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0. Introduction

It is a result of classical function theory (see [FiF; Les; Mas; PeL; S]) that if
f : U → U is a conformal self-mapping of a plane domain that fixes three distinct
points thenf(ζ) ≡ ζ. The purpose of the present paper is to put this result into a
geometrically natural context and to extend it to higher-dimensional domains and
manifolds. For an examination of fixed point questions from a slightly different
point of view, we refer the reader to the work of Vigué (see e.g. [V1; V2]).

The third-named author thanks Robert Burckel for early discussions of this topic
and for basic references.

1. Spanning Cartan–Hadamard Subsets

In this section, we letM be a connected, complete Riemannian manifold.

1.1. Cut Points and Cut Loci

Let x ∈ M. A point y ∈ M is called acut point of x if there are two or more
length-minimizing geodesics fromx to y in M. We also use the following basic
terminology and facts from Riemannian geometry. A geodesicγ : [a, b] → M

is called alength-minimizing geodesic(or, alternatively, aminimal geodesicor a
minimal connector) from x to y if γ (a) = x, γ (b) = y, and dis(x, y) = arc
length ofγ. Any two points in a complete Riemannian manifold can be connected
by a minimizing geodesic by the Hopf–Rinow theorem. If there is a smooth family
of minimizing geodesics fromx to y, then these two points are said to beconju-
gate. Conjugate points are cut points. The collection of cut points ofx in M is
called thecut locusof x, which we denote byCx in this paper. It is known that
Cx is nowhere dense inM (see e.g. [GKM; K]).

1.2. Spanning Cartan–Hadamard Sets

A subsetX ofM is aCartan–Hadamard setif there exists anx0 ∈X such thatX ⊂
M \Cx0. We will call x0 apoleof X. A pole of a set is in no way unique. But, for
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convenience, we will commonly use the notation(X, x0) for a Cartan–Hadamard
subset paired with a pole.

We now fix notation. Fory ∈M \Cx, we denote byγxy : [0, `] → M the unit-
speed length-minimizing geodesic withγxy(0) = x andγxy(`) = y.

Now we say that a Cartan–Hadamard subset(X, x0) is spanningif the polex0

has the property that the set{γ ′x0y
(0) | y ∈X \ {x0}} spans (in the sense of linear

algebra) the tangent spaceTx0M.

1.3. Determining Sets for Isometries

We now can discuss the existence of finite subsets that may determine isometries.
We begin with the following lemma.

Lemma 1.1. If (X, x0) is a spanning Cartan–Hadamard subset ofM, and if
f : M → M is an isometry withf(x) = x for everyx ∈X, thenf coincides with
the identity map.

Proof. Since isometries preserve geodesics and arc-lengths of curves, it follows
that dfx0 must fix eachγ ′x0y

(0) for everyy ∈ X \ {x0}. Owing to the spanning
property of these vectors,dfx0 thus coincides with the identity map ofTx0M. As
a result,f must fix every point in a geodesic polar coordinate neighborhood ofx0

or, equivalently, every point ofM \Cx0. SinceCx0 is nowhere dense, we see that
f = idM.

In the case that dimRM = d ≥ 2, we see that one has great freedom in choosing
a spanning Cartan–Hadamard subset consisting ofd +1 points. This can be done
in general as follows.

Let x0 ∈M be chosen arbitrarily. LetW0 be the largest connected open subset,
containingx0, ofM \Cx0. Then we may find a connected open subsetU of Tx0M

that is star-shaped at the origin and such that the exponential map expx0
: U →W0

is a diffeomorphism. We let

W1≡ W0 \ {x0}
and choosex1 to be an arbitrary point ofW1. Then let

W2 = W1\
(
expx0(Span{γ ′x0x1

(0)}) ∩W0
)

and letx2 be an arbitrary point ofW2. NowWk+1 will be chosen inductively to be

Wk+1≡ W0 \
(
expx0(Span{γ ′x0x1

(0), . . . , γ ′x0xk
(0)}) ∩W0

)
for k = 2, . . . . Then, of course,xk+1 is chosen fromWk+1 without any further re-
strictions. Because eachWk constructed in this way is nowhere dense inM as long
ask ≤ d, we may always findd + 1 points in this fashion. Moreover, it is now
clear that such a(d + 1)-point set is a spanning Cartan–Hadamard subset ofM,

and that spanning Cartan–Hadamard subsets are generic. We may summarize this
discussion in the following proposition.
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Proposition 1.2. LetM be ad-dimensional, connected, complete Riemannian
manifold. There exists an open dense subsetW of the product manifoldM×· · ·×M
of d + 1 copies ofM with the following property: If f is an isometry ofM with
f(xj ) = xj for everyj = 0, . . . , d and if (x0, . . . , xd)∈W, thenf = idM.

