+a,¢>(V(f)) — irm{m*us. One can show that the differential
DG is surjective at every poirlz, ¢, v, t) for which G vanishes. LeM denote
the zero setG ~1(0) modulo the weighted,f-) gauge transformations. L&t be

a generic fiber of the projectiol — P onto the second factor. Note that the
boundary offF consists of two ends, one of which is cut out by the gradient of
the Chern—Simons—-Dirac function@l (whose linearization always has index 0
on the critical set). Thus, the corresponding boundary componentekpeeted
dimension 0. It follows thaF is a 1-dimensional smooth manifold with bound-
ary. Consequently, the expected dimension of the space of “perturbed flowlines
modulothe weighted.Z gauge transformations must be zero. But recall from [Fr]
that the solutions to equations (3.2) are translation invariant ifRtiarection.
Hence, after dividing out by the Weight‘s‘.xgIOC gauge, the expected dimension of
Fo(x,y)is (1), which implies thatF,(x, y) is empty for generie. O

4. Moduli Space over a Cylindrical End Manifold

Now suppose thaX is a smooth oriented 4-manifold and that the en& a$ dif-
feomorphic taY x [0, co). Assume that the intersection form &fis not negative
definite and that the end perturbatipr= —irz;7*us extends to a closed 2-form
£ over the whole manifoldl. Fix a Riemannian metrig on Y (as in the previ-
ous section) and a Riemannian megion X such thaf is equal toz + dt? at the
cylindrical end ofX. We look at the perturbed SW equations

gap =0,
p(Fx+mn) =q(9), 4.1
n=1r- (ihz(A,@(a)) —irmin uy),

where f: X — [0, 1] is a suitable cut-off function that vanishes away from the
cylindrical end ofX. Note that the perturbing 2-form actually depends on the
unknowns(A, ¢).

We require our configurationA, ¢) to lie in A, 2(detl) x Lﬁ(X,W*(E)),
whereALi(detﬁ) denotes the space 6f unitary connections on the line bundle
detL andW (L) is the positive spinor bundle for the Spitructure’ . Theenergy
of a solution(A, ¢) is defined to be the total variation of the Chern—Simons-Dirac
functional C over the cylindrical end x [0, c0),
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sugC(S;) — C(Sy) | t,t" €[0, 00)}.

As before,S; denotes the restriction 6, ¢) to the sliceY x {¢}. The cylindrical
end moduli spacé’ (L, g, w) is defined by dividing the space of finite energy
solutions by the action of thI-,%,IOC gauge grougi(X). Note that every solution

to (4.1) is irreducible; that isp # O.

Lemma 3. If £ does notrestrict te€ o on the slice, thenM (L, g, w) is empty.
If Lly = Lo, thenM (L, g, w) is a smooth oriented manifold of dimension

d =d(L) = f(cy(detl)? — 2e(X) — 3sign(X)).

Moreover, by taking limits at the open noncompact end of the infinite cylinder
Y x [0, c0), we have a continuous map

Boo: My (L, g, 0) = M(Y).

For each pointx € M(Y), the preimaged}(x) is compact. There is a con-
stantv, > 0 such that every solutiof(A, ¢)] € 3 }(x) decays exponentially to
x with exponent at least,; that is, theL? distance between and the restriction
(A1), ¢ (1)) is less tharexp(—wv, t) for all ¢ large.

Proof. Suppose that(}A, ¢)] € M4 (L, g, w). Since(A, ¢) has finite energy, it
follows from [KM, Prop. 8] thatM (Y, L|y) is notempty. Now the results from Sec-
tion 2 imply thatl|y = Lo. The smoothness o¥1 (L, g, w) for a small generic
2-form w follows from what is now a “standard” argument, which we choose to
omit. As in the closed case, a cohomology orientation of the(paif X ) induces

an orientation ofM’ (L, g, ). The existence of the continuous m&jp follows
from the arguments in [MMS]. Given a pointe M(Y), we can calculate the
formal dimension o6 1(x), and hence oM’ (L, g, w), by the index formula of
[APS], which gives

dim(30(x)) = dim M4 (L, g, ®) = 3 (ca(detl)? — 2e(X) — 3signX)).

