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1. Introduction

Sanderson [9; 10] studied the grolip , of bordism classes of “oriented” closed
(m — 2)-manifolds ofn components ilR”. He showed thaL ,, ,, is isomorphic
to the homotopy group,, (\//;*$2); in particular, the bordism group,, ,, for

m = 4 is given as follows.

THEOREM 1.1 (Sanderson).

Li,Z2(Z2® - ®ZL)B LD - D2L).

nn-1 nn=Y(n-2)
2 3

In particular, we havel 41 = {0}, L2 =Z,, andLs3 = Z3® Z2

Similarly, there is a group of bordism classes of “unoriented” cloged- 2)-
manifolds ofn components irR”. We denote the group b¥L,, ,. The aim of
this paper is to determine the bordism grdip,, , for m = 4 via purely geomet-
ric techniques.

An n-component surface link is a closed surface embeddedifi (smoothly,
or PL and locally flatly) such that an integer {i ..., n}, called thelabel, is
assigned to each connected component. We denodig Ky the label of a con-
nected componenk of F. The ith component ofF is the union of the con-
nected components @ that have labed. Theith component may be orientable
or not, and it could be empty. We often denotezacomponent surface link by
F1U-.-UF,, where eacltF; is theith component of". Two rn-component surface
links F and F’ areunorientedly bordantf there is a compact 3-manifoléd/ =
", W; properly embedded iR* x [0, 1] such thatW; = F; x {0} U F/ x {1}
fori = 1,...,n. In this paper,F ~p F’ means thatF and F’ are unorient-
edly bordant, andF =, F’ means that they are ambient isotopicRA. The
unoriented bordism classes ofcomponent surface links form an abelian group
UL, such that the sumH] + [F'] is defined to be the clasg[Ll F'] of the
split union F LI F’. The identity is represented by the empiy= ¢ and the
inverse—[ F] is represented by the mirror image Bf The following is our main
theorem.
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THEOREM 1.2.

ULy =L@ - D DZs® - DLy D (Z2®---DL2).

n n(n—1) n(n—1)(n—2)
2 3

In particular,we havel/L 1= Z, UL, = Z2@®Z 4, andUL 43 = 230250 Z3.

This paper is organized as follows. In Section 2, we give definitions of three kinds
of unoriented bordism invariants—normal Euler numbers, double linkings, and
triple linkings—by the projection method. In Section 3 we study 1-component
surface links. In Section 4, we introduce a family of surface links; the elements
of the family are calledhecklaces.Section 5 is devoted to the study of crossing
changes that produce necklaces. In Section 6, we prove Theorem 1.2.

2. Unoriented Bordism Invariants

All of our bordism invariants will be defined using the diagram of a knotted or
linked surface. We begin by recalling this notion. Consider a surfacerinklie

may assume that the restrictien: F — R® of a projectionr: R — R3is

a generic map; that is, the singularity set of the imagé&) c RS consists of
double points and isolated branch/triple points. See Figure 1. The closure of the
self-intersection set on(F') is regarded as a union of immersed arcs and loops,
which we calldouble curvesBranch points (or Whitney umbrella points) occur at
the end of the double curves, and triple points occur when double curves intersect.

—F

a double curve a branch point a triple point

Figure 1 Generic intersections of surfaces in 3-space

By asurface diagranof F we mean the image(F') equipped with over/under-
information along each double curve with respect to the projection direction. To
indicate such over/under-information, we remove a neighborhood of a double
curve on the sheet (tHewer sheekthat lies lower than the other sheet (tfgper
shee}. See Figure 2. Notice that the removal of this neighborhood is merely a con-
vention in depicting illustrations. In particular, we still speak of “double curves”
and triple points, and we locally parametrize the surfaces using immersions.

There are seven kinds of local moves on surface diagrams, Ealsginan moves
(analogues of Reidemeister moves for classical knots) that together are sufficient
to relate diagrams of ambient isotopic surface links (cf. [3; 4; 8]). Specifically,
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+1 -1

Figure 2 The broken surface diagrams at intersection points

two diagrams represent ambiently isotopic surface links if and only if one can be
obtained from the other by means a finite sequence of moves taken from the list
of Roseman moves. We remark that the Roseman moves are used here only in re-
lation to their effect on the cobordism invariants.

