ASYMPTOTIC VALUES OF MEROMORPHIC FUNCTIONS
K. F. Barth

1. INTRODUCTION

Let © denote the unit disc { |z| <1}, and let © denote the unit circle
{ |z| = 1} . The purpose of this paper is to derive some results on asymptotic
values of functions meromorphic in ®. G. R. MacLane [12, p. 7] considered the
classes , #, and £ of functions that are nonconstant and holomorphic in ®.
is the class of functions having asymptotic values at a dense set on €. £ is the
class of functions for which there exists a set of Jordan arcs I'" in 9, with end
points dense on €, such that on each I'" either f — « or f is bounded. The class &
is defined as follows: f € £ if and only if each level set {z: |f(z)| = A} “ends at
points” of ¢ (the precise definition will be found early in Section 3). MacLane
proved that «/ = # = £. We shall consider the corresponding classes « _, & _ ,
and &, of meromorphic functions.

The classes ., #B,,, and £, are defined in Section 3. We prove that

dmc !%m and E’mc 38m

’

and we give examples showing that
'%m¢ "dm’ ,%’mgf gm’ "Jm ¢ Qm’ "q”m ¢ "dm'

Section 4 is concerned with the existence of asymptotic values on sets of positive
measure. We prove (Theorem 5) that if f € .« _ and there exists a complex number
a (possibly «) such that N(r, a, f) = O(1), then on each subarc y of G on which f
does not have the asymptotic value a, f has asymptotic values on a set of positive
measure. Here N(r, a, f) denotes the Nevanlinna counting function of f. Theorem 5
generalizes a theorem of MacLane [12, Theorem 11]. This result, together with
Theorem 8, extends a theorem of Bagemihl [1, Theorem 1], which is a generalization
of [4, Theorem 3].

In Section 5 we establish sufficient conditions for f to belong to «,, . The funda-
mental condition (see Theorem 7) is as follows. If there exist a complex number a
(possibly «) and a set @, dense on [0, 27], such that

1 .
S 1 - r)log+ 2 dr <« and N(r,a,f) = 0(1) (6 € ®, a#x),
0 f(retV) - a

then f € « . (If a =, change 1/(f - a) to f.) A more restrictive condition is

‘S‘l 1-r)T(r)dr < « and N(r, a, f) = 0(1),
0
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where T(r) is the Nevanlinna characteristic of f. These conditions generalize con-
ditions (I) and (III) of MacLane [12, Section 7]. We give an example showing that the
condition N(r, a) = O(1) cannot be relaxed to 6(a) = 1, where &(a) is the Nevanlinna
defect of a. MacLane [11] has constructed a meromorphic function f in 9, without
any asymptotic value whatsoever, such that T(r, f) is of arbitrarily slow growth.
Another important sufficient condition is that if f is nonconstant, meromorphic, and
normal in the sense of Lehto and Virtanen, and if there exists a complex number a
(possibly «) such that N(r, a, f) = O(1), then f € ., (see Theorem 8). This gen-
eralizes a theorem that was proved independently by Bagemihl and Seidel [4, Corol-
lary 1] and by MacLane {12, Theorem 17]. It also extends [1, Corollary 1].

In Section 6 the classes «/,,, B} , and £ are defined. f € &} , B, ,0or £,
ifand only if f € &, #B,, or £, , respectively, and N(r, «, f) = O(1). We prove
that ! =], O £}, and that Koebe’s Lemma holds for functions in «/;,. The
extension of Koebe’s Lemma generalizes a result of MacLane [12, Theorem 9], and
it overlaps with a theorem of Bagemihl and Seidel [4, Theorem 1].

Section 7 is devoted to results about asymptotic tracts of functions in ;. One
of the most interesting results is that if f € «/,, and there exist complex numbers
a, b (one of which may be «) such that a #b, N(r, a) = O(1), and N(r, b) = O(1),
then f has no arc tracts.

2. PRELIMINARIES
In the following, the symbols
N(r, a), m(r,a), T(r), d&(a)

will have their usual meanings (see [14, p. 166]). It is convenient to make the fol-
lowing definition. Let {'yn} be a sequence of continuous curves, compact in 9, and
let ¥ be an arc {z: |z| =1, a <argz <B}.

Definition, Y7 if for each € > 0 there exists an ng, such that, whenever
n>ng,

Yn € {1-e< |z[ <1}, |infargz - oz] <eg, and |supargz —B| <eg.
' Yn
The terms asymptotic value, asymptotic tract, end of a tract, avc tract, and
point tract will also have their usual meaning (see [12, Section 2] for definitions). A
tract { T(e), a} (¢ > 0) will be called global if the end of the tract is ¢ and for
each arc ¥ on G there exists a sequence of arcs y, € ¥(1/n) such that y, — 7.