2. Biholomorphisms and Determining Subsets

If � ⊂ Cn is a domain (connected open set) orM is a complex manifold, then
Aut(�) (resp. Aut(M)) denotes the group, under composition, of biholomorphic
self-maps of� (resp.M). We call such mappingsautomorphismsof� (resp.M).

At this point, we remark that the study of determining sets is meaningful. It is
indeed known that most domains (or manifolds) arerigid ; that is, they have auto-
morphism group consisting of just the identity mapping. This assertion means
that the collection of rigid, smoothly bounded, strongly pseudoconvex domains is
dense in the collection of all smoothly bounded, strongly pseudoconvex domains
in theC∞ topology (see [GrKr]). A complementary fact, however, is that the col-
lection of bounded domains with nontrivial automorphism group is dense in the
collection of all domains in the topology induced by the Hausdorff distance (see
[FrP, Thm. 2.1]). Moreover, every compact Lie group occurs as the automorphism
group of a bounded strongly pseudoconvex domain (see [BD]).

Definition. LetK be a subset of a complex manifoldM. The setK is said to be
a determining subsetof M if each automorphismg of M satisfying the condition
g(x) = x for all x ∈K is the identity map ofM.

As mentioned previously, a self-map of a domain inC that fixes three points is
necessarily the identity (see e.g. [PeL]). Hence any 3-point set is a determining
set for plane domains. Note that no “general position” hypothesis need be man-
dated on the points of the determining set. (However, a certain general position
hypothesis is essential even in dimension 1 if one considers nonplanar Riemann
surfaces; we will clarify this point in a later section.)

In an attempt to extend this result to higher dimensions, one can ask the follow-
ing question. Forn ≥ 2, does there exist a positive integerk such that, ifS is a
set ofk points in “general” position inCn and ifD ⊂ Cn is a domain containing
S, then each automorphism ofD fixing S is necessarily the identity? The answer
to that question is negative: no such “general” position can be defined to obtain a
positive answer, as shown by the following theorem.

Theorem 2.1. For each finite setK = {p1, . . . , pk} ⊂ Cn (n > 1), there exist
a bounded domainD containingK and a subgroupH ⊂ Aut(D) isomorphic to
U(n− 1) (the complex unitary group ofCn−1) such that each element ofH fixes
each point ofK.

Proof. Let pj = (uj, vj ) with uj ∈C andvj ∈Cn−1. Without any loss of general-
ity, we assume that theuj are all distinct and that|uj | < 1. Consider the polynomial
transformation
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F : w1= z1, w
′ = z ′ + f(z1),

wheref : C → Cn−1 is the Lagrange interpolation polynomial map satisfying
f(uj ) = vj . ThenF(uj,0) = pj for j = 1, . . . , k. LetD = F(B), whereB is the
unit ball inCn. LetUn−1 be the unitary group acting onB in the lastn − 1 coor-
dinates, and letH = F B Un−1 B F −1. Now the assertions of the theorem can be
verified directly.

Although no given finite set in “general position” can be a determining subset for
all bounded domains containing the set, we will establish in the sequel that, for
each given bounded pseudoconvex domain inCn, “almost any” subset ofn + 1
points is a determining subset.

Consider the group of biholomorphic automorphisms, Aut(M), of a complex
manifoldM. For the next theorem, we assume that

(A) M is a connected, complete Hermitian manifold such that each automorphism
in Aut(M) is an isometry.

We would like to point out that these restrictions are rather mild in the sense that
we have a broad collection of examples. Every bounded pseudoconvex domain in
Cm admits a complete Kähler–Einstein metric ([MY]; see also [O]). Then there is
an ample collection of compact complex manifolds that admit complete Bergman
or Kähler–Einstein metrics; see [GrW; Ko; Y] and further references therein.

The discussion in Section 1 naturally yields the following theorem.

Theorem 2.2. For a complex manifoldM satisfying(A) and of dimensionm =
dimCM ≥ 1, there exists an open dense subsetW of the(m + 1)-fold product
M × · · · ×M such that any automorphismf fixingp0, . . . , pm coincides with the
identity map ofM whenever(p0, . . . , pm)∈W.
Proof. If one follows the proof of Proposition 1.2 line by line, using the invariant
Hermitian metric, the only difference one encounters is in the number of points
and their choices. We therefore replace the exponentiation of the real span of vec-
tors by the exponentiation of the complex span of vectors given by the minimal
geodesics emanating from the pole point. We now exploit the fact that automor-
phisms are isometries that preserve the complex holomorphic tangent subspaces.
Then all the arguments simply go through.