For a surface knok (i.e., a connected closed surface embedddrt*in Whit-
ney defined thenormal Euler number(K) of K to be the Euler number of a
tubular neighborhood ok in R* considered as a 2-plane bundle (see [7; 12]). It
is known [5; 7] that

(i) e(K) =0if K is orientable,
(i) (Whitney’'s congruence)(K) = 2x(K) (mod 4), and
(i) (Whitney—Massey theoremi}(K)| < 4 — 2x(K),

wherey(K) denotes the Euler characteristickof For a 1-component surface link
F, we define the normal Euler numbe(F) of F to be the sum oé(K) for the
connected componenis of F. The normal Euler numbex( ) can be calculated
by use of a projection of in R3; it is equal to the number of positive type branch
points (see Figure 2) minus that of negative type ones [2].

Let F = F, U F, be a 2-component surface link afida surface diagram af.
A double curve oD is said to beof type(i, j) if the upper sheet belongs 1 and
the lower belongs t@;, wherei, j € {1, 2}. If a double curve is an immersed arc,
then its endpoints are branch points and hence the tyfielisor (2, 2). LetC =
c1U---Uc, be the set of double curves of tygke 2) on the surface diagram.
Each double curve; is an immersed loop iR>

We take a 2-disk8? and a union of intervalX in R? as follows:

(i) B>={(x,y) |x?>+y2 <1}
(i) X={(x,»)|-1<x<1Ly=0U{(x,y) |x=0 -1<y<1}.

For a regular neighborhoati(c;) of ¢; in R3, the pair(N(c;), D N N(c;)) is re-
garded as the image of an immersion, gayof one of the following manifold
pairs:

(i) (B? X) x[0,1]/(x,0) ~ (x,1) for x € B or

(i) (B2, X) x[0,1]/(x,0) ~ (—x,1) for x € B2

Let ¢/ be a loop or a pair of loops immersedif(c;) such that; = ¢({z, —z}x

[0, 1]/ ~) for somez € B2\ X. We give orientations te; andc; such that{/] =
2[c;] € Hi(N(c;); Z). See Figure 3. We put’ = ¢j U --- Uc,,. SinceC and
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. ~ , J
) —> _T).’.’\[

Figure 3 The double curve push-offs

C’ are mutually disjoint 1-cycles iR3, the linking number LKC, C’) betweenC

andC’ is defined; let/ be a 2-cycle irR® with 3d = C such thatZ andC’ inter-

sect transversely. Then KK, C’) is the algebraic intersection number@fwith

d. This number is well-defined modulo 4; it does not depend on a choige=of

B?\ X and an orientation af; for eachi. Furthermore, its congruence class mod-

ulo 4 remains unchanged under the Roseman moves. Hence, the mod 4 reduction
of Lk (C, C") is an ambient isotopy invariant ¢f = F, U F».

DeriniTION 2.1.  Thedouble linking numbebetweenF; and F,, denoted by
d(Fy, F»), isthe value inZ, = Z/4Z = {0, 1, 2, 3} that is the linking number
Lk (C, C’) modulo 4.

It is proved later that the double linking number is asymmete¢ry, F,) =
—d(F5, Fy).

Let F = F1 U F, U F3 be a 3-component surface link. At a triple point on
a surface diagram of' there exist three sheets—callep, middle,andbottom
(with respect to the projection direction). A triple pointdktype(i, j, k) if the
top sheet comes froify;, the middle comes fron#;, and the bottom comes from
Fy, wherei, j, k € {1, 2, 3}. Let N(i, j, k) denote the number of the triple points
of type (i, j, k). The mod 2 reduction oN(i, j, k) is preserved under Roseman
moves and hence is an ambient isotopy invariarff oprovidedi # j andj # k
(though possibly = k) [11].

DEFINITION 2.2. Thetriple linking numberamongF;, F;, and Fy, denoted by
t(F;, Fj, Fy), is the value inZ, = Z/2Z = {0, 1} that is the numbeN(, j, k)
modulo 2, provided # j andj # k.

LemMma 2.3. The ambient isotopy invariants d, andt are unoriented bordism
invariants.