We shall say that f has the asymptotic value a at € (|¢| =1) if there exists a
curve ending at ¢ on which f has the asymptotic value a.

3. THE CLASSES &, B,,, Zm

Let f be meromorphic and nonconstant in ®. Let a be any complex number
{possibly «), and consider any ¢ such that | ¢ =1. We say that ¢ € A, provided f
has the asymptotic value a at {. In order to avoid confusion, A, will sometimes be
denoted by A_(f). If S is any subset of the sphere, we write
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(3.1) ag,9)= Ua, ags =ois=no.
a€s

In particular, if b is any complex number, we write

(3.2) ar= U 4, a-alvua,.
a#b

Definition. Let f be meromorphic and nonconstant in ®. Then f € &, pro-
vided A(f) is dense on G.

We now define the set B*. A point { such that |¢| =1 is said to belong to B*
provided there exists a continuous arc I' C 9, ending at £, such that f is bounded
onI'.

We write
(3.3) B(f) = B=A_UB".
Definition. T € #_ provided f is meromorphic and nonconstant in ® and B is

dense on G.

It is clear that AX < B* and A c B; hence
(3.4) Ay C By, .

For any f defined on ® and any X > 0, we shall denote the level set
{z: Ifl =1} (short notation for {z: |f(z)| =X}) by L(A). A component of L(}) is
called a level curve, and we denote it by C()).

Let S be any subset of . For each r (0 < r < 1), let the components of
snir< |z| <1} be S;(r), where i ranges over some index set I. Let
6i(r) = diam Si(r), and set

6(r) = sup 65(r),
i€l

with 6(r) =0 if I is void. Clearly, 6(r) | as r T. We shall say that S ends at
points of G provided 6(r) l 0 as r T1.

Definition. f belongs to the class £, (the class Qr";l) provided it is mero-
morphic and nonconstant in ®, and every level set L(A) (every level curve C(A))
ends at points of G.

It is clear that
*
(3.5) £, < 2.,
Our definitions of « , #,,, and £_, are the same as MacLane’s definitions of .,

A, and £, except that we have replaced the word “holomorphic” with “meromorphic.”

THEOREM 1. Let f € £, and let {'yn} be a sequence of disjoint simple arcs
in ® that tend to the qvc v of G, with the property that theve exists a complex num-
berv a such that
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(3.6) suplf(z) - a[ = U, — 0 (n—w) (if a#cw),
yn
(3.7) inf|f(z)| =, = o (n—wo) (if a=w).
'yn

Then £ has an avc tract {T(c), a} with end K such that v c K and such that, for
each point € of K, some curve T belongingto {(e), a} ends at ¢. At any inte-
rior point € of K, the only asymptotic values come from this tract {T (), a}. If £
is in &, (but not necessarily in A ), the above conclusions are true for a = «,

Remark. For hoiomorphic functions in &, #B, or ¥, this theorem was proved
by G. R. MacLane [12, Theorem 3]. It is an open question whether the conclusions
of Theorem 1 are true for f € &, and a # =,

Proof. For f in £, and a =, we omit the proof, because it is the same as
that of [12, Theorem 3].

Suppose f € o/, and a=w, Let v={eif: o < 6 <8}, and let S(a, B) denote
the sector {z: @ <argz <B, |z| <1}. Then L() nS(e, B) ends at points of G.
for all A > 0. If not, there would exist a A} > 0, a subarc A of y, and a sequence
{An} of continuous arcs, compact in 9, such that A, € L(x;) for all n and A, — A
as n — o, Let { be any interior point of A. Each curve ending at £ must cross
all but a finite number of the A, and y,, and thus f cannot have an asymptotic
value at {. This contradicts the hypothesis that f € « . Hence L(A) N S(a, B)
ends at points of G; again, exactly the same proof as for [12, Theorem 3] works.

Finally, suppose a is finite. By applying Theorem 1 with a =« to the function
1/(f - a), we obtain the desired result.

THEOREM 2. Let f € Z,. Suppose y = {eiez aL0LB at B} is a subarc
of C such that no level curve of f ends at any point of v. Then exactly one of the
Jollowing two statements is valid.

For each intevior point ei® (a < ¢ < B) of v there exists a continuous
curve T'(ei®) C © ending at ei® and such that t is bounded on

Ua <p<p F(ei¢). Moreover, I does not have the asymptotic value © at
any intervioy point of y.

