RELATIONS BETWEEN INTEGRAL AND
MODULAR REPRESENTATIONS

Irving Reiner

1. INTRODUCTION

Throughout this paper, let R denote a noetherian complete local integral domain,
with maximal ideal P, residue class field R = R/P, and field of quotients K. For
example, one possible choice for R might be a valuation ring in some p-adic field.
Let A be an R-algebra with unity element 1, finitely generated as R-module. An
A-module will mean a left A-module, finitely generated over R, on which 1 acts as
identity operator.

Set A = A/PA, a finite-dimensional R-algebra. To each A-module M there
corresponds an A-module M = M/PM. As is well known, the mapping M — M gives
a one-to-one isomorphism-preserving correspondence between projective A-
modules M and projective A-modules M. One of the main results of the present
work is a generalization of this theorem for the special case in which A is the group
ring RG of a finite group G. This permits us to establish some relationships be-
tween representation algebras of RG-modules and those of RG-modules.

Section 2 is devoted to the necessary preliminaries concerning R-algebras.
Most of the results given there are already known but not readily available in any
single reference. We have therefore outlined a few of the proofs, for the convenience
of the reader.

In Section 3, after some easy results on A-modules, we restrict ourselves to the
case A = RG, and obtain the above-mentioned generalization. The paper concludes in
Section 4 with various propositions concerning the behavior of modules under ground
ring extension. One of these gives a necessary and sufficient condition that an A-
module be absolutely indecomposable. Another asserts that if R is a finite field and
M an indecomposable A-module, then for each suitably restricted ring S containing
R, the S ® A-module S ® M splits into a direct sum of indecomposable submodules,
no two of which are isomorphic.

2. ALGEBRAS OVER COMPLETE LOCAL RINGS

In this section we list a number of results about algebras over complete local
rings. We draw heavily from Jacobson [8]; but we simplify his proofs, because we
do not need his results in the full generality with which he presents them. Other
relevant references are Azumaya [1], Borevi¢ and Faddeev [2], Conlon [3], Curtis
and Reiner [4], Green [5], Swan [13].

If A is an arbitrary ring with 1, denote by rad A its Jacobson radical (see
Jacobson [8, Chapter I]). Then rad A is a two-sided ideal of A, and the factor ring
A/rad A has zero radical.
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PROPOSITION 1. Each of the following three statements chavactervizes the
Jacobson radical.

i) rad A is the intevsection of the annikilators of the ivveducible left A-
modules.

ii) rad A is the intersection of the maximal left ideals of A.

iii) rad A consists of all elements x € A such that for each 2, b € A, the ele-
ment 1 - axb is a unit in A.

(The element u € A is called a unit if and only if there exists v € A such that
uv =vu =1.)

From iii) one easily obtains the following result.

COROLLARY. Each ving epimovphism A — B induces a ving epimorphism
A/rad A — B/rad B.

Finally, we remark that if A is a ring with minimum condition, then rad A is
nilpotent.

Suppose now that A is an R-algebra. For all a € A and p € P, we have the
relation

(1-pa)o = Db(1-pa) =1, where b = 1+pa+pZa+

Thus 1 - pa is a unit in A, which shows that PA C rad A. The epimorphism A — A
induces an epimorphism A/rad A — A/rad A. But also

A . A/PA A
rad A~ (rad A)/PA &

In

for some two-sided ideal C of A. Thus A maps onto A/rad A, inducing an epi-'
morphism A/rad A — A/rad A. Since both A/rad A and A/rad A are finite-
dimensional R- -algebras, we have the following result.

PROPOSITION 2. A/rad A £'A/rad A. Fuvthermore, rad A is nilpotent, and
hence therve exists an integer n for which

(1) (rad A)™ C PA.

By an idempotent e € A we shall mean a nonzero element such that e? = e,
Two idempotents e and e' are orthogonal if ee'= e e = 0. We call the idempotent
e primitive if e cannot be expressed as a sum of orthogonal idempotents. Then
each decomposition

(2) 1=e;+ " +e

of the unity element 1 € A into a sum of orthogonal primitive idempotents {ei}
yields a decomposition

(3) A= Ae; ® - @ Ae,

into indecomposable left ideals {Aei} (called the componenis of A), and all pos-
sible such decompositions of A are obtainable in this manner.