Note that the eta invariant (or rho invariant) of the linearization of (2.1yda
zero. (This is becausé admits an orientation-reversing self-diffeomorphism and
eta—Y) = —eta¥).) Lemma 2 implies that every finite energy flowline over the
cylinderY x R is static—that is, pulls back fron¥. Hence the arguments in [KM,
Lemma 4] imply that the preimagig}(x) is compact. The statement about expo-
nential decay can be proved as in [MMR, Chap. 5]. O

5. Relative Seiberg-Witten Invariant

Let M be a smooth oriented compact 4-manifold with boundary, and suppose that
oM is diffeomorphic toY. Let (M) denote the set of isomorphism classes of
Spirf structures orM that restrict taCo on 9M.

DerFiNITION 4. Lety denote the homology class of the circle fiberYofs be-
fore, and let: 9M — M be the inclusion map. We shall say thdtis admissible
if the following two conditions are satisfied:
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(i) my eKerli,: Hi(0M; Z) — Hy(M; Z)] for some positive integen.
(i) M is not negative definite.

Condition (ii) means that the quadratic form associated to the intersection pairing
on H?(M, aM; 7)) is not negative definite. For an admissitMe we shall define

the corresponding noncompact cylindrical end manifdld= M Uy Y x [0, o)

and then choose a cylindrical end metgion M. Condition (i) ensures that the
perturbatiore extends to a closed 2-fornover M. The goal of this section is to
define the relative Seiberg-Witten invariant

SWy,: K(M) x M(OM) — 7Z

using moduli spaces oveér. Given £ € K(M), we continue to denote the corre-
sponding Spifistructure onM by £ — M. Let M7, (L, g, ») be the cylindrical
end moduli space of the previous section. Now suppose/ifiat = 0 (mod 2.
We take a geometric representativeof 1 ( pr)%/? and define

Nu(L,x; r, g, 0, D) := My (L, g, ) N DN a;ol(x).

Note thatD is a generial-codimensional stratified set in the space of configura-
tions, where we can chooggto be supported in a small neighborhood of the base
fibration point. For the definition and properties of fhenap, we refer the reader
to [Sa] or the last section of [OS2].

DErFINITION 5. Let M, M, £, g, n be as before. For a generie, Ny (L, x;
r, &, w, D) is a compact oriented 0-dimensional manifold; by counting its points
with signs, we define

SWM(£1 x) = #(NM(ﬁs X, r 8, w, D))

If d(£) =1 (mod 2 then we define SW(L, x) = 0. As in the closed case, we
say thatM is of simple typevhen SW; (L, x) # 0 only if d(£) = 0.

THEOREM 6. The functiorSW, is independent of generic choicexotv, andD.
Furthermore, for any orientation-preserving self-diffeomorphjgmvf — M, we
have

SWir (L, x) = (=D SWy (f*(£), f*(x)),

wheree € Z /2 is the sign of the action of* on the cohomology orientation of the
pair (M, OM).

Proof. The statements can be proved exactly the same way as in the closed case.
O

REMARK 7. We shall see in [P2] that the function $\Whay actually depend on

the sign of the real parameter# 0 in the perturbation.

6. Stretching Out the Neck

LetM; (j = 1, 2) be smooth compact oriented 4-manifolds with boundady =
Y = T3. For any orientation-reversing self-diffeomorphigm oM; — Mo,
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we define a closed oriented 4-manifdfi(¢) = MU, M>. Given the identifi-
cationsaM; = Y, we can form the closed 4-manifold$; = M; Uy (T? x D?),
where the circley C 9M; is identified with [pt} x aD?]. We shall sometimes
call M (p) afiber sumand write it asM1 #, My. Let (i;).: Hi(Y) — Hy(M;) and
()" Hl(Mj) — H(Y) be the homomorphisms induced by the inclusion maps.
Letn; = dimKer(i;),.

DerFiniTION 8. We shall say that the tripl@V/1, M», ¢) is admissiblef the fol-
lowing four conditions are satisfied.

(i) my e Ker(ij), for j =1, 2, andme.(y) € Ker(i,). for some positive inte-
germ.
(i) ¢*(Imageiz)*) C Imageiy)*.
(iii) Let H; = Cokeni;)*. Then theH; are torsion-free foj =1, 2.
(iv) M; are not negative definite fgr=1, 2.

From now on we will concern ourselves only with admissible triples. Note that
a generalized (or topological) logarithmic transformation—with = 72 x D?
and the complemeni/, having neither a cusp nor a fishtail neighborhood—may
form an admissible triple.