(3.9) There exists an arc tract for « of £ with end K such that v C K,

Proof. It is easy to show that (3.8) and (3.9) cannot occur for the same y; we
shall prove that either (3.8) or (3.9) must be valid. Let S(a, B) be the sector

(3.8)

(3.10) S(a, B) = {z: |z| <1land o <argz < B} .

Pick {A, }:=1 sothat 0 <A, T« and L(A,) has no multiple points. Then, since
fe2,,each C(x,) is either a closed Jordan curve or a crosscut of ®. We may
suppose that the origin is not a pole of f. If it is, pick a point a near 0 and repeat
the following argument, using a in place of 0. Let N be such that

0e {z [f| <agl.

For any n > N, let A(),) denote the component of {z: |f] < An} that contains 0.
Since f € 2, and no level curve of f ends at any point of 7, at least one of the fol-

lowing statements must be valid for any n > N:
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There exists a 7, C 9A(r,) such that 7, is a crosscut of the sector
S(a, B) that joins a point of arg z = @ to a point of arg z = .

(3.11) {

(3.12) oA(r) D v.

If (3.11) is valid for all n > N, it is clear that 7, — ¥, and thus, by Theorem 1, {
has an arc tract for « with end K D y. Hence, (3.9) holds.

Now suppose (3.12) is true for some n=M. Let ¢ = ei? (¢ < ¢ <B) be any in-
terior point of y; by (3.12), { € 3A(x,,). Since f € £ and no level curves of f end
at points of y, there exists a 6({) > 0 such that each component of 3A(xy;) having a
nonempty intersection with the set

(3.13) u(s, ) = {z: lz - Cl <6, |z| <1}

is a closed Jordan curve contained in S(a, B8). This, together with the hypothesis
that the diameter of the set L(Apg) N {z: 1 -¢ < ‘z[ <1} tends to zeroas € | 0
(f € £,,), implies that 0 and { may be connected by a continuous curve

I(eif) c A(r,) U L.

To prove the final statement in (3.8), note that the existence of the asymptotic
value © at ¢ implies that L(\) ends at { for all A > Xxp4. This is contradictory.
Thus (3.8) is valid, and the proof is complete.

It is clear from the proof that Theorem 2 may be generalized as follows: the
condition f € Z,, may be replaced by the requirement that for each ¢ € 'yo (O de-
notes interior) there exists a 6(¢) > 0 such that the set { |f| =atn U(0, £) ends at
points of ¢ for all A > 0,

Now we shall prove the promised results.

THEOREM 3. &, C By, L C By, and no other inclusion relations belween
A, B, and £ are valid,

Proof. We have already shown that «/, C &8, (see (3.4)); we shall now prove
that Z,, C #,,. Suppose f € £, , and consider any subarc v = {elf: 0 < 0 < B}
of €. We shall show that there exists either a continuous curve ending at some
point of ¥ on which f is bounded, or else a continuous curve ending at some point
of vy on which f has the asymptotic value «. If a level curve of f ends at a point of
7, we are done. If not, Theorem 2 applies, and we see that either for each interior
point eif (¢ < 8 < B) of ¥ there exists a continuous curve I'(6) C ® that ends at
el and on which £ is bounded, or there is an arc tract of f for « with end K such
that v C K. I the first case occurs, we are through; in the second case, applying
Theorem 1, we see that f has the asymptotic value « at each point of y. Hence
fe #B,,. Examples 1 and 2 (see below) imply that no other inclusion relations be-
tween ., , B,,, and &, are valid.

EXAMPLE 1. We shall construct a function f, mervomorphic and nonconstant in
D, such that £ € B, and t € Z but £ ¢ A, . Thus B, ¢ Ay, and Lo, & oAy, .
This example is due to Lehto and Virtanen (see [9, p. 58]).

Let h be a “modular function” omitting the values 0, 1, and 5; that is, let h map
the unit disc one-to-one and conformally onto the universal covering surface of the
complex sphere with the points 0, 1, and 5 removed. We know that h is normal in
the sense of Lehto and Virtanen [9, p. 53]. Also, h has a radial limit h(ei?) at each
eif ¢ M, and h(e‘g) does not exist for any e'” in G - M, where M is a countable
dense subset of G. By [10, Theorem 6] there exists a function g, holomorphic and
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bounded in 9, such that g(eie) exists for each el? € ¢ - M and for no ei? e M.
The function f = g + h is normal, since g is bounded and h is normal [9, p. 53], and
I cannot have any radial limits. Since f is normal, it can have no asymptotic values
[9, Theorem 2]. It is now clear that f € 8, but f ¢ «__.