Suppose thatK is a determining subset of a bounded domainD in Cn. We next
prove a “stability” theorem:K is also a determining subset for a small perturba-
tion D̃ of D.

Theorem 2.3. If D is a bounded domain inCn and ifK is a nonempty determin-
ing subset ofD, then each domaiñD, containingK and for which∂D̃ is sufficiently
close to∂D in the Hausdorff metric, also hasK as a determining subset.

Proof. Seeking a contradiction, we assume that there exists a sequence{Dj } of
domains converging toD such that, for eachj, Dj containsK, somegj ∈Aut(Dj )
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satisfiesgj 6= id, andgj fixes each point ofK. Choosez∈K and anr > 0 so that
the closureQ = B̄(z, r) of the ball with centerz and radiusr is contained inD
and in allDj . Let

Hj = {g ∈Aut(Dj ) : g fixes each point ofK}.
By assumption,Hj 6= {id}. It is clear thatHj is a compact Lie subgroup ofAut(Dj ).
By [Ma, Thm. 2.4], for eachj there exists a pointxj ∈Q and anhj ∈Hj such that
|hj(xj ) − xj | ≥ r/2. Passing to a subsequence if necessary, we can assume that
xj → x andhj(xj ) → y. Using a normal families argument (again passing to a
subsequence if necessary) and the fact thathj(z) = z, one can show that the se-
quencehj converges in the compact-open topology to anh ∈Aut(D). It is clear
thath(x) = y 6= x andh fixes each point ofK, contradicting the hypothesis that
K is a determining subset ofD.

3. Automorphisms, Isometries, Fixed Points, and Cut Loci

We would now like to address the fact that if the fixed points of isometries actually
lie in a cut locus then the number of fixed points can be arbitrarily large, making
it impossible to relate them to the complex dimension of the manifold.

If the dimension is≥ 2, this claim was exhibited in Theorem 2.1. The next two
examples show the validity of our claim in dimension 1.

Example 3.1. Consider the complex, 1-dimensional torusT generated from the
lattice{1, i}. Let π : C→ T be the standard covering map. Thenz→ −z on the
complex plane generates an automorphism, sayτ, on T . Now τ has four fixed
points, which are

π(0), π(1/2+ i/2), π(1/2), π(i/2).

Yet τ does not fixπ
(

1
4

)
, so it is not the identity map.

Example 3.2. We now consider a 2-holed torus. This manifold can be gener-
ated by a regular octagon centered at the origin of the Poincaré disc together with
its reflections. Again,z → −z generates a nontrivial automorphism of this Rie-
mann surface. The number of fixed points is nowsix,coming from the center (the
origin), the vertices, and the corresponding pairs of midpoints of the sides of the
octagon.

It is now clear that one can obtain arbitrarily large numbers of fixed points just
from among the compact Riemann surfaces. By standard embedding and thick-
ening processes, one can construct examples of this nature for bounded domains
as well.

4. The Plane Domain Case

For the sake of completeness of this exposition, we now consider the following
well-known theorem that follows from work of Maskit [Mas], Peschl and Lehti-
nen [PeL], Leschinger [Les], and others.
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Theorem 4.1. Let� be a domain inC. If an automorphism of� fixes three dis-
tinct points, then it is the identity.

Here, we would like to give a slightly more geometric rephrasing of the proof of
[PeL] in order to demonstrate our geometric methods. Planar domains are rather
special among the Riemann surfaces. Indeed, the reason why one does not have
to take the cut loci into consideration for planar domains is this topological fact:
Every Jordan curve in the plane bounds a cell. Our arguments here concentrate
more upon� itself and on its geometry, especially emphasizing the role of our
topological fact.

First of all, the case of� = C or C \ {0} or a topological annulus is simple.
Thus, let us assume that� is a plane domain that has at least three boundary com-
ponents. Then, by the uniformization theorem for instance, it admits a complete
Hermitian (automatically Kähler) metric with negative constant curvature and for
which every holomorphic mapping is an isometry.

Now let f be a holomorphic automorphism of� with three distinct fixed
points—saya, b, andc. We are to show thatf is the identity map.