Proof. We take surface diagranmi3 and D’ of surface linksF and F’, respec-
tively. If F and F’ are unorientedly bordant, the®’ is obtained fromD by a
finite sequence of moves from the following list:

(a) an ambient isotopy dR3;
(b) a Roseman move,;
(c) adding or deleting embedded 2-sphereRirthat are disjoint fromD;



Bordism of Unoriented Surfaces in 4-Space 579

a 1-handle
surgery

0= d

a 2-handle
surgery

Figure 4 Attaching 1- and 2-handles

(d) al-handle surgery aft in R® whose core is a simple agcwith y N D = 3y
(see Figure 4);
(e) a2-handle surgery dnin R®whose core is a simple 2-digkvith§ N D = 35.

Recall that Roseman moves do not change the invarignts andz. The other
deformations listed do not change the singularity set of the diagram. Hewdce
andr are unoriented bordism invariants. O

3. 1-Component Surface Links

A projective plane embeddedRt is standardif it has a surface diagram as shown
in Figure 5. A nonorientable surface knot is said tafd@al if it is a connected
sum of some standard projective planefRth Two trivial nonorientable surface
knots F and F’ are ambient isotopic if and only #(F) = e(F’) and x(F) =
x(F"). The following lemma is folklore.

+1 —1

A N
()

Figure 5 The positive and negative projective planes

LemMma 3.1. Twol-component surface link8 and F' are unorientedly bordant
if and only ife(F) = e(F’).

Proof. The “only if” part is obvious, so we prove the “if” part. It is known (see
[5]) that any nonorientable surface link is transformed into a trivial nonorientable
surface knot by some 1-handle surgeries. Thus we may assunye #matF"’ are
trivial nonorientable surface knots wigiF') = e(F'). By Whitney’s congruence,
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we havey(F) = x(F’) (mod 2). Doing 1-handle surgeries if necessary, we may
assume thag(F) = x(F’). ThenF andF’ are ambient isotopic. Thus the origi-
nal 1-component surface links and F’ are unorientedly bordant. O

4. Necklaces

We introduce a family of surface links, calledcklacesthat is used to prove The-
orem 1.2. In the upper 3—spaR§+ ={(x,y,2) | z > 0}, we take a 3-ball

B3 ={(x,y,2) | x*+y?+ (z—2? < 1}.

Let f = {fi}o<i<1 andg = {g:}o</<1 be ambient isotopies a8* that present a
180 rotation around the-axis and a 360rotation around the axisy =0, z = 2).
We put a Hopf linkk; U k, in B2 as in Figure 6 so thafy(k;) = k; andgi(k;) =
k; fori =1, 2. By amotionof k1 U k> we mean an ambient isotopy= {/;}o<;<1
of B3 with h1(k1U ky) = k1U k». Two motionsh andh’ areequivalentf there is
a 1-parameter family of motions betwekmnd/#’.

N

Figure 6 Spinning the Hopf link in two directions

We consider thaR* is obtained by spinnin&3. arounddR3 by use of a map
W Ri x [0, 1] — R*defined by((x, v, z) x {t}) — (x, v, zCOS 2¢, z Sin 2r¢).
For integers, g we construct a 2-component surface listk? = 71U T», called
astrand,as follows:

T, = u( U (7 giki) x {t}) cR* (i=12.
te[0,1]
EachT; (i =1, 2) is homeomorphic to a torus (resp., a Klein bottlepifs even
(resp., odd).

LemMa 4.1. (i) StrandsS?¢ and §7*+2¢:9 are ambient isotopic.
(ii) If p = p’ (mod 4),then two strands$?:¢ and $?"4 are ambient isotopic.
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Proof. By the belt trick (see [6]), the motiog is equivalent tof?, and f* is
equivalent to the identity. The result follows. O

The preceding lemma implies that ambient isotopy classes of strands are repre-
sented bys?¢ with ¢ = 0 andp € Z 4. We shall abbreviat§”-° to S”.

LEMMA 4.2. For astrandS? = T1U T», we have
(i) e(Th) =e(T2) =0eZ;

(i) d(T1, To) = —d(T2, T1) = p € Z4; and

(i) t(T1, To, Ty) =t(T2, T1, To) = pe Zy.

Proof. (i) For eachi = 1, 2, we take a 2-diskD; embedded irB3 with aD; = k;
and f1(D;) = D;. The imageu(D; x [0, 1]) is a 3-manifold whose boundary is
T;. Thuse(T;) = 0.