Next we want to show that f € £,,,. We know that Ay(h), A;(h), and Ag(h) are
all dense in €, and we may suppose that gI < 1. Now suppose that f ¢ & s then,
for some A > 0, there exists a sequence 'yn} of arcs such that v, — v, a subarc of
€, and |f| =X on y,. Pick elf1 ¢ 70 so that h(elel) =0, and et?2 ¢ v0 so that

6
h(e'"2) = 5. Itis easy to see that this is incompatible with the condition |f | =2 on
Yn- Thus fe€ £ but £f¢ . Note that Example 1 also shows that L ., 1S not a

linear space.

EXAMPLE 2. Using a theorem of Mergelyan, we shall construct a function f,
mevomorphic in D, such that £ € Ay, , fe By, but {z: |t| =1} contains a se-
quence of arcs that approaches G, that is,f ¢ & . The construction is similar to
that used by Bagemihl and Seidel in [2].

Let {rn}c;i:l be a sequence of positive numbers (r, | 1); for n>1, let
(3.14) C, = {|z] = r},

(3.15) D, = {|z| < r,},

(3.16) E = {z: r < Izl <r ,jargz= 2k7/2" } (k=0,1, -, 2" -1);
and for n > 1, let

(3.17) F, =D, ,UE_, UC,.

n n-1

Now we §oha11 inductively define two sequences of functions, {fm(z)}:f= 1 and
{Rn(z)}nz]_ .
First, let £,(z) and R(z) be defined on D] so that f; =Ry(z) =1/2.

Next construct £,(z) so that it is continuous on F, and

(3.18a) f,(z) = £,(z) on Dy,
(3.18b) f,(z) = 5/4 on C, ,
(3.18¢c) f,(z) is linear on each component of E;.

It is clear that F, is closed and that it divides the plane into a finite number of
regions. Also, f,(z) is continuous on F, and analytic in the interior of F,. Thus,
by a remark of Mergelyan [13, p. 24], there exists a rational function R,(z) such
that

(3.19) max |f,(z) - R,(z)| < 27%.
ZGFZ

N, - -
Let {a(2, k)}ki1 denote the poles of R,(z) that are contained in D, and let
P(2, k, z) denote the principal part of R,(z) at a(2, k). Now construct f;(z) so that
it is continuous (in the spherical metric) on F3 and
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(3.20a) f,(z) = R,(z)  on D,

(3.20b) f,(z) = 1- 23 on C,,
(3.20c) f3(z) is linear on each component of E, .

Then the function
Ny

(3.21) g3(z) = f3(z) - 22 P(2, Kk, z)

k=1
is continuous on F3 and analytic at interior points of F5. As before, there exists a
rational function S, (z) such that

max |g3(z) - S3(z)| < 27,

Z €F3
Hence
Ny
max |f,(z) —{S3(z)+ 27 P(2, k, z):\l <270,
Z €F3 k=1
Letting
N,

Ry(z) = S5(z) + El P(2, k, z),

we obtain the estimate
(3.22) max |f;(z) - Ry(z)] < 27°.
Z €F3
N
We denote the poles of Rs(z) by {a(3, k)}kf’1 and the principal part of Ry(z) at
a(3, k) by P(3, k, z).

In general, suppose that fn(z) is continuous (spherically) on F_, and that

(3.23a) f (z) = Rn_l(z) on D1-1-1’
(3.23Db) £ (z) =1+ (-n*2™® on C_,
(3.23c) fn(z) is linear on each component of E__, .
We can find an Rn(z) such that

(3.24) max |fn(z) - Rn(z)l < 9 m2

z € Fn
A straightforward calculation shows that {Rn(z)} converges to a meromorphic
function R(z) in .

In order to show that R(z) ¢ %y it suffices to show that for each n some com-
ponent of {z: |R| =1} separates C_ and C,,,. If we prove that
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(3.25) |R(z) - (1 + (-1)"2™)| < 2™ (z ey,

it is clear that a component of {z: |R| = 1} must separate C, and C, .y . The
proof of (3.25) and the proof that f has the asymptotic value 1 on each radius of the
form

(3.26) {z:0<|z| <1, argz=k2"} (n=1,2 - andk=0,1,2, -+, 2%-1)

consist of straightforward calculations (see [5, Example 2] for details). Since (3.26)
is dense, we see that f € & . Thus & & & . Also, note that F € 4, , which
implies that B, . & .

MacLane [12, p. 18] has shown that if f is holomorphic and f € £, then
f+a € & for each finite complex number a. We shall show that this is #of true for
meromorphic functions. Consider the function f constructed in Example 2. We
know that f ¢ £, and that A(f) is dense in G. Thus Agy(f - 1) is dense in G,
which implies that f - 1€ &, . Hence f ¢ & butf-1e 2 .

