ON ORDER-PRESERVING EXTENSIONS TO REGRESSIVE ISOLS
Fred J. Sansone

1. INTRODUCTION

The extension of functions to isols was treated by Nerode in [4]. If we restrict
our attention to regressive isols, the notion of an infinite series of isols, defined in
[2], becomes a useful tool. In [1] and [5], such series were employed to study ex-
tensions. In particular, Barback proved that for a recursive function f,
fp: Ag — AR if and only if £ is eventually increasing. Our main concern here is
the determination of the functions that are recursive and eventually increasing and
have the additional property that their extensions ultimately preserve the partial
ordering < in Ar. We call the extension fj of a recursive, eventually increasing
function f ultimately orvder-presevving in AR if there exists a natural number k
such that fy preserves the order < in the class of regressive isols that are greater
than or equal to k. Our principal result states that among the recursive, eventually
increasing functions, those whose extensions are ultimately order-preserving in AR
are exactly the functions whose first difference is eventually increasing. Our, nota-
tion and terminology is that of [5]. .

2. A THEOREM ON INFINITE SERIES

By a number-theoretic function, we mean any function defined on the nonnegative
integers and having integral values. A number-theoretic function is said to be re-
cursive if its positive and negative parts are both recursive. We recall the defini-
tions of two additional concepts, defined in [5]: the mapping ¢; and the star-sum. If
T is an infinite regressive isol and f is a one-to-one function, then
¢¢(T) = Req ptf(n) , where t, is any regressive function ranging over any set in T.
The star-sum is defined as follows. If f is a recursive, number-theoretic function
and T is an infinite, regressive isol, then
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where f:l', f_ are respectively the positive and negative parts of f.

THEOREM 1. Let a, be a vecursive function. Then for all regressive isols T
and U
\:U <T = 2 a < 22 an] <> a_ is eventually increasing.
U T
Proof. Proceeding from right to left, we first assume that a, is recursive and
eventually increasing. If U is finite, the left-hand side clearly holds. Suppose U is
infinite. We first dispense with the case where a, is increasing. If U < T, then

U = ¢¢(T) for some strictly increasing but not necessarily recursive function {.
Thus for this f, ¢;(T) < T, and it follows that
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$¢(T) T

(1) 2 af(n) < 2 a,.

Since a, and f are both increasing, a < £(n) for all n. Thus

(2) 2 a, < 2 Af(n) -
b4(T) $4(T)

The argument below suffices to show that (2) holds. If m is a number of the form
j(tf(k) , p), where j is the well-known recursive pairing function from €2 onto €, and
where p < agy), then we can find tg(;) and hence f(k), since tg, is regressive.
Having obtained f(k), one can also obtain £(0) through f(k - 1), since T is regres-
sive and ¢f(T) < T. Thus the number k can be found, and hence also a; . One need
only compare p with a, to determine whether m € j(tf(k), v(ak)). Combining (1)
and (2), we have the inequality

%)an< Ean.

T

If a, is eventually increasing, but not increasing, there exists a positive number
k such that a 4, is increasing. The relation U < T implies that U~ k < T -k, and

by the inequality above, U_Ek a, < TE-k a, k- Therefore, 1? a, < % ap.

In order to prove the converse, assume that a, is recursive and not eventually
increasing. We show that for some regressive isol T,

(3) 2 a, 4 2a_.

T-~1 T

From the definition of an infinite series of isols, one readily obtains the equivalence

+1°

(4) Eanszanﬁzangao+2an
T-1 T T-1 T-1

Since a, is recursive, it is clear that Aa =a, ., - a, is a recursive, number-
theoretic function. By [5, Theorem 3, Corollary 4],

*

T_-l T-1 T-1
Hence the left-hand side of (4) holds if and only if
*
a; + 20 Na € Ap,
T-1

or by [5, Theorem 2], if and only if aA(T - 1) € Ay . Since &, is not eventually in-
creasing, it follows from [1, Theorem 4] that some regressive isol T satisfies (3).
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3. THE MAIN RESULT

THEOREM 2. Let f be incveasing and vecuvsive. Then i) is ovder-presevving
in A if and only if AL is eventually incveasing.

Proof, Since f is increasing and recursive, Af is a recursive function. Replac-
ing a by Af in Theorem 1 and applying [5, Theorem 3, Corollary 3], we obtain the
desired result.

COROLLARY. Let f be vecursive and eventually increasing. Then fp is ulli-
mately ordev-preserving in Ag if and only if A is eventually increasing.

Proof. I f is recursive and eventually increasing, there exists a natural num-
ber k such that f_,, is recursive and increasing. With the notation g, =1, , it
follows that gp is order-preserving in Ay if and only if Ag is eventually increas-
ing. Let T, U € Ag with k <UL T. Then U -k <T -k, where both are members
of Ap . Hence

e

gA(U - k) < gp(T - k) <> Ag is eventually increasing.

However, Ag is eventually increasing if and only if Af is eventually increasing.
Finally, gp(U - k) = £4(U) and gp(T - k) = £5(T).

4. REMARKS

In [3], Dekker considers a relation <* in A, which he proves to be a partial
ordering. We readily see that the extension of every recursive, eventually increas-
ing function is <* order-preserving in A g. (It follows from [3, Proposition 12] and
[5, Theorem 3, Corollary 3].) As a consequence, we obtain the following simple
proof of the existence of regressive isols X and Y such that X <*Y and X 4 Y. Let
f be a function that is recursive and eventually increasing, but for which Af is not
eventually increasing. Then there exist regressive isols T and U such that U < T
and yet £(U) { £o(T). However, U< T => U <* T, and hence fj(U)<* £5(T).
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