(ii) In Figure 7, we illustrate the motioyf of the Hopf linkk, U k». Since we
can obtain a diagram & by takingp copies of the motion and connecting them,
we haved(Ty, T>) = p. Similarly, we havel(T», T1) = —

kq

ijQ@@

(1.2 .
N >

>~ >

Figure 7 The movie of the strand*

(iii) The motion in Figure 7 contains two Reidemeister moves of typeOne
of them corresponds to a triple point of type (top, middle, bottesm()Iy, T, T1)
and the other corresponds to that(@%, 71, T2). Thus we have(Ty, T2, T1) =
t(T, T1, To) = p. O

Form numbers(t;}i—1 ., with0 < < --- <1, <1 we consider a surface
link defined as follows:
SP U n(dB3 x {t1)) U+ U (0B x {t,)).

We call such a surface linkrmecklaceand a spherical componeBf = w1 (dB% x
{t;}) abeadof the necklace.

LeEmMA 4.3. LetSPU B,U---U B,, be a necklace with the strartd = T, U T>.
Foreachi =1, ..., m, we have
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t(T2, T1, B;)) = t(B;, T1, T5) =1,

t(Tlv TZs Bl) = Z(Bl's T27 Tl) = 17

t(Ty, B;, To) = t(T2, B;, T1) = 0.
Proof. In a surface diagram, a bead introduces four triple poits.., 74 as
shown in Figure 8. The top, middle, and bottom sheets araycdme fromT5,

T,, and B; (respectively). Fot, they areT;, T», and B;; for t3 they areB;, T,
andT,; and forz4 they areB;, T,, andT;. O

Ty

Figure 8 The local picture of a bead on a strand

We denote bW ?*(i, j; ki, ..., k,,) ann-component surface link that is a necklace
SP U ByU---U B, with the strands” = T1U T, such thate(Ty) = i, «(T2) = J,
anda(B1) = ky, ..., a(B,,) = k,,, wherexa(K) stands for the label of a connected
componentk.

LEmMA 4.4. (i) NP(i,i; ks, ..., k,) is unorientedly null-bordant.
(i) NPG, jskay oo km) Sa N7PC, 05 kay ooy k).
(III) Np(i, j; k]_, kz, k3, ceey km) ~p Np(i, j; k3, ceey km), providequ = kz.
(iV) NP(i, ji k1, ko, ... k) =g NPT2(, ji ko, ..., k), providedk; = i.
(V) NP, jiki, ..o, k) UNP'G sk oo k) = NPEP'GL jika, oy ko, K,
k).
(vi) N°G, j; ¥) is unorientedly null-bordant.

Proof. (i) Consider an annulug in int B3 with 94 = k Uk, and f(A) = A. The
imageun(A x [0, 1]) is a 3-manifold whose boundary is the streffd= 71 U T>.
Thus, we can remov&” and then all the bead? (i =1, ..., m) up to unoriented
bordism.

(i) By a 180 rotation of B3 around the axigy = 0, z = 2), the components
k1 andk, are switched. Then the direction of the rotatifiis reversed.
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(iii) We can remove the bead, = u(dB® x {t;}) (i = 1,2) from F by a
3-manifold . (dB2 x [t1, 12]).

(iv) We perform a 1-handle surgery betweg&h and B; as shown in Figure
9(1) — (2). The diagram illustrated in (2) is ambient isotopic to that in (3). This
surface is realized by a motion as in (4), which is the°3®@ation around the axis
(x =0, z = 2). This motion is equivalent tg'2.

886k
-8668
5+ BE

[C@
D
@
@

a 1-handle surgery

(O 5<

©

oy

@ @

|

an ambient isotopy

/U

O3+
©

oy

tn

@ ©@

|

@ an ambient isotopy

Figure 9 The movies of surgeries and isotopies

(v) We connect the strands &f?(i, j: k1, ..., k,,) andN?'i, j; ki, ..., k) up
to unoriented bordism, which yield§?*7'(i, j; k1, v ks kg, k) (see [1,
Lemma 2.3]).

(vi) Consider the Hopf link; U k; to use the definition of a strand. Lgt(i =
1, 2) be disjoint simple arcs iR}‘ connectingc; ando Ri in an obvious way. Then
the 2-handle surgeries along the 2-digks/; x [0, 1]) andu(y2 x [0, 1]) make
59 a split union of 2-spheres. O

5. Crossing Changes

In this section, we study a crossing change along a double curve of a surface
diagram. The idea is similar to a crossing change for a classical liR€.iffor a
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\

(1) (i)

Figure 10 A movie of a crossing change and the resulting surface

classical link, a crossing change can be realized by 1-haadb@nd) surgeries as
shown in Figure @(i). Hence, any classical linkg U - - - U k,, is bordant to a split
union: k1 LI - - - LI k,, LI (Hopf links).