4, ASYMPTOTIC VALUES ON SETS OF POSITIVE MEASURE

In the proof of Theorem 5, we shall need the measurability of the set A(f, S)
defined in Section 3.

THEOREM 4. Let f € A, and let S be a Borel set on the sphere. Then
A(f, 8) is measurable.

(Here, measurable means Lebesgue measurable as a set in [0, 27].)

Proof. Theorem 4 was proved by MacLane [12, Theorem 10] for f € « (see
Section 3). Because the proof of Theorem 4 is an easy modification of the proof of
[12, Theorem 10}, we omit it (see [5, Theorem 4] for details).

We can now prove a generalization of [12, Theorem 11].

THEOREM 5. Letf € A,. Suppose a is a complex numbey (possibly ©) such
that N(r, a, ) = O(1), and let v be any subavc of G such that A,Ny=0. Then
meas A‘; N +y)>0.

Remark, The inequality meas (A’:L N v) < meas (y) is possible (see [12, p. 75]).

Proof. By Theorem 4, A’; and hence A"; N v is measurable. We may suppose
that a = «, since if N(r, a) = O(1) for some finite a, we may obtain the conclusion
by applying Theorem 5 with a = « to the function 1/(f - a). Suppose also that f has
a pole of order A at z =0 (where A =0 if f is holomorphic at z = 0). Let the poles

of I be denoted by by = lbkl_ein , where a pole of order y appears p times among
the b, . It is known that if N(r, <) is bounded for 0 < r < 1, then the product

[ee) _ -i’ek
A [y | - ze

(4.1) B(z) = -
k=1 1-Dbyz

converges subuniformly in ® to a holomorphic function, and.|B(z)| < 1 (see [14,
p. 188]). The function

(4.2) F(z) = f(z) B(z)
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is holomorphic in 9.

There are now two possibilities. Either

(4.3a) F is bounded in some neighborhood of some point £, on v,
or
(4.3b) lim sup |F(z)| = o (all € € y).

z—C

If (4.3a) occurs, let U = {z: |z - Col <6} N o, where & is chosen so that F is
bounded in U. Also, let y; = U™ N ¢. Choose an elementary function g(Z) so that
g(Z) maps {IZI < 1} one-to-one and conformally onto U. Now 7y; corresponds to
a subarc vy, of {|z| =1}. write

(4.4) ®(Z) = F(g(z)) = F(z) (z € U)
and
(4.5) ¥(Z) = B(g(Z)) = B(z) (z € U).

Then & and ¥ are bounded in {|Z| <1}, and thus

®(2)/¥(2) = F(g(2))/B(g(2))

is a function of bounded characteristic in { IZI < 1}. Hence &/¥ has finite radial
limits on a set E* Cy, such that

(4.6) m(E¥*) = m(y,) > 0.

Since U is a Jordan domain, each radial limit cI)(eig)/\Il(ele) (eie € E*) corre-
sponds to a point asymptotic value of F in U. Also, E* corresponds to a set

E C y, such that m_(E) > 0 (m_(E) is the exterior measure of E), since g is an
elementary function. Because E c AX N v, we see that

(4.7) m(AY Ny) > m(E) > 0.

Now suppose that (4.3b) occurs. Pick two distinct points {; and {, of v and
two curves A(f;) and A({,) such that A(€;) and AL ) end at {, and ¢, , respec-
tively, and such that f tends to a finite limit on A( 1% and A(§,) as |z| — 1. Since
B(z)[ <1, |F| is bounded on A(g;) and A(§,) for Izl sufficiently near 1. Hence
FI <M on some crosscut y, of D that joins {; and {,. The crosscut y; and
the arc ' = (tl, §,) C v bound a domain H. Let x(s) map {|s| < 1} one-to-one
onto H™ so that x(s) is conformal in {|s| < 1} and continuous in {]s| <1}.
Consider the function F, (s), holomorphic in { |s| < 1}, given by

(4.8) F(s) = F(x(s));

we shall show that Fy € #. Let x~1[y;] and x~![y'] denote the image by x-!(z)
of v; and 7', respectively. Obviously, Fy is bounded on each arc that approaches a
point of x-1 ['yl]. Since f € &, and A_(f) N v =0, there exists a dense subset y"
of y' each of whose points is the end of an arc on which f has a finite limit. Since
|B(z)| <1, F is bounded on each of these arcs, for M < |z| < 1, where Mg de-
pends on the particular arc. Hence each point of x-1[y"] is the end of an arc on
which F is bounded. Thus F; € %, and by [12, Theorem 1], F, € . Hence at
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each point of some dense subset of ', F has an asymptotic value. Recall that, for
each A > 0, L(A) denotes the set {z: |F] = A}. In view of the above, it is clear that

(4.9) H N L(x) ends at points of ¢!, for each A > 0.

