ON MANIFOLD-LIKE POLYHEDRA

P. M. Rice

1. INTRODUCTION

If Π is a collection of spaces, a metric space X is said to be Π -like if for each $\epsilon>0$ there exists a map

$$f: X \rightarrow Y \in \Pi$$

that is onto and all of whose point inverses have diameter less than ϵ . Ganea [3] has given an example of an S^3 -like space that is not a manifold, and Deleanu [2] has proved that every manifold-like polyhedron of dimension less than 4 is a manifold. This note gives an example, for each $n \geq 4$, of an n-dimensional, S^n -like polyhedron that is a generalized manifold but not a manifold.

2. CONSTRUCTION

By a theorem of Curtis [1] there exists, for each $n \ge 4$, a combinatorial n-manifold M with the properties

- (1) M is contractible,
- (2) $\pi_1(\partial M) \neq 0$ but M is a homology sphere,
- (3) $M \times I = I^{n+1}$

Let N be the suspension of ∂M . Then N can be written as $C(\partial M \times i) \cup \partial M \times I$ (i = 0, 1), where C(X) means the cone over X. Moreover, if $\varepsilon > 0$, we may take $C(\partial M \times i)$ to have diameter less than ε . Since M is contractible, there exists a map h: $C(M) \to M$ that is the identity on the base of the cone. Let

$$g = h \mid C(\partial M) : C(\partial M) \rightarrow M$$
.

We shall show that g is onto. Indeed, assume that this is not so, and let $x \in M$ - im(g). Since g is the identity on ∂M , x is in the interior of M. Let U be the interior of a combinatorial n-cell containing x, and let it be small enough so that \overline{U} misses im(g). Then M - U is an orientable combinatorial manifold with boundary $\partial M \cup \partial \overline{U}$, and therefore the fundamental (n-1)-cycles on ∂M and $\partial \overline{U}$ are homologous in M - U. From the homology exact sequence of the pair (M, M - U) it is clear that the fundamental (n-1)-cycle on $\partial \overline{U}$ generates $H_{n-1}(M - U) = Z$. Then the inclusion i: $\partial M \to M$ - U induces an homology isomorphism in dimension n - 1. Since g is the identity on ∂M , the diagram

$$H_{n-1}(\partial M) \xrightarrow{i_*} H_{n-1}(M - U)$$

$$\downarrow \qquad \qquad f_*$$

$$H_{n-1}(C(\partial M))$$

Received February 10, 1966.

Research supported by Research Grant NSF-GP3915.

is commutative; but this is impossible, since the isomorphism $i_*\colon Z\to Z$ cannot be factored through 0. Thus g is onto.

THEOREM. N is an Sⁿ-like polyhedron that is a generalized manifold but not a manifold.

Proof. From properties (1) and (2) it is clear that N is a generalized homology manifold but not a homology manifold, thus not a manifold. By property (3),

$$S^{n} = \partial(I^{n+1}) = \partial(M \times I) = \partial M \times I \cup M \times \{0, 1\}.$$

Given $\epsilon > 0$, define f: $N \to S^n$ as follows:

$$f \mid C(\partial M \times i) = g: C(\partial M \times i) \rightarrow M \quad (i = 0, 1),$$

 $f \mid \partial M \times I = id: \partial M \times I \rightarrow \partial M \times I.$

Then f is continuous by the definition of h, and onto because g is onto; the only non-trivial point inverses are in $C(\partial M \times i)$ (i = 0, 1), and these have diameter less than ϵ . Therefore N is S^n -like.

The author wishes to thank S. Mardešić for the suggestion of this problem, and M. C. McCord for a simplification of the proof.

REFERENCES

- 1. M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819-820.
- 2. A. Deleanu, On ε -maps of polyhedra onto manifolds, Michigan Math. J. 10 (1963), 363-364.
- 3. T. Ganea, A note on ε -maps onto manifolds, Michigan Math. J. 9 (1962), 213-215.

University of Georgia