INTEGRAL AND MODULAR REPRESENTATIONS 359

PROPOSITION 3 (Jacobson [8, p. 51]). Let e; and e; be idempotents in an
arbitrary ving A. Then Ae; = Aej as left A-modules if and only if there exist
elements X,y € A such that

(4) e;xe; = X, ejye; =, Xy = ey, yX = ej.

PROPOSITION 4. Let A be an R-algebra, and B a two-sided ideal of A con-
tained in rad A. Set A'= A/B, and let a — a' undev the map A — A'. Then every
decomposition

(5) 1 =e;+--+te
into primitive ovthogonal idempotents in A gives a decomposition

(6) 1" = e} + - +tep
into primitive ovthogonal idempotents in A'. Conversely, each decomposition (6)
can be lifted to a decomposition (5).

The covvespondence Ae; — A'el preserves isomorphism, that is, Ae; = Ae 3

and only if A'e} S A' e3. Furthermore, for each i,
(7) (eiAei)/rad(eiAei) = (eiA'ei)/rad(e'iA'e{).

Proof, Let the idempotent e € A map onto e' € A'. Then (e‘)‘Z =e';if e =0,
then e € B C rad A, which is impossible. Thus e' is also idempotent. We claim
that if e is primitive, then so is e'. This can be established by the method of “lift-
ing idempotents” (see for example [4, Section 77]). In order to apply the method to
the present situation, we must verify that for b € B, the sequence {b, bZ, b3, e}
approaches 0 in the P-adic topology of A. This is indeed the case, since by (1),
b € PA. The process of lifting idempotents also shows that there is a one-to-one
correspondence between decompositions (5) and (6).

To verify (7), we note the ring epimorphisms
e;Ae; — elA'el, elA'el — e;Ae;/rad(e;Ae;).

Then we use the corollary to Proposition 1.

Finally, from Ae; = Ae; it follows by Proposition 3 that A'e} = A'ej. Con-

versely, suppose that the latter isomorphism holds. Then there exist x, y € A such-—-

that equations (4) hold when each symbol therein is primed. Replace x by e;xe;
and y by e;ye;, and call the new elements x and y once more. Then xy =e; - b,
b € B; set ¢ =e; + b+ b%+ -+, so that

Xyc = e, (yex)? = yex.
But ycx = e; - d for some d € B, and thus (ej - d)2 =ej- d. Multiplying the last
equation on the left by e; + d + d%4 + ---, we deduce that d = 0. Therefore equations
(4) hold with yc in place of y, and consequently Ae; = Ae;.

We shall say that the rings A and A' are interrelated if there is a correspond-
ence between the components of A and those of A', as described in Proposition 4.
Thus A and A are interrelated, as are A and A/rad A.
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Throughout the rest of the paper, we shall use the following notation. For an
A-module M, we set

(8) E(M) = Hom, (M, M), E(M) = E(M)/rad E(M).

If it becomes necessary to indicate the operator domain explicitly, we shall write
E, (M) rather than E(M).

If e is any idempotent in A, then it is easily verified that E(Ae) = eAe, and thus
E(Ae) & eAe/rad (eAe).
The isomorphism in (7) may be written more concisely as
E,(Ae;) = E, (Ael),

and it is in this form that we use it hereafter.

Now let E be an arbitrary ring with unity, and let N be the set of non-units of
E. Call E completely primary if N is a two-sided ideal of E; in this case, neces-
sarily N = rad E.

PROPOSITION 5. For arn R-algebra E, the following conditions are equivalent.
(i) E is completely primary.

(ii) E/rad E is a skewfield,

(iii) E contains no idempotent except 1.

Proof. Conditions (i) and (ii) are equivalent for arbitrary rings (see Jacobson [8,
p. 58]), and we take this fact for granted here. To show that (i) implies (iii), let e € E
be an idempotent different from 1. Since e(l - e) =0, both e and 1 - e are non-
units. Hence if (i) holds, the sum e + (1 - e) is also a non-unit, which is impossible.

Conversely, (iii) implies (ii). For let E = E/rad E £ E/rad E; then E is a semi-
simple algebra over, R. If E is not a skewfield, then some nonzero x € E is not a
unit, and so either Ex or xE is a proper-ideal of E. Hence (since E is semisimple)
E has more than one component, and so it contains an idempotent different from 1.
Therefore also E contains an idempotent different from 1. Hence if (ii) is false, so
is (iii), which completes the proof.

PROPOSITION 6. Let A be an R-algebra, M an A-module. Then M is inde-
composable if and only if E(M) is completely primary, that is, E(M) is a skewfield.