By (4.3b), F is unbounded in H. In the following argument, it is not necessary
that n be an integer, and we may assume that n is such that the level set L(n) has
no multiple points. For n > M, H will contain at least one component of
{z: |F| > n}; we shall denote these components in H by Th1, Tp2, . U F
were unbounded in every set T, i, for n> M and for all k involved, then Th1
would contain at least one T4 ;, which we shall denote by T,;; ;. Also Ty, )
would contain Ty4p 1, **+. The domains T, ; O Tp4p,) O -+ determine an asymp-
totic tract of F with asymptotic value <«; the end K of this tract is a subset of y.
Because of (4.9) (F is “in %,, near y”), it is clear from the proof of Theorem 1
that F has the asymptotic value « at each point of K. Since |F| = |f-B| <|f I, f
has the asymptotic value « at each point of K, which contradicts the hypothesis that
A (f) Ny = 0. Hence F is bounded on some T n,x; we shall denote this domain by
To . The boundary of Ty consists of various Jordan arcs and crosscuts I'y, on
which |F| =n, and a set E} Cy. Also,

(4.10) n < |Fz)] <N (z€ Tp).

The set E; must be nonempty. For otherwise, we would have the inequality

lim sup | F(z)| < n at every boundary point of Ty . This would imply that |F| <n
in Ty , which contradicts (4.10). Each Jordan curve in T'y creates a hole in T .
We add all such holes to T; to obtain a simply connected domain T C H, bounded by
E; and by crosscuts I' on which IF] = n; also,

(4.11) |F(z)| <N (zeT).

Now, if T" contains infinitely many crosscuts, their diameters must approach zero,
by (4.9). It follows easily that the boundary of T is a Jordan curve. The set E;
contains no arcs, because of (4.3b) and (4.11), but we shall prove that some subset
of E; has positive measure.

We may assume (using a linear transformation on 9, if necessary) that
z=0¢€¢ T. Let z=g;(Z) map {|Z]| <1} one-to-one and conformally onto T, with
g(0) = 0, and write

(4.12) $(Z) = F(gy(2)) = F(z) (z € T),
(4.13) ¥,(Z) = B(gy(Z2)) = B(z) (z€T).

Then &,(Z) and ¥(Z) are bounded in { |Z| < 1}, and by Fatou’s Theorem, they
have radial limits &; (eif) and ¥ l(ele) almost everywhere. Note also that

\Irl(eie) # 0 for almost all €. Also, $,(Z) may be expressed by the Poisson integral
with boundary function ®;(ei?). Since |®;| > n in part of {|Z| < 1} (correspond-
ing to T), it follows that |&;(ei?)| > n on a set E} of positive measure.

Thus the function
®,(2)/¥,(2) = F(g,(2))/B(g,(Z2))

has finite radial limits on a set E5 c E} such that
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m(E;) = m(E}) > 0.

Since T is a Jordan domain, each radial limit corresponds to a point asymptotic
value of £ in T. The set E maps onto a set E, C E;, since |F| =n on T,

An argument used by MacLane [12, p. 27] shows that m(E;) > m(E%) > 0. How-
ever, since E, C Ai’,;, this implies that m(A% N y) > 0, which completes the proof of
Theorem 5.

COROLLARY 1. Let f and 7y satlisfy the hypotheses of Theovem 5, and let V be
the set of asymptotic values that occur on y. Then V contains a closed set V of

positive harmonic measuvre.

Proof. This follows immediately if we apply Priwalow’s theorem [15, p. 210]
either to ®(Z)/¥(Z) and its angular limits on the set E* or to ®,(Z2)/¥,(Z) and its
angular limits on the set E% (depending on whether (4.3a) or (4.3b) occurs).

COROLLARY 2. Let f € B, . Suppose N(r, o, f) = O(1), and let y be any sub-
avc of G such that A, Ny =0. Then m (A N y)> 0.

The proof is essentially the same as that of Theorem 5. The corollary will be
needed in the proof of Theorem 9.

5. SOME SUFFICIENT CONDITIONS FOR f TO BELONG TO .« ,

The most important sufficient condition we shall establish in this section is that
if N(r, a, f) = O(1) for some complex number a (possibly «) and the growth of T(r)
is suitably restricted (see Theorem 7 for a precise statement), then f € oA . First
we shall prove the following theorem.