Given an admissible tripleV1, M>, ¢), letm,, denote the smallest possible pos-
itive integer satisfying condition (i). We can chodses H»(M;, 9M;) such that
dby = m,,y anddby = m,¢.(y). Let X; C M; be smoothly embedded surfaces
with boundaries, representirtg. Let [u] € H?(M(g); Z) denote the cohomol-
ogy class that is Poincaré dual to the homology class represented by the closed
smooth surfacex; U, X2) in M(p).

We define a family of metrics oM (¢) as follows. First we have the decom-
position

M((p) = MUY x [—:Ll]UMz.

Suppose we are given a metgon M (¢) that is of the formi 4 dt? on the neck
Y x [—1, 1], whereh is a metric onY as in Section 2. For ea¢h> 1, letA,(¢) be
a positive smooth function on the intervat], 1] that is identically equal to 1 on
[-1 —-1/2] U [1/2,1] and satisfies

1
f Ae(t)dt = 2¢.
-1

We define a metrig, to beg on the two end$/; U M, andh + A, (t)? dt? along
the necky x [—1, 1]. We think of the family{g,} as stretching out the nedk x
[—1 1] isometrically intoT, = Y x [—¢, £]. We denote the Riemannian manifold
(M(@), g¢) by M(¢),.

Next we construct a family of perturbing 2-forms that are supported on the neck
T,. As in Section 3, we choose a compactly supported 2-form Q%(Y x R)
such that1|a>||Li is very small. Letk,: T, — Y x R be the inclusion map. Let
Wy denote the Spthbundle overY corresponding tao and letLy = detLy =
detWy. As in Section 3, we leW* = Wy x R andL = detW*. Suppose that



A Gluing Formula for the Seiberg-Witten Invariant alofi§ 601

L is a Spirf structure onM (¢), that restricts toCo on Y and thatW*(£) are the
associated Spfrbundles. Given a paitA, ¢) € A(detl) x T(W (L)), we de-
fine the “push-forwardk,).(A, ¢) € A(L) x (W) as follows. We extend the
restriction(A, ¢)|7, over the whole infinite cylinde¥ x R by constants; that is,

(A, Plyx—g if 1 <-4,
(k)< (A, Dlyxiy =3 (A, Plyxyy i =€ <t <¢,
(A, Plyxey If 1 >L.
Using the same notation as before, we define
ne = fe- (ke)*(ih?kl)*(A@)(w) - irnfﬂ'*ﬂz),

wheref,;: M(p) — [0, 1] is a suitably chosen cut-off function that vanishes away
from the interior of the necl.
Now we consider the following perturbed Seiberg-Witten equations on the
closed manifoldV (¢),:
dagp =0,

p(Fx +ne) = q(9).

The corresponding moduli space—or the set of solutions to (6.1) divided by the
action of the gauge group—will be denotedfb;{w(w)(ﬁ, g0, ).

(6.1)

LEMMA 9. SupposeS = (A, ¢) is a solution to the perturbed Seiberg—Witten
equationg6.1)on M (¢p), corresponding to th&pirt structureL.

(i) There is a constank > 0 independent of the neck lengtrand theSpirf
structures such that

0<C(S)—CS_) <K+ fnﬂ[’” - ex(detr).
14

(i) Thereis a constank’ > 0 independent of the neck lengtl{but depending
on £) such that thel.Z distance between the restricti@ga(z), ¢ (¢)) and a
static solution is less than

K’ -exp(—v, -min{r + €, £ — t})

for everyr € [—£, £], wherev, is the constant in Lemma 3.

Proof. These estimates can be derived exactly as in [P1] and [MST]. O

7. The Product Formula

SupposeM;, M, ¢) is admissible. As before, Ie‘t;l_,-(Y) denote the SW moduli
space off that is obtained by dividing out the solution space of equations (2.1) by
the action of the restricted gauge graéig(M;). Note that/\;lj(Y) isaz" affine
space (i.e., there is a set-theoretic one-to-one correspondence beﬁm;elém

and Coke(i;)* = Z"). More precisely, we choose a solutieag = (Ao, Vo),
whereAj is the trivial connection. Every other solutiare /\;lj(Y) is of the form
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x = u*(xo) for some gauge transformatian ¥ — S% Such a map gives rise
to a well-defined element[] € HX(Y)/(i;)*(HY(M,)).