Proof. Evidently E(M) is also an R-algebra, and M is indecomposable if and
only if E(M) contains no idempotent except the identity automorphism of M.

PROPOSITION 7 (Krull-Schmidt Theorem). Let A be an R-algebrva, M an A-
module, Then M is decomposable into a divect sum of indecomposable A-modules,
called the components of M, which ave uniquely determined by M, up to iso-
‘morphism and ovder of occurvence.

Proof. The proofs in [8, p. 58] or [4, Section 14] carry over virtually unchanged.
Thus, Lemma 14.3 in [4] remains valid; so does Lemma 14.4 [4], since an auto-
morphlsm of M is the same thing as a unit in E(M). Finally, the entire proof of
of Theorem 14.5 [4] holds in the present situation, except the part showing that
M' = M. This equality will follow once we know that M; C M'. But for x € N,,
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ByX =X -, X= - X€ M'.

Hence M, = 41;(N;) C M', as desired.

PROPOSITION 8 (Fitting). Lel M be an A-module, wheve A is an R-algebra,
and set E = E(M). Then M and E are interrelated; that is, if

E = Eel @ ter @ Eek
is a decomposition of E into indecomposable left ideals, then
M = el M @ b @ ekM

is a decomposition of M into indecomposable A-submodules. Furthermore,
e;M = ejM as left A-modules if and only if Ee; = Eej as left E-modules. Finally,

(9) E(Ee;) = E(e;M)
for each 1.

Proof. For each i, consider Ee; as left E-module, and e;M as left A-module.
Since E is an R-algebra and Ee; is an indecomposable E-module, it follows irom
Proposition 6 that E(Ee;) is a skewfield. Thus, once (9) is proved, it will follow
that e; M is also indecomposable.

We have remarked previously that
Homp (Ee,, Ee;) = e, Ee,.
In order to establish (9), it therefore suffices to show that
(10) HomA(eiM, eiM) = e, Ee..
Given f € Homp (e; M, e; M), define f' € E by letting f' coincide with f on e;M, and
letting f'(e;M) = 0 (j #1i). Then f maps onto the element e;f'e; € e;Ee;. In the

other direction, each g € e; Ee;, upon restriction to e; M, yields an A-endomorph-
ism of e; M. This proves (10), and thus also (9).

Next, suppose that Ee; = Ee;, so that equations (4) hold for some elements
X, ¥y € E. Define the homomorphisms

n:eM — ejM, &: ejM — e M
by the formulas
nu = yu, £&iv = xv (ueeiM,VGejM).
Then n§ =1, &y =1, whence e; M = e; M.
Conversely, let f: e, M = e M. The composition of the maps
f
M—-eM— ejM cM

defines an element y € E. Likewise, define x € E by the maps
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-1
M — ejM—f_-’ eiMCM.
For this choice of x and y in E, equations (4) are valid, and therefore Ee; = Ee i

We have seen in Proposition 4 that the rings E(M) and E(M) are interrelated.
Hence, as a consequence of Proposition 8, we have the following result.

PROPOSITION 9. Let M be an A-module, where A is an R-algebva. The
module M is interrelated with the semisimple R-algebra E(M) If
1 - 61 + e + 6t

(wheve {6;} is a set of orthogonal primitive idempotents) is a decomposition of
1 € E(M), then there exists a decomposition

M = Ml @ - () Mt ,
wheve each M; is indecomposable, with the following properties:
E(M;) = 5;EM) 6, (1<i<t),

and M; = Mj if and only if ﬁ(M) 6, = E(M) 6j .

3. REPRESENTATIONS OF GROUPS

Throughout this section, A denotes an R-algebra, M an A-module, and E(M)
and E(M) are defined by (8) If Aut(M) denotes the set of A- automorphlsms of M,
then Aut(M) is precisely the set of units of E(M).

PROPOSITION 10. Each f € E(M) induces an element T € E(M), and the map
f — f gives a ring homomoyrphism E(M) — E(M). If f € E(M), then £ € Aut(M) if
and only if T € Aut(M).

Proof, Only the last statement requires proof, and in one direction it is obvious.
Suppose now that f in E(M) is such that f € Aut(M), and let us show that f € Aut(M).

Now M is a vector space over R; since R is a local ring, any R-basis of M can
be lifted to a set of generators of M. Thus we may write M= 2J Rm;, where
{El, LN Ek} is an R-basis for M. Then

f(m,) = Z)a jmg (1<i<K),
j=1

for some choice of coefficients a;; € R. Consequently,
fm) = Za;m,  (1<1i<K).