THEOREM 6. Letf g and h be holomorphic in D, and let g/h be nonconstant,
Suppose g € o4 and h is bounded, and let £=g/h. Then £ € A and 1/f € A .

Proof. Consider any subarc y of ¢. We shall show that there exist a point
€ € v and a curve ending at {, on which f tends to a limit as lz] — 1. First sup-
pose that A, (g) N v # 0. Then there exist a point £ € y and a curve A ending at &,
on which g — < as |z| — 1. It follows readily that f — « as |z| — 1 on A, and
thus f has the asymptotic value « at €.

Next suppose that A (g) Ny =0. If g is bounded in some neighborhood of some
point of y, the conclusion is a trivial consequence of the Fatou-Nevanlinna Theorem.
Thus we may suppose

(5.1) lim sup lg(z)] = o (all € € y).

z"C

Under these hypotheses, MacLane has shown [12, p. 26] that there exists a D C ®

with the following properties: D is a simply connected Jordan domain, bounded by
crosscuts I' of © on which Igl = A for some A > 0, and by a nonempty subset F

of y; also,

(5.2) ]g(z)l < N (ze€ D).
Moreover,

A < |g@)] <N (z € Dy),
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where Dy is a nonempty subdomain of D. The argument used in the latter part of
the proof of Theorem 5 (begin with the paragraph that contains (4.12)) shows that f
has asymptotic values at some points of y. Hence f € +_ , and it is now obvious
that 1/f € « m

The following three sufficient conditions generalize conditions (I), (II), and (III)
of MacLane [12, pp. 35-37] to meromorphic functions. We shall say that f, mero-
morphic in 9, satisfies condition (I) if there exist a complex number a (possibly =)
and a set ®, dense on [0, 27], such that

dr < © (8 € ©)

1
N(r, a) = O(1)  and 5 (1 - r)log* v Ty
, -

if a # o, If a =, the integral condition is
1 " ,
‘S‘ (1 -r)log If(re19)|dr <o (0 € ),
0

Here no uniformity is implied; we merely require that each individual integral
converge.

We shall eventually prove (Theorem 7) that if f satisfies (I), then f € & _ .
However, we first examine two other sufficient conditions. The form of (I) suggests
that we may be able to find a sufficient condition involving the Schmiegungsfunktion
of Nevanlinna. In order to do this, let

(5.3) o(a, 6) = Sl (1 - r)logh -—191—— dr  (a #).
0 f(re'”) - a
Then
1 2T 1 2T 1 "
(5.4) 2750 o(a, 0)d0 = 2—7750 50 (1 - ) logh| 5| drae

‘S‘l (1 - r)m(r, a)dr (a # )
0

for any meromorphic function f. (If a = «, make the obvious modifications in (5.3)
and (5.4).)

We shall say that f, meromorphic in 9, satisfies condition (II) if there exists a
complex number a (possibly «) such that

1
N(r, a) = O(1) and 5 (1 -r)m(r,a)dr < «,
0

Since (II) implies that o(a, 0) is finite for almost all 6 (see (5.4)), we see that

(5.5) (Im) > (1).
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Finally, we shall say that f, meromorphic in D, satisfies condition (III) if
1
N(r, a) = O(1) and S (1-12)T(r)dr <
0

for some complex number a (possibly «), If a = =, it is clear that (III) = (II). Us-
ing Nevanlinna’s First Main Theorem [14, p. 168], we deduce that if a is finite, then

1
S (1 - r)m(r, a)dr < «, and thus
0

(5.6) (TI1) = (I1).

THEOREM 7. Let £ be mevomorphic and nonconstant in D. Suppose that
satisfies one of the conditions (1), (I1), and (UI). Then f € A y,.

Proof, Because of (5.5) and (5.6), it suffices to prove that (I) implies f € «_ .
First suppose that a = «, As in the proof of Theorem 5, let B(z) be the Blaschke
product with zeros at the poles of f. Then the function

(5.7) g(z) = B(z)i(z)

is holomorphic in o, and

1 1 . .
5 (1 - r)log™ |g(rei9)| dr = S (1 - r)log™ IB(relQ)f(re19)| dr
0 0

1 . 1 .
< LS‘ (1 - r)logt | B(rei?)| dr+S (1 - r)logh If(rele)[ dr (0 € ©).
0 0
Thus

1 . 1 s
(5.8) S (1 - r)logt |g(re16)| dr < S (1 - r)log+1f(re19)| dr (0 € @),
0 0
since |B| < 1. Using (5.8) and (I), we see that
1 0
(5.9) S (1 - r)log"‘lg(re1 )l dr < (0 € @).
0

By [12, Theorem 14], g € «, and therefore f = g/B, where g € «/ and |B| < 1.
Thus, by Theorem 6, we see that £ € .