Let (M (¢)) denote the set of isomorphism classes of Sgitmuctures on
M (yp) that restrict toLo on Y. Given a Spifi structurel € K(M(g)), let L];
denote its restriction to the half;. Note thatci(det(£];)) can be lifted to an ele-
ment ofHZ(M,, Y). We Ietx£ € M i(Y) be the element satisfying(det(L|;)) =
3*([u, ,]) whered*: Cokeri;)* — HZ( ;, Y) is the coboundary map in the
Iong exact sequence for the p&iv/;, Y). If no sucth exists then we just let
x} := xo of the previous paragraph. Hence an eleneatC(M (¢)) gives us an
identificationM;(Y) = 7;, where the base point,. is identified with the zero
element ink;.

The gluing may induces a homomorphisgt: H, — H1. Using the preced-
ing identifications, we thus obtain a map: Mx(Y) — M;(Y) and define the
“graph” set

Gep) = {(x,y) e M1(Y) x Ma(Y) | x = ¢} ()}

(In particular, ifn; = np, = n, thenG(¢) looks like the graph set of a matrix
in GL,(Z).) Given the Spifi structuresC; € IC(M;), there is the obvious gluing
mapP: K(My) x K(Mz) — K(M(g)). We define the subset

MG (L1, 81, 01) Xy ME (L2, g2.02) C [[M]] (L. g )

to be{([Ax, ¢1], [A2, ¢2]) | 0L [AL ¢1] = 0p s, £,)0%[ A2, $2]}, where the maps
9L M;’Ldk(lj-, gj» wj) — M;(Y) are as in Lemma 3.
J

LemMma 10. For generic choice of parameters and alsufficiently large, there is
a diffeomorphism

M) (L, 8es 0) = = ]_[ M;;Il(ﬁl, 81, w1) X M;{z(ﬁz, 82, w2).
PYL)

Proof. The statement follows readily from the previous lemmas and the standard
limiting and gluing arguments as in [MM], [T1], and [T2]. O

THeOREM 11 (Product Formula). Given any admissible tripléM;, M2, ¢) and
Spirf structureL € (M (¢)), we have

SWu) (L) = D Y SWin(La, x) - SWin (L2, ¥),
P~L) Ge(9)

where the outer sum on the right side is taken over all péirs £,) in the pre-
image P ~1(£) and where the inner sum is taken over all poitsy) € G, (¢).

Proof. As shown in [P1], the spac®t), (L, g, ») is smoothly cobordant to a
standard Seiberg-Witten moduli space and hence can be used to compyig SW
U
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8. Applications

SupposeX is a closed oriented smooth 4-manifold with(X) > 1 LetS(X) be
the set of isomorphism classes of Spatructures orX, and letZ[ G] denote the
group ring of the Abelian grou¢ = H»(X; Z). The usual addition iz becomes
multiplication inZ[G].
DeriNiTION 12, We define th&eiberg—Witten series of to be the element of
Z[G] given by L

SWy i= > SWy(L)PD(cy(detLl)),

LeS(X)

where PD:H?(X; Z) — G is the Poincaré duality isomorphism.

If b3(X) = LthenletCy = {o € H?*(X;R) | « -« > 0}. Suppose we have a
smoothly embedded tords < X with [X] #0e€ Ho(X;Z)and [Z] - [Z] = 0.
Then such a toru® determines a preferred componentgfthat contains those
classes with («, [Z]) > 0. Asin [FS3], we can define a pair of functions
SW: S(X) - Z, SW, : S(X) — Z.
LetZ[[ G]] denote the formal power series ring of the grap= H»(X; Z), where
the underlying setis the set of integer-valued function&@md the multiplication
rule s given by the convolution produc} ", a,g)- (X", be8) = Y fo—p(as-be)h.