Since f is an automorphism, the matrix (Efij) is invertible over R. Therefore the
matrix (@;:) is invertible over R, and f is an R-automorphism of M. But since by
hypothesis f is an A-homomorphism, it follows that f is an A-automorphism, as
claimed.

The following is an easy consequence of Proposition 10.
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PROPOSITION 11. Let x: E(M) — E(M) be the ving homomorphism defined by
E(M) — E(M) — E(M). Then ker A C rad E(M). In particular, if M is indecompos-
able, then N induces an R-algebva monomorphism

(11) E(M) — E(M).

Hence if E(M) 2 R, then also E(M) =R.

Proof. Let f € E(M) lie in ker A, so that f € rad E(M). If f ¢ rad E(M), then
there exist elements u, v € E(M) such that 1 - ufv ¢ Aut(M). Proposition 10 then
shows that 1 - ufv ¢ Aut(M), which contradicts the assumption that f € rad E(M).

Suppose now that M is indecomposable. Then E(M) is completely primary, and
we claim that rad E(M) C ker A. Indeed, if the inclusion does not hold, then Af #0
for some f € rad E(M). Thence f ¢ rad E(M), so that f € Aut(M), whence
f € Aut(M). This is impossible, and so (11) gives a monomorphism. The propo-
sition is thus established. '

Suppose now that G is a finite group with a normal subgroup H, and let RH de-
note the group ring of H over R. For each RH-module M and each element x € G,
define the conjugate RH-module M (%) as follows: M (%) has the same elements as
M, and each h € H acts on M (%) in the same way that xhx-! acts on M. The
stabilizer of M in G is defined as

S=1{xeGM® =M as RH-modules}.

Then S is a subgroup of G, and SO H.

Let us form the induced RG-module MG, defined as RG @ gy M. Conlon [3] and
Tucker [14] to [16] have investigated the components of MG, especially when M is
indecomposable. As a matter of fact, their work deals with RH-modules rather than
RH-modules, but since they use only the analogues of Propositions 6 to 8, their
proofs carry over virtually unchanged to the present situation. We shall state sev-
eral of their results in Proposition 12 below.

Starting with an indecomposable RH-module M, let S be its stabilizer in G.
Choose coset representatives g, **, g, € G with g; =1, such that

t
¢g=Ugn, s=Upgmn.
i=1 i=1

Then

ME = EED g; QO M,

i=1

and each g; ® M, when viewed as RH-module, is a conjugate of M. There is an R-
module isomorphism

t
-~ @
M%) = HomRG(MG, M%) = Z; Hom (M, g, ® M).
1:

This isomorphism maps f € E(MG) onto the t-tuple {qbl, SLLIN ¢t}, where
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t
f(1®m) = 2 ¢(m), ¢m)e g, ®M.

i=1

For each i (1< i <s), the RH-modules M and gi® M are isomorphic. There-
fore there is an R-isomorphism

Homp (M, gi® M) = HomRH(M, M) = E(M).
An element ¢ € Homp (M, g; ® M) is an isomorphism if and only if its image in

E(M) is an automorphism of M.

Let us set
E'(M%) = E(M®) 0 rad Homp, (MY, MY),

where in the expression after the intersection sign, MEC is viewed as RH-module.
Define

e*M%) = EMC)/E'MY).

Conlon and Tucker showed the following.

PROPOSITION 12. E'(MC) is a two-sided ideal contained in rad E(MG), whence
E(MC) and E*(MC) ave interrelated. Given f € E(MG), we have £ € E'(MC) if and
only if none of byttt ¢s is an isomovphism. Therefore (as R-modules)

EX(MC) 2 E(M) + --- + B(M) (s copies).
Hence theve is a ving isomorvphism
EX¥(MY) = EX(M5),

and so MG and MS are interrelated,
In particular, if E(M) R, then there exists a certain twisted grvoup algebra
{s/H; R} of S/H over R, such that
E*(MC) = {s/H; R}.
If S/H is a p-group,and R has charactevistic p, then {S/H; R} is just the ordi-
navy group algebra of S/H over R.
We may now give one of the main results of the present paper.

THEOREM 1. LetM be an RH-module such that M is indecomposable. As-
sume that E(M) = E(M), and that M and M have the same stabilizer S in G. Then
therve is a one-to-one isomoyvphism-preserving correspondence X — X between the
components {X} of MG and the components {X} of MG, with X = X/PX.