If b is not a cut point ofa, then there is one and only one length-minimizing
geodesic joininga andb. In such a case, every point on this geodesic must be
fixed byf. Then, by the uniqueness theorem for analytic functions,f is in fact
the identity map.

Hence we may now assume that there are at least two length-minimizing geo-
desics joining any pair of fixed points. At this juncture, we might note that the
negativity of the curvature eliminates the possibility of conjugate points, owing to
the second variation formula of arc length.

We now suppose thatf ∈Aut(�) is not an identity map but does have three dis-
tinct fixed points in�. To reach a contradiction, let us start with the fixed point
a. If the set of fixed points accumulates ata, we are done. Hence we may re-
place the second fixed pointb by the closest (with respect to the Hermitian metric)
one toa apart froma itself. This choice may not be unique and so we simply
choose one.

As mentioned before, we need only consider the case whenb is a cut point
(not conjugate) ofa. Then there will be several unit-speed minimal connectors
(all of which have the same length, of course), sayγ1, γ2, . . . , joining a to b.
First notice that no minimal connector can have a self-intersection. Then the auto-
morphismf maps any one of the minimal connectors to another such, as the end-
pointsa andb are fixed. Note thatf B γ1 cannot intersectγ1 except at the end-
points. For if they do intersect at a point other than the endpoints then they must
intersect at the same time; otherwise one may find an even shorter connector be-
tweena andb than the minimal connector, which is a contradiction. Then the
intersection point becomes a fixed point off closer toa thanb, which also is not
allowed.

Now, γ1 andf B γ1 join to form a piecewise smooth Jordan curve in the plane;
thus it bounds a cell, sayE, in the planeC. Consider the third fixed pointc,which
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is distinct froma andb. Notice that we may assume thatc is not on any of the
minimal connectors fora andb. Suppose thatc is inside the cellE. Now join c
to a by an arcξ in E ∩ � that does not intersect with eitherγ1 or f B γ1 or, in
fact, with any minimal geodesics joininga andb. Notice that the conformality of
f at the fixed pointa shows that there is a sufficiently small open ball neighbor-
hoodU of a on whichf must mapU ∩ ξ to the outside of the cellE. This results
in the conclusion thatf B ξ must crossγ1 or f B γ1. But this is impossible, since
a point not on any minimal connector froma to b cannot be mapped to a point on
a minimal connector froma to b.

If c is outside the cellE then the arguments are similar. Because there are
only finitely many minimal connectors betweena andb (sincea andb are not
conjugate to each other and since the quotient from the universal covering space
is formed by a properly discontinuous group action), it follows that some iterate
f m of f will move ξ so that its image has points insideE. Then,f m B ξ again
crosses one of these minimal geodesics joininga andb, which leads us to another
contradiction.

5. Some Examples

We now present several elementary examples that should put our results into
perspective.

Example 5.1. LetA = {z∈C : 1/2< |z| < 2}. This is an annulus in the plane.
The mapτ(z) = 1/z has two fixed points (i.e., 1 and−1), yetτ is not the identity
mapping.

Example 5.2. Let U = C2. Consider a shear of the formτ(z, w) =
(z, w+φ(z)),whereφ is any entire function on the plane. Thenτ is a biholomor-
phic map ofC2. If φ has infinitely many distinct zeros thenτ will have infinitely
many fixed points, even thoughτ is not the identity.

By contrast, any biholomorphic (conformal) map ofC that fixes two points must
be the identity.

Example 5.3. It can be shown from first principles that a biholomorphic map of
the unit ball inCn that fixesn + 1 points in general position (in the usual sense
of topology) must in fact be the identity. We leave the details to the interested
reader.

Example 5.4. Consider the domainUm ≡ {(z1, z2) ∈ C2 : |z1|2m + |z2|2m <
1}, any integerm ≥ 2. Then any automorphism ofUm that fixes two points in
general position must be the identity. This result follows because the automor-
phism group ofUm is well known to consist only of rotations in each variable
separately.

Contrast this example with the result from the previous example (for the unit
ball inC2).
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Example 5.5. LetUm be one of the domains from Example 5.4. LetV beany
rigid domain inCn (hererigid means that the domain has no automorphisms ex-
cept the identity). Then, for an adroitly chosen pair of pointsz,w ∈ Um and an
arbitraryx ∈V, any automorphism ofUm×V that fixes both(z, x) and(w, x)will
be the identity. For instance, the pointsz = ((1/2,0), x) andw = ((0,1/2), x)
will do.
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