DEFINITION 13.  Givenb}(X) = 1 andX < X a torus embedding as before,
we define the £]+-restricted Seiberg-Witten series of to be the elements of
Z[[G]] given by
SW g = Z SWE (L) PD(c1(detL)),
Le(X)
wherelC(X) = {£Le S(X) | (ci(detL), [Z]) = O}.
Now supposeV is a compact oriented smooth 4-manifold with boundavy =
T3 =¥ xS Letj: (M, #) — (M, aM) be the inclusion map, and defihg®(M)
to be the dimension of the maximal submodule/®f M ; Z) on which the inter-
section form
Ho(M; Z) ® Ho(M; Z) “255 Hy(M; Z) ® Hy(M, 0M: Z) —— 7
is positive semidefinite. WhelvﬁO(M) =1, we can also define the functions
SWiE: K(M) x M(OM) — 7
justasin the closed manifold case. We have the following commutative diagram:

N i i e
H3(M,0M) —— Hy(0M) ——— Ha(M) —j> Hy(M, 0M) ——— Hi(0M)

R

HYM) —— HYOM) ——— H2(M,0M) ——— H2(M) —— H2(0M).
8.1)
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As before, we lef{ = Coker*: HX (M) — H'(dM)]. Note that the composi-
tion (i, o PD) is well-defined on the quotief = H*(0M)/i*H*(M). Recall that
there exists a canonical identificatidr (9M ) = . There also exists an orthog-
onal decomposition

Hy(M) = Hy (M) @ i,(Ha(dM)),

where the image af, is the radical (kernel) of the intersection form. The map
is injective on the summanH, (M) C Hp(M) and hence we can define its in-
verse,j;1: Ker(d,) — Hy (M). Given any Spifi structurel € K (M), we have

i*(c1(det)) = 0and hence PR, (detL)) liesinthe kernel 0b..: H,(M, oM ) —
H(0M).

DEFINITION 14.  LetM be as before with a chosen factorizat@y = = x S*.
If bgo(M) > 1, then we define the Seiberg-Witten seriedbfo be the element
of Z[[ H2(M; Z)]] given by

SWy = D Y SWu(L, 0[(j, "o PD)(ca(detL)) + (i o PD)(x)].
LeK(M) xeH

If b5%(M) =1, let H(E) := {x € H | (i.[Z]) - (ix o PD)(x) = 0} and define the
[X]*-restricted Seiberg-Witten seriesMfto be

SWi = Z Z SWE(L, x)(iy o PD)(x).
LeK(M) xeH(Z)

With this notation in place, the product formula in Theorem 11 can be restated in
the following form.

CoroLrLary 15 (Product Formula I1). Suppose thatMi, M», ¢) is an admis-
sible triple. Letk;: M; — M(p) be the inclusion maps; = 1, 2) and let
(kj)«: Ha(Mj; Z) — Ho(M(p); Z) be the induced homomorphisms. Then we
have

SWir(p) = (k1) (SWizy) - (k2)+(SWiz,),

where the mapsk,).: Z[[ Ho(M;; Z)]] — Z[[H2(M(g); Z)]] are defined by
k)« (X, ag8) = X, ag(kj)«(g). The displayed formula remains valid when the
terms in it are replaced byx]+-restricted Seiberg—Witten series of the same sign.

Foreachinteger > 0, let E(n) be asimply connected elliptic surface with no mul-
tiple fibers and with geometric genps = n—1. Let F denote a generic torus fiber
of E(n) whose tubular neighborhood is a trivial product< D?. We shall com-
pute the Seiberg-Witten series of the compleménys:) := E(n) — (F x D?).
Recall the standard decomposition

E(m +n) = [E(m) — (F x D*)] U, [E(n) — (F x D?)],

where the gluing map: F x S* — F x Stis given byg(x, ¢) = (x, ¢4 for
anyx € F and¢ = ¢ e SL. Since the manifold€,(n) are simply connected, we
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can easily verify that any tripleEo(m), Eo(n), ¢) is admissible. Let := [ F] de-
note the homology class of a fiber Wy (Eg(n); Z) or H2(E(n); Z), and lety €
HY(F x S§%; 7) denote the dual element pf = [{point} x S1] € Hi(F x §%; Z)
under the universal coefficient theorem. Note that= H, = HY(F x S1; Z)
ande*(y) = —p. Also note that(i, o PD)(y) = t, wherei: (F x S*) — Eq(n)
are the inclusion maps.

Lemma 16 (cf. [FS2]). We haveSWg,) = (+71 — )" 2.