In fact, the modules MG, MG, MS, MS are interrelated. Covresponding to any
decomposition into components

S _ Z\/®L

i=1
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there ave decompositions into components

n n n
— — — @ _
M5=E®Li, Mé - 2918, mE- Lo,
2 7

i= i=1 i=1
Furthermore,
L, 2L, < T, ¥ I o Lf 21y oI 2T
Finally, for each i,
fi(L,) = BT, 2 BLy) = BT

Proof. Apply Proposition 12 to both M and M. There is a commutative diagram
t

) = 20 Hom p; (M, g; ® M)
i=1

T l )
Lo

E(ﬁG) = 25 Hom—ﬁH(ﬁ, gi®ﬁ)
i=1

with the vertical maps given by f — f. Since ¢; € Homgy (M, g; ® M) is an iso-
morphism if and only if ¢; is an isomorphism, it follows at once that 7f € E'(ME‘_)
if and only if £ € E'(MG). Thus 7 induces an R-monomorphism E*(MG) — E*(MG).

On the other hand, E(M) 2 E(M) by hypothesis, and thus both E*(MC) and
E*(MC) are R-isomorphic to a direct sum of s copies of E(M). This shows that
E*(MG) = E*(_I\ZG) as R-algebras. Therefore MS and MC are interrelated, and the
theorem is proved.

Remarks. (1) Let us show that the hypotheses of Theorem 1 cannot be weakened,
in general. Let Z§ be the ring of 3-adic integers in the 3-adic completion Q3 of
the rational field, and let w be a primitive cube root of unity over Q3. The 3-adic
valuation of Q3 extends uniquely to the field K = Q3 (w), and its valuation ring is
R = Z¥[w]. The maximal ideal P of R is givenby P = (1-w)R,and R=R/P isa
finite field with three elements.

Example (i). Choose G = S3, the symmetric group generated by a and b, where
a2 =Db3 =1, aba = b2 . Let H be the cyclic subgroup generated by b. For M we
take the RH-module consisting of the elements of R, with the action of H given by
bm = wm (m € M). Then M is the trivial RH-module R. Obviously, the stabilizer
of M in G is H itself, whereas M has stabilizer G.

We may write MG = 1®M @ a®M, and relative to the R-basis
{1®1,a® 1}, MG affords the representation

0 1 (wO
a—)

1 0/ P~ o 2

Since this representation is irreducible over K, it is surely indecomposable.

On the other hand, MC affords the ﬁ-representation
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_601) q(1o
a(10’b 0 1

Since 2 is a unit in R, this representation decomposes into a direct sum of two 1-
dimensional components.

We have therefore shown that if 1 M and M have different stabilizers, then the
number of components of MC and MC need not be the same.

Example (ii). We shall next show that if E(M) and E(M) are different, then MG
and MG may decompose differently. Choose R as before, and this time take H to
be the generalized quaternion group of order 12, generated by elements x, y satisfy-
ing x3 =y2, yxy-l =x-1. Let G be the direct product C x H, where C is cyclic of
order 4. As M we pick the RH-module that affords the representation

(0 Y, k= (Y %)
y 1 0/’ 0 -w/-

Since A%+ 1 is irreducible in K[x] and also in R[A], we see that both M and M are
indecomposable. Both have stabilizer G, since C commutes elementwise with H.

It is easily verified that
CE(M) 2R, EM) =TR[], i%+1=o0.

Hence MG is interrelated with ﬁC and thus it splits into three components. On the
other hand, by using the procedure of Conlon and Tucker, one finds that MG is in-

terrelated with R[1]C Thus MC splits into four components so that the decom-
position of MG is not interrelated with that of MG .

(2) In the special case where H = {1} and M is the trivial RH-module R, the
hypotheses of the theorem are satisfied. In this case, MG is precisely RG, and so
we obtain an interrelation between the components of RG and those of RG. This
hardly constitutes a new proof of that fact, however, since our proof of Theorem 1
already uses the lifting theorem for idempotents.

(3) ¥ H is a cyclic p-group, where p is the characteristic of R, then each 111_-
decomposable RH-module M is a cyclic module. It follows readily that E(M) £
and that M has stabilizer G. In general, we may observe that the stabilizer of M

contains the stabilizer of M.