LeEMMA 5.1. Anyn-component surface-link, U - - - U F,, is unorientedly bordant
to a split union F1 11 --- LI F, LI (necklaces

In a surface diagram, we use a symiib(as in Figure 10(ii)) for a local diagram
that is obtained from Figuredli) by regarding it as a movie.

Let ¢ be a double curve of a surface diagram such that it is an immersed loop
in R3. As mentioned in Section 2, a regular neighborhda@) of ¢ is regarded
as the image of an immersignof B2 x [0, 1]/ ~ . See Figure 11. For eachwe
choose a pair of diagonal regiofisof B?\ X and putR(c) = ¢(¥Y x [0,1]/~).

| DN

d S5 b»
| /< ]
' I

Figure 11 A neighborhood of a double curve

Let A; and A, be the sheets that intersect along the curwich thatA; is
higher thanA, with respect to the projection direction; in other wordss of type
(upper, lower)= (A1, A,). To prove Lemma 5.1, we introduce four kinds of local
deformations under which unoriented bordism classes are preserved.

1: Local crossing changeConsider two 1-handle surgeries as shown in Fig-
ure 12 in the motion picture method. We call thimeal crossing changalongc.
We always assume that the “local strand” (Hopf link]0, 1] obtained by a local
crossing change is in the specified regi). Let ¢ be a triple point orr and let
H be a sheet that is transversectat . If H is a top or bottom sheet, then we
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\ 4 t

V) (i)

Figure 12 The local crossing change

N

in
N
A1| Aq |
l\jH H

Figure 13 Alocal crossing change near a triple point

can perform a local crossing change along the curae in Figure 13. For exam-
ple, if H is a top sheet, then the typeiit changed from (top, middle, bottors)
(H, A1, Ap) to (H, Ay, Ay), and the local strand goes under the shiget

2: End change.Consider a composite of three ambient isotopies as shown in
Figure 14. We call this aend changef a local strand. This deformation moves an
end part of the local strand into the diagonal regio®¢f). The new local strand
has additional intersections withy andA,. In the bottom of Figure 14, the boxed
“f" means a local diagram corresponding to a’18flation of the Hopf link.

3: Canceling adjacent end#é\ssume that two adjacent ends of local strands
are in the same region &(c). Consider the deformation illustrated in Figure 15,
which is realized by two 2-handle surgeriesayandA,. We call this acanceling
of adjacent endsf local strands along.
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R

SRe|@¢ |®@F |

Figure 14 The movies and diagrams determining an end change

o6 -

A1|

Figure 15 Canceling adjacent ends for a crossing change

4: Making a bead Assume that a strand intersects a shiédransversely. If
the strand is undei then we consider a 2-handle surgeryinas shown in Fig-
ure 16. This deformation makes the strand aifewhile producing a bead.

In a surface diagram of anrcomponent surface link = F, U --- U F;,, we say
that a double curve of typ@, j) is preferredif i < j; atriple point of typd(, j, k)
is preferred ifi < j andj < k.

Proof of Lemma 5.1Consider a surface diagram f= F1 U --- U F,. If there
is a nonpreferred double curve without triple points (i.e., an embedded loop), we
apply a local crossing change along the curve followed by canceling adjacent ends
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S

Figure 16 Making a bead

of the local strand. This makes the double curve preferred and yields a strand

(necklace without beads) that is separated filarkience we may assume there is

at least one triple point on any nonpreferred double curve of the surface diagram.
For each nonpreferred triple poinof type (i, j, k), we perform local crossing

changes so thatchanges into a preferred triple point as follows.

(@) If j <i <k, then we perform a local crossing change along the double curve
of type (i, j) over the bottom sheet labeléd

(b) Ifi <k < j, thenwe perform a local crossing change along the double curve
of type (J, k) under the top sheet labeled

(c) If k <i < j, thenwe perform a local crossing change along the double curve
of type (j, k) and then perform another along the curve of typé).

(d) If j <k < i, then we perform a local crossing change along the double curve
of type (i, j) and then perform another along the curve of typé).