Let us start out with the decompositiéit4) = Eq(2) U, Eo(2). Corollary 15 says
that
tt-1?= (k1) «(SWeg2) - (k2) 5 (SWe2))-

From the symmetry of the situation we can easily conclude that (up to sign)
(kD) (SWeg2) = t"(t ™ — 1),
(k2) (SWep2) =t ™"t — 1)

or vice versa. Next we need an analogue of the adjunction inequality (cf. [FS1;
KM; MST; OS1]) for a 4-manifold whose boundary7s’.

(8.2)

ProrositioN 17 (cf. [P1; P2]). Suppose tha¥ is a compact oriented smooth
4-manifold withaM = T3 andb5°%(M) > 1. We choose a factorizatiohM =
T2 x St and lety = [{point} x S| € Hy(dM; Z) as before. Assume thaf is
admissiblg(in the sense of Definition)dand of simple type. Let be a compact
oriented smootR-dimensional surface insidd such that, ifdc # @, thendo C
oM and furthermore the homology clag&] equals some integer multipley
inside H1(0M; Z). If SWy (L, x) # 0, then we must have

I[(ji* o PD)(ca(detL)) + (ix o PD)(x)] - [0]| + [0] - [0] + €(0) <O,

where(j 1o PD) and (i, o PD) are the compositions of maps (8.1) as before
and wheree(o) is the Euler characteristic of.

Now we apply Proposition 17 to a punctured sectiomf E(2) inside Eq(2) that
satisfies
t-o,=1 o0,-0,=-2, e(o,) =1

we conclude that: = 0 in (8.2). (We could instead have used a punctured torus
coming from the homology class+ [0, U D?] € Ho(E(2); Z) to draw the same
conclusion.) We remark that # 0 also contradicts the logarithmic transforma-
tion formulain [FS2]. Hence we ha®W, >, = ¢t~ —t. From the decomposition
E3) = Eo(2) U, Eo(1), we have

= =) - (ko) (SWeo),

which immediately implies the8Wz,qx = 1 Finally, from the recursive relation
E(n+1) = Eo(n) U, Eo(1) we conclude that

SWen i1 = SWeg(n)-
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In summary, we have proved the following.

THEOREM 18. If Eq(n) = E(n) — (F x D?) then we have
SWegmy = (71— 0"

wheret = [F] € H2(Eo(n); Z) is the homology class of a regular fiber. We
also have

. g g 3 5 e = iy
SWszDZ_rl—t =t+1t°+1>+ _SWE(D,F,
SW, = — = S5 SW
T2x D2 — 1t - EQ), F»

wherer = [T? x {point}] € Ho(F x D?; 7).

Perhaps it would be instructive to see what the “graphls€t) in Section 7 looks
like for the decompositiorE(4) = Eo(2) U, Eo(2). Let 7, denote the Spin
structure onE(4) such thatci(det7,,) is Poincaré dual tan:. SinceS_VVEm) =
t=2 — 2 4+ 2, the SW moduli space fa7, consists of two negatively oriented
points and each of the moduli spacesTerand7_; consists of a single positively
oriented point. Note that= 0 inside H2(Eq(2), 0E¢(2)) and so we always have
c1(det(T, | £o2))) = OinsideH2(Eq(2)). In Figures 1 and 2, we look at only the 1-
dimensional submodule 6{; = H, = Z3 generated by. In the figures, we blur
the distinction betweefi and its Poincaré dual The homomorphism*: H, —
‘H, restricts to multiplication by-1 on the submodule generated py Figure 1
shows how the moduli space f@p is obtained. It shows how the gluing occurs
for two possible pairs of compatible lifts of the zero clag&let(7o| £y2))) into
H?(E((2), dEo(2)). Similarly, the moduli space fof is depicted in Figure 2,
wherein two different pairs of compatible lifts of the zero clagslet(72| ,2)))
into H2(Eq(2), 9Eo(2)) are shown.

3t T3 4t T2t
2t T2t 3t 19 ¢
tel  -let 2t 0
o |0 t¥1 1%t
€ +1%-t ot +-2t
2t -2t t $41 -3t
-3t -3t 2t -4t

Figure 1 (x%,x%) = (0,0) and(x},, x%) = (7, —7)
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5t+ T3t at+ Tat
4+ T2t 3t T3
3tT -1t 2tT T2t
i 0 S
t¥-1  +10-t 0T T0
0T T-2t -1 ®+1 +10-t
t 941 T-3t 2t +-2t

Figure 2 (x},,x%) = (27,0) and(x},, x%,) = (7, 7)

CoroLLARY 19. Let X, denote a Riemann surface of gegusnd definexy :
¥, —D?tobeaonce- punctured Riemann surface of ggnifge havéS\Nszzg =
(fl 1)%-1 and SWszzg = (71 — 1)?~2, wheret is the homology class
[T2 x {point)].