(4) Suppose that R has characteristic p, and let S/H be a p-group. Conlon and
Tucker proved that {S/H R} is isomorphic to the ordlnary group algebra of S/H
over R hence is completely primary. Furthermore,

E({s/H; R}) £ R
in this case. Therefore both MS and MS are indecomposable, and
EMS) = £mMC) =

By applying this result repeatedly, we obtain the following conclusion.

PROPOSITION 13. Let G be a p-group, wheve R has characteristic p. Let Gy
be any subgroup of G, and let N be an RGg- module for which E(N) ZR. Then NG
is indecomposable, and E(NG) =
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This improves slightly a result due to Green [5]
Theorem 1 is useful in the study of representation algebras. Recall that the

representation ving a(RG) consists of all {finite formal sums 22 a; [Ml] , where each
a; is a rational integer, and each symbol [M;] corresponds to an R-free RG-module

M;. The rules for addition and multiplication in a(RG) are

M]+IN] = M@ N], [M]IN] = [M ®g NI.

The representation algebra A(RG) is defined to be Q@ @, a(RG), where & is the
complex field, Z the ring of rational integers. Similar definitions apply for a(RG)
and A(RG) (see [6], [10], [11]).

Since the representation algebra A(RG) is easier to handle than A(RG), it is de-
sirable to establish some relations between them. Suppose that H is a normal sub-
group of G, and let {Ll , Tt Lt} be a collection of R-free RH-modules such that

(1) fl , _I—Jt are distinct indecomposable RH-modules, no two of which are
conjugate,

(II) for each i, f}(fi) = f}(Li), and L; and L; have the same stabilizer in G.

Denote by a(RG; {L;}) the additive subgroup of a(RG) generated by the compo-
nents of the induced modules {L?: 1<i<t}. The map a(RG)— a(RG) determined

by [M] — [M] yields an additive homomorphism
(12) a(RG; {L;}) — a(®G; {L;}).

Let us set A(RG; {L;}) = 2 ® a(RG; {L;}); then there is a homomorphism (as Q-
spaces)

(13) A(RG; {L;} — ARG; {L;}).

THEOREM 2. The mappings in (12) and (13) are isomorphisms.

Proof. Tt suffices to show that the map in (12) is an isomorphism. Let
{Mij: 1<i5iL vi} be a full set of non-isomorphic components of Lf’, and let Mgl)
denote the direct sum of u copies of M;;. Then we may write

{1

LS 7O )
=1

_ ij 1<igy,

J
for some positive integers {uij}. By Theorem 1, the component decomposition of
f? is _g_ivengy the corresponding formula in which each Mij is replaced by ﬁij.
Since M;j; = M;¢ if and only if M;; = M;y, it follows from the choice of the modules
{m™, j} that the former isomorphism holds only when j = 0.

On the other hand, suppose that i #k, and let us show that _M_i- # ﬁk g for any
j, £. Each RG-module X yields, by restriction to H, an RH—mod’]ule X;i1. By the
Mackey subgroup theorem [4, Theorem 44.2], (LY); is a direct sum of conjugates of
fi . Since_fi is indecomposable, so is each of its conjugates. But ﬁij is a com-
ponent of LE’ , Wwhence (Mij)H is a direct sum of conjugates of fai . For i #k, no

conjugate of L; can be a conjugate of Ly, because of hypothesis (I). Hence the iso-
morphism Mij = My ¢ is impossible.



368 IRVING REINER

We have thus shown that the modules {M ij* 1<{jifv;, 1K< t} are distinct
indecomposable RG-modules. But a(RG) is a free Z-module h hav1ng as Z-basis the
collection of all indecomposable modules, one from each isomorphism class. Hence,
if

EalJ[M J=0

i,j

in a(ﬁG), where the {aij} are rational integers, then a.. = 0 for each i, j.

1)
We are now ready to prove that the mapping (12) is an isomorphism. Since the
first part of our proof shows that it is an epimorphism, we need only prove that it is
monic. Each element X € a(RG; {L;}) is expressible as

X = 27 a5[M ],
i,]

with coefficients {aij} that are rational integers. Under the mapping (12), X is

mapped onto X = 20 aij[—M_ij]. Thus if X = 0, then also X =0, and so the theorem is
proved.

COROLLARY. Let R be the ving of p-adic integers in the p-adic completion of
the rational field, where p > 2. Suppose that G has a normal p-Sylow subgroup H
of ovder p. Then the mapping A(RG) — A(RG) is monic.