(e) Ifk < j < i, thenwe perform a local crossing change along the double curve
of type (i, j), next along the curve of typg, k), and then along the curve of
type(j, k).

Figure 17 shows the casebf j < i.

(Lak)  => (J:4,k) => (ki) = (ki)

Figure 17 A 3-fold crossing change at a triple point of type< j < i

All the local crossing changes just described are performed along nonpreferred
double curves. After applying suitable end changes, we can cancel all the adjacent
ends of local strands along nonpreferred double curves. Then we obtain a surface
diagram of(Fy LI - - - LI F,) U (strand$ for which any double curves betweéh
andF; are preferred. By making beads if necessary, we can split necklaces from
F110-..1F,. ThusF is unorientedly bordantt&; L1 - - - LI F;, LI (necklaces [
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Lemma 5.2. NOG, j; k) ~p Nk, i; j) LI NO(k, j;i).

Proof. Consider a surface diagram®f(i, j; k) that contains the local diagramil-
lustrated in Figure 8. Inthe local diagram, along the double curves oftypeand

(j, k), we perform (global) crossing changes as in the proof of Lemma 5.1. Then
NO(i, j: k) is unorientedly bordant to a split union 8f%G, k; j) =4 N9k, i; j)
along the curve of typé, k), NO(j, k; i) =4 N%k, j; i) along the curve of type

(J, k), and a surface link obtained by the crossing change. Theis a split union

of $9(, j) and a trivial 2-sphere labeldd which is unorientedly null-bordant by
Lemma 4.4(vi). O

6. Proof of Theorem 1.2

Let P, andP_ be the standard projective planeRAwith e(P,) = 2 ande(P_) =
—2, respectively (see Figure 5). We denotey the connected sum of copies
of P, if m > 0, —m copies of P_ if m < 0, and the empty set ifi = 0. Regard-
ing P™ as am-component surface link with a label P™) = i, we denote it by
P™(i). Regarding a stran8” = T, U T, as am-component surface link such that
a(Ty) =i anda(T2) = j, we denote it byS”(i, j). ThenS?(i, j) = NP, j; @)

in the notation used in Lemma 4.4.

LeEMMA 6.1. Anyn-component surface linK is unorientedly bordant to a split

union
(]_[ P’""(i)) 1 ( [1 s, j)) 1 ( [1 ~.J; k)).
iell (i,j)el> (i,j,k)el's
Here,I; (i = 1,2, 3) is a subset of theé-fold Cartesian product of(1, ..., n},
m; € Z (i eT1), andp;j € Z4 ((i, j) € I'2) satisfying
(i) m; # 0 foranyi e I'y;
(i) i < jandp;; #0forany(, j)eTy;
(ii) i <j<kori <k< jforany(, j,k)els.

Proof. By Lemma 5.1, any-component surface link = F,U - - - U F, is unori-
entedly bordant t@¢F; LI --- LI F,) LI F’, whereF' is a split union of necklaces.
Putl’y; = {i | e(F;) # 0} andm; = e(F;)/2€ Z (i €T'1). By Lemma 3.1, we see
thatF1L1- - - LI F, is unorientedly bordant tp[,; ., P™ (i) satisfying condition (i).

Because a necklad€”(i, j; k1, ..., k,,) IS unorientedly bordant t67(i, j) I
NOG, jiky) LI ---LINOG, j; k,,) by Lemma 4.4(v), it follows thaF " is unorient-
edly bordanttaF” L1 F” such thatF'” is a split union of somé&?(i, j) andF"” is
a split union of somev°(, j; k).

We may assume that< j for any S”(i, j) appearing inF” by Lemma 44(i)
and (ii). Moreover, by Lemma 4.4(v) and (vi), we see that there exist a sub-
setI', ¢ {1,...,n}* and pij € Z4 such that (a)F” is unorientedly bordant to
]_[(,.’j)€F2 S?i(i, j) and (b) condition (ii) is satisfied.