Proof. Becausel'* is a complex surface, the adjunction inequality implies that
SWrs = 1. Since we know tha8W5 , = (+~1—1)7% , itfollows thatSWy2, 5. =
t~1 —¢. Now we can proceed by mductlon as followsglt= 2n then

VY (S_VVTZX °)2 B SvY _
SWr2yxe = S—WTZ" = (SWrzye50)? - (170 = 1),

T2x D2
and ifg = 2n — 1then
(S_\A/T2x2°)2 (S_VVT2>< 2°)2

SWroy 5o = —— = . O
Wrzscx; SWrz, 5 1t

More generally we have the following result, whose proof is immediate (cf. [FS3,
Thm. 2.1]).

CoroLLARY 20. Let X be a closed oriented smoofhmanifold withb3(X) >

1. Suppose we have a smoothly embedded tBrus> X such that[X] # 0 €
Hy(X;Z) and[X] - [X] = 0. Let v(X) denote the tubular neighborhood &
and leti*: HY(X — v(X)) — HY9v(X)) be the homomorphism induced by the
inclusion map. IfX — v(Z) is admissible as in Definition 4 and €okeri*) is
torsion-free, then we have

SWe_yx) = SWk - ([Z]7 = [ZD).

The following is a direct generalization of [FS2, Thm. 8.6].
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CoroLLARY 21 (Logarithmic Transformation).Let X and X be as in Corollary
20. Given any orientation-reversing diffeomorphigm72 x S* — 3(X —v(%))
such that the triplg7? x D?, X — v(X), ¥) is admissible, the Seiberg-Witten
series ofX, := (T2 x D?) Uy, (X —v(D))is
. [Z]-[3]

(i o)D)= (o y)u(®)’
wheret = [T? x {point}] € Ho(T? x dD?) andi: 3(X—v(X)) — (X —v(X)) is
the inclusion map. I63(X) = 1, then the displayed formula remains valid when

the terms in it are replaced byE]+-restricted Seiberg-Witten series of the same
sign.

SV, = SV

Proof. Notice that, for an admissible tripld’? x D2, X — v(X), ¥), we have
that#1 = Z and the homomorphism*: H, — H; can be viewed as a map into
the 1-dimensional submoduley C Ho. OJ

COROLLARY 22. Lety: F x ST — F x S* be any orientation-reversing diffeo-
morphism. We define a family of closéananifolds

X(m,n; ) = Eo(m) Uy, Eo(n).

Lett; = (kj)«[F] € Hao(X(m,n; ¥)), whereky: Eo(m) — X(m,n; ) and
ko: Eo(n) — X(m, n; ) are the inclusion maps. Then we have

W -1 — -1 -
SWamniyy = (7 — )™ (1t —1)" L

In particular, if m > 1, n > 1, andt; # =£t,, then the manifold (m, n; v) is not
diffeomorphic toE(m + n).

Proof. Since the manifold€o(n) are simply connectedEq(m), Eq(n), ¥) are
always admissible. The last statement follows from the comparison of divisibili-
ties of the basic classes. O

REMARK 23. As an example of Corollary 22, let> 1 be an integer and consider
the self-diffeomorphismy, specified by the matrix

1 00
0 0 1
01 p

for a suitable choice of basig, 8, y} on Hy(T? x S%; Z). It is easy to see that
X(m, n; ¥,) is homeomorphic t&(m + n). Notice that the vanishing disk that
bounds the cyclgs in Eq(m) can be glued to a punctured section Ag(n).
This internal sum of disks produces a homologically nontrivial spheneside
X(m, n; ). Itis readily seen that - #; = 0 buto - 1, = 1. Hencer, # +t, and
X(m, n; ) is not diffeomorphic taE(m + n), providedm, n > 1. More gener-
ally, different integer partitions

n=r+s (s=r>=0r=01..,[n/2])
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give rise to a pairwise nondiffeomorphic family(r, s; v,), each homeomorphic
to E(n). (Here, we can definEq(0) := F x D?, and [x] denotes the greatest in-
teger less than or equal t0) To get more new exotic smooth structures, we may
form the fiber sums