Proof, By [7], there are precisely three indecomposable R-free RH-modules,
say L;, L, Li3, where L; is the trivial RH-module R, L, is the augmentation
ideal of RH, and L3 = RH. Then L;, L,, L3 are indecomposable RH-modules of
dimensions 1, p - 1, p, respectively. Since p > 2, no two of them can be conjugate.
For each i, E(L ) E R and both L., L have stab1hzer G. The hypotheses of Theo-
rem 2 are thus satlsﬁed and so we may conclude that

ARG; {L;, L,, L;}) ¥ ARG; {L,, T,, L;}) € A(RG).

On the other hand, since H is a p-Sylow subgroup of G, it follows as in [4
(63.8)] that every indecomposable R-free RG-module is a component of some in-
duced module LG, where L is an indecomposable R-free RH-module. Therefore

A(RG) = A(RG; {L;, L,, L,});

this completes the proof of the corollary.
The above corollary was proved by other methods in [11].

As mentioned earlier, two projective RG-modules M and N are isomorphic if
and only if M = N. We shall conclude this section with an easy generalization of
this. Suppose that H denotes an arbitrary subgroup of G, not necessarily normal.
Recall that an R-free RG-module M is said to be (G, H)- projective if M has the
property that every exact sequence of RG-modules

0 - X—-Y—-M—0

that splits as RH-sequence also splits as RG-sequence. The (G, {1})—projective
modules are then the usual RG-projective modules.
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If M is (G, H)-projective, it follows from the above that for each RG-module N,
the map

1 1
Extgg (M, N) — Extp (M, Np)

is a monomorphism. Since [H:1] annihilates the right-hand group, we may conclude
that

. 1 =
(14) [H:1] ExtRG(M, N)=0

whenever M is an R-free RG-module that is (G, H)-projective.

Suppose now that R is a discrete valuation ring, and let P = 7R. Set
[H:1] = n®s, where s is a unit in R.

PROPOSITION 14. Let M be a (G, H)-projective module, and let N be any R-
free RG-module. Set
M = M/zetlM, N'= N/retIN, R'= R/Petl.

If M' N' as R!'G-modules, then M = N as RG-modules.

~

Proof. The R'G-isomorphism ¢: M'= N' can be lifted to an R-isomorphism
f: M £ N. Then for each x € G,

(fx - xf)M C metIN.
Define g, € Homg (M, N) by
gy = ﬁ'(eﬂ)(fx -xf) (x€ G).

Then x — g, is a 1-cocycle from G into Homg (M, N), and so (by (14)) 7€g is
inner, that is, there exists an element t € Homy (M, N) such that

g =xt-tx (x€ Q).
But then
fx - xt = w(xt - tx) (x € G),

and therefore f+ 7t € Homp (M, N). Since f is an R-isomorphism of M onto N,
so is f+ nt. This proves that M £ N as RG-modules.

4, CHANGE OF GROUND RING

We shall now consider the behavior of indecomposable modules under ground
ring extension. Several earlier results may be found in [9] and [12]. Throughout
this section, A denotes an R-free R-algebra, and all A-modules are assumed R-
free. By S we denote a complete noetherian local ring containing R, with maximal
ideal P' and residue class field S = S/P'. We assume always that S NK =R,

P'N K = P, so that R may be viewed as subfield of S. For an A-module M, define
SM =S @z M. Then SM is an S-free SA-module, where SA =S ®p A.

PROPOSITION 15. The SA- module SM is interrelated with the S-algebra
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S ®f E(V).
Furthermore,

~

E(SM) £ § ®g E(M)

if S is a finite sepavable extension of R.

Proof. By Proposition 9, SM is interrelated with E(SM) But E(SM) A/rad A,
where

= E(SM)/P'-E(SM).

Therefore SM is interrelated with A/A,, where A, is any two-sided ideal of A
contained in rad A.

Now

E(SM) = HomSA (SM, SM) = S ®R EM),

and this readily implies that
A =8 ®g E(M),

where EM) = E(M)/P-E(M). Choose Ag so that in the above isomorphism,
AO =S @z rad E(M). Then clearly A, C rad A, and indeed Ay =rad A whenever S
is a finite separable extension of R. Furthermore,

A - SQEM) =gq EM)
Ao §® rad E(m) rad B(M)

Since E(M) = E(M)/rad E(M) we see that A/AO ZS® E(M) and the proposition is
proved.