By parts (i), (ii), (iv), and (vi) of Lemma 4.4, we may assume that j,

i # k,andj # k for any N°(, j; k) appearing inF”. Applying Lemma 5.2 for
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NOG, j; k) withk < i < j, we may assume that, j, k) satisfies condition (iii)
for any N, j; k) appearing inF"”. By parts (iii), (v), and (vi) of Lemma 4.4,
we see that there exists a subBetc {1, ..., n}® such that (a)*”” is unorientedly
bordant to]_[(i’j,k)€r3 NO(i, j; k) and (b) condition (iii) is satisfied. O

For the unoriented bordism groudfy 4 ,, we consider three types of homomor-
phismse; (i =1,...,n),d; (i # j), andtx (i # j, j # k) as follows:

e ULy, — Z for [F]+ e(F;)/2,
dij: ULy, — Z4 for [F]— d(F;, F)),
tij: ULay, — Z5 for [F]— t(F;, Fj, Fy),
whereF = FLU---U F,.

LemMma 6.2. Forann-component surface link, letT; i =1,2,3),m; €Z (i €
1), andp;; € Z4 (@i, j) €'2) be asin Lemma 6.1. Then the following statements
hold.
() e([F]) =m;ifi el ande;([F]) =0if i ¢ T'y.
(i) Fori < j:dij([F]D = pi;if (i, j) eT2andd;;([F]) = 0if (i, j) ¢ T>.
(i) Fori < j <k:tin([F]) =1if G, j, k) eTsandtx([F]) =0if (i, j, k) ¢
I'3.
(lV) Fori <k < J: tijk([F]) =1if (, Jj.k)els andt,»jk([F]) = 0if (i, Jj k)¢
3.

Proof. (i) Sincee(P™) = 2m, we havee;([F]) = m; if i € Iy and otherwise
ei([F]) =0.

(ii) This follows from Lemma 4.2 (ii).

(iii), (iv) Note that (j, i, k), (j, k, i), (k. i, j), (k, j, i) ¢ I's. Since

ti(IN°G, j: ) =1 and t([N°G, k; j)]) =0
by Lemma 4.3, it follows that; ([F]) = 1ifand only if (i, j, k) € 'a. O

Proof of Theorem 1.2Consider a homomorphism
UH:UL4, — ZB - - BLHBLsDd PLZy)DZoD---DZ2)

n n(n—=1 n(n—=1(n—-2)
2 3

defined byUH = (P}_,e;) @ (@i<j dij) ® (@i<j<k ori<k<] t;jx). This homo-
morphism s injective by Lemma 6.2. AIsBH is surjective; indeed/H ([ P(i)])
(i=21...,n), UH([S*G, H]) (i < j),andUH([N°G, j:k)]) (i < j <kori <
k < j) are generators &, Z 4, andZ ,, respectively. O

In the definition of the homomorphistiH, we do not use all double linking num-
bers and triple linking numbers. The unused ones are determined as follows.

ProrosiTioN 6.3. For distincti, j, k and anrn-component surface link’, we
have
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(i) d;i([FD = —d;;([F]);
(ii) t;([F]D = t;;;([F]) = A(di([F])), wherer: Z4 — Z, is the natural
projection
(iii) t;x([F]) = ti([F]); and
(iv) i ([FD + tiic([F]) + tu; ([ F]) = O.

Proof. It is sufficient to prove (i) and (ii) whet is as in Lemma 6.1. We shall
use Lemma4.2. We havg;([F]) = p;j € Z,if i < jands;;([F]) = pji e Zif
i > j. Onthe other hand, we havl([F]) = p;; € Z4if i < j andd;;([F]) =
—pji € Z4if i > j. Hence, we have.(d;;([F])) = t;;([F]). Similarly, since
d,j([F]) = pij € Zy anddj,-([F]) = —Ppjj € Zyfori < j, we haved,»j([F]) =
—d;;i([F]). Parts (iii) and (iv) are proved in [11, Thm. 3.2]. O

We consider the homomorphisth: Ly, — UL, induced by the map that
ignores the orientations of surface links. For an orientetbmponent surface
link F, we can define two kinds of bordism invariants: double linking invariants
Dij: La, = Z, =2Z/2Z; and triple linking invariantd;j;: L4, — Z (cf. [1]).
Then Sanderson’s isomorphism,

H:Ly,—> Zo@ - ®L)DOLD---DL),

nr- nn-Y(n-2)
2 3

is given byH = (B,_; Dij) ® (B, ori-x~; Tijx)- From the definitions of
these invariants, the forgetful mgpis regarded as

(@0 e (@) e (@) (@) e (Dz)e (D7)
— (B2)e (Bz4) 0 (D7)

under the isomorphism@ andUH, wherex : Z, — Z 4 is the natural inclusion
andv: Z — Z, is the natural projection.
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