X(Vo, S0, 1ppo) #x,lf,ll X(rla 51,5 1ppl) #1//,12 e #1//,,,” X(Vm, Sms me)v
which are homeomorphic tE( (i + si)).
Now consider a smooth kndf in S2 and letm denote a fixed meridian &. Let
My be the result of Dehn surgery with coefficient 06nc S3; My has the same

homology asS? x S$* with the class ofn generatingHi(Mx). In Mg x S* we
have a torug,, = m x St of self-intersection 0.

COROLLARY 24. Let Ak () be the symmetrized Alexander polynomial of a knot
K c S%asin[FS3]. Then we have

+ AK([Tm]2)
W = (7,11 — (1,17

Proof. In [FS3], Fintushel and Stern constructed fiber sums
EQk = [(Mg x $Y) = (T,, x D] U, [E(2) — (F x D?)],
where the gluing map identifiesT,, with the fiberF. They showed that
SWeo = Ax([T]?).

We know that the complementx x S*) — v(7;,)] has the same homology as
T2 x D? and also thaEy(2) is simply connected; hence it is easily checked that
(Mg x SY) — v(T,), Eo(2), ¢) is admissible. From our product formula and
Corollary 20, we must have

Ak (1% = SWyy oy ([Tl = [TD) - (LF1 7 = [FD.
Sinceb, (Mg x S1) = 1, [FS3, Lemma 5.1] implies that the Seiberg-Witten se-

nesSWM < SLT,, involves only powers ofT,]. Since [F] = [T,,] in E(2)g, our
result follows. U

REMARK 25. (i) Let X = CP?#CP?. Let H and E denote the generators of
H>(CP?) and H,(CP?), respectively. Then the homology class— E is rep-
resented by a smoothly embedded spher¥.idttaching a trivial handle to that
sphere yields a torug representingd — E. Let X, , denote the result of loga-
rithmic transformations of orders andg on two parallel copies of, and letL
be a Spifi structure onX with PD(ci(detL)) = aH + bE. If SWx (L) # 0, then
by the dimension formula we must have

ci(detl)? — 2e(X) — 3signX) = a®> — b>—-8> 0.

Thus it follows that PDc1(detL)) - [T] = a + b # 0. Consequently we must have
SW; = 0, and Corollary 21 implies the&8W, , = 0 as well. We conjecture
that one can prove that tfie, , are all dlffeomorphlc taX via Kirby calculus.
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(i) Let M4 »(Y) denote the solution space of the 3-dimensional Seiberg-Witten
equations (2.1) modulo the gauge subgrggpM;) N Go(M>) (i.e., the subgroup
of mapsu: Y — S'thatcan be extended to bathy andMy). Evenif (M1, M2, ¢)
is not admissible, we should still be able to compare the elements of the covers
Ma(Y) and M,(Y) by considering the following commutative diagram.

My oY)

7N

My ¢ M)

NS

M(T)

We hope to generalize Theorem 11 to this situation in [P2].

(iii) While an earlier version of this paper was being refereed, Taubes pub-
lished a paper [T3] that contains a product formula similar to ours. One of the
main differences between his approach and ours is that he proves the compact-
ness of cylindrical end moduli spaces by brute analytical force, whereas we have
employed a simpler method of nonconstant perturbation that is more readily ap-
plicable to other 3-manifolds (cf. (3.2) and (4.1)).

9. Extension to Other 3-Manifolds

It is fairly straightforward to prove an analogue of Theorem 11 for many other 3-
manifolds. For example, one can do it for a certain class of Seifert fibered spaces—
in particular,S* bundles over 2-dimensional orbifolds whose corresponding line
bundle hag; that is torsion. In [P2] we shall study gluing along these and other
more general 3-manifolds. We plan to work with a more sophisticated version of
the relative Seiberg-Witten invariant that is a function of the form

SWj,: Spinf(M) — Nov(H),

where# is some infinite group determined by the moduli spaaeéaM) and
Nov(H) is a suitably defined Novikov ring. As alluded to in Section 1, we hope
that this will be a germ of a new theory of infinitely generated Floer-type coho-
mology for the pair§M, oM ).
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