COROLLARY. IfS = R and M is indecomposable, then so is SM. Thus, inde-
composable A-modules rvemain indecomposable under a totally ramified extension of
the ground ring R.

Green [5] has called M absolutely indecomposable if SM is indecomposable for
every S.

PROPOSITION 16. Let R be a complete discrete valuation ving. An A-module
M is absolutely indecomposable if and only if E(M) is a Sfield that is puvely insepar-
able over R. In particular, zf R is a perfect field, then M is absolutely indecom-
posable if and only if E(M)

_ Proof. The first statement in the proposition clearly implies the second; for if
R is perfect, the only purely inseparable field extension of R is R itself.

Suppose now that E(M) is a field that is purely inseparable over R and let us
show that for each field S containing R, the ring S 2] E(M) is completely primary.
If R has characteristic p, the field E(M) is obtamable from R by successive ad-
junctions of p-th roots. A simple induction argument shows that it suffices to prove
that 8 @i F is completely primary, where

F =R[x]/(xP-a) (a€eR, a¢dRP).

But this is clear, since
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S®gF 2 S[xl/(° - a),

and over S the polynoinial xP - a is either irreducible or else is of the form
(x - @)P for some @ € S.

Conversely, suppose that M is absolutely indecomposable. Then E(M) is a
division algebra whose center C is a finite field extension of R. We claim that C
must be purely inseparable over R; if it is not, then C D C, :;2 R, where C; is a

separable field extension of R. Choose a complete discrete valuation ring S D R
such that S=Cg,. Then

S @ E(M) = (Co ® Co) ® ¢ E(M).

But C, ®'R Cp is a direct sum of two or more fields, and hence S ®ﬁ I:I(M) is not
completely primary, whence SM is decomposable.

Finally, if C is purely inseparable over R but E(M) # C, then E(M) is not a
field. We may then choose S so that SO C, and S splits E(M); that is, S ® CE(M)
is a full matrix algebra of (say) q X g matrices over S, with ¢ > 1. Since C is
purely inseparable over R, it follows easily that S ®-ﬁ C is completely primary, and

(S® C)/rad S® C)=S. But

S ®% E(M) £ (8§ ®f C) ® EM),

and thus SM is interrelated with S Rc f:(M). This latter ring has q components,
however, whence SM also has q components. Thus, if E(M) is not a field, then M
is not absolutely indecomposable.

PROPOSITION 17. Suppose that R is a complete local ring, and that S is R-
Jree of finite vank. Let M and N be A-modules. Then SM and SN have a common
component if and only if M and N have a common component, Fuvthermore, M = N
if and only if SM = SN.

Proof. Let S have R-rank q, and regard A as embedded in SA. Each SA-
module becomes an A-module by restriction of the operator domain to A. Let M(a)
denote the direct sum of q copies of M. Then SM = M(2) as A-modules. Hence if
SM and SN have a common component, so do the A-modules M(a) and N(CI), and
therefore M and N must have a common component.

Finally, if SM £ SN, then M(a@) = N(@) , which at once implies that M = N.

Remark. An analogue of the preceding proposition is given in [12], where R and
S are taken to be valuation rings in algebraic number fields. However, in that case
S need not be of finite R-rank, as was mistakenly asserted. The result and proof in
[12] remain essentially correct, nevertheless, since this wrong assertion was never
used. Indeed, the only fact needed was that S/PXS is free of finite rank as (R/P¥)-
module, and this is true even if S is not of finite R-rank.

THEOREM 3. Let R be a complete local ving such that R is finite, and let A
be an R-algebra, M an indecomposable A-module. Then for any S, the module SM
is a divect sum of k non-isomovphic components, wheve k is the number of compo-
nents of S @ E(M). Indeed, we may write

(15) §®R‘ E(M) = Fl @ ter @ Fk’

wheve each F; is a finite field extension of S. There is then a corrvesponding de-
composition
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(16) S@ M=L,®®L,,

where L1 , =, L, are non-isomovphic indecomposable SA-modules, and where

k

(17) E(L)SF, (1<i<k),

as S- -algebras.

Pyoof. Since M is indecomposable, E(M) is a skewfield of finite R-dimension.
But R is a finite field, and so, by Wedderburn’s Theorem, E(M) is itself a field.
Thus the commutative sem1s1mp1e algebra S Or E(M) splits into a direct sum of
(say) k fields Fy, ---, F}, no two of which are 1somorph1c as S® E(M) modules.
The theorem therefore follows from Proposition 15 and the results of Section 2.
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