If a # «, the argument above implies that 1/(f - a) € A ,and thus f e & _ .
Hence the proof of Theorem 7 is complete.

In conditions (I), (II), and (III), the global restrictions on f may be replaced by
certain local restrictions. Let || =1 and 6 > 0. Define

U, ) = {z: |z-¢| <6 and |z| < 1},
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U%6,8) = {z: [z-¢| <6 and |2] <1} .
Suppose that a covering {U*(s, , Ci)}i€l of {|t| =1} is given, and let
Fi(Z) = £(Gy(2)) = £(z) (z € U(5,, ¢.)),

where G;(Z) maps {|Z| <1} one-to-one and conformally onto U(s;, &,). I, for
each i € I, F,(Z) satisfies one of the conditions (I), (II), and (II), it is easily proved
that f(z) € . Note in particular that the value a can be different for each i.

Examples 6, 7, 8, and 9 of [12] show that the implications (5.5) and (5.6) cannot
be reversed.

The following example demonstrates that the hypothesis N(r, a) = O(1) in (I),
(1), and (IMI) is both essential and best possible.

EXAMPLE 3. We shall show that the hypothesis N(r, a) = O(1) cannot be re-
laxed to 6(a) =1, where 6(a) is the Nevanlinna defect of a [14, p. 269]. Specifically,
we shall construct a function f, meromorphic in D, such that

T(r,f) <log(l-r)"! (0<r<1), o5(»)=1, £ oA

By a theorem of MacLane [11], there exists a function g, meromorphic in D,
such that

(5.10) T(r, g) < loglog(l-r)"! (0<r<1)
and such that g Zas no asymptotic values., Let

h(z) = (1 -2t (]z] <1),
and let
(5.11) 1(z) = g(z) + h(z) (lzl <1).

Since g has no asymptotic values, the only point of ¢ at which f can have an asymp-
totic value is z =1. Thus f ¢ «_ . Also,

T(r, h) ~ log(l - r)-! (r—1).

Thus

(5.12) T(r, f) ~ log(1 - )"  (r—1),

and

(5.13) N(r, =, f) = N(r, ©, g) < T(r, g) < log log(1 - r)~L,

by (5.10). After an elementary calculation we see that 6(w, f) = 1, which completes
Example 1.

Bagemihl and Seidel [4, Corollary 1] proved that if f is holomorphic and normal
(see [9, p. 53]).in 9, then the set of points at which f has an angular limit is dense
on ¢; that is, if f is holomorphic, nonconstant, and normal in D, then f € . This
result was proved independently by MacLane [12, p. 43]. Bagemihl [1, Corollary 1]
has also proved that if f is meromorphic and normal and omits at least one value in
D, then the set of points at which f has an angular limit is dense on ¢. We can do
somewhat better than that.
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THEOREM 8. Let f be nonconstant, mevomovrphic, and normal in D. Also, let
there exist a complex number a. (possibly =) such that N(r, a) = O(1). Then

10 f et
zf ICI =1, then f has at most one asymptotic value at ¢; moveover, if £ has

the asymptotzc value b at ¢, then f has the angulay limit b at €.

Remark. The hypothesis N(r, a) = O(1) is essential, for Lehto and Virtanen [9,
p. 58] have constructed a normal meromorphic function without any asymptotic
values.

Proof., Let T (r) denote the spherical characteristic of Schmizu and Ahlfors [14,
p. 177]. Then

T (r) = SOrA—,E“ldt 0<r<1),

where

1 |tt(rei?)|% rdras
A(t) = = - 0<t<1).
© ”S S (1 + |f(ret?)]?*)? st<)

Using [9, Theorem 3], we obtain the inequality

2
Aw) <X S S((’Il_"if'z;‘f O<r<t<1),

where C is a constant. After an elementary computation, we obtain the further
inequality

2
(5.14) T, < $log——  O<r<).
- 1-r -
Also,
(5.15) T(r) = T (r) +0(1),
and by (5.14) and (5.15),
c? 1
(5.16) T(r) < - log + 0O(1),
- 1-r?

where T(r) is the original Nevanlinna characteristic of f. It follows 1mmed1ate1y
from (5.16) that f satisfies (III), so that f € . The conclusion 20 is an obvious
consequence of [9, Theorem 2].

6. THE CLASSES oL, B, , AND &,

The object of this section is to find conditions on the functions in «/,, 8., and
£ _ under which the conclusion of Theorem 3 may be strengthened, in the sense that
fe gg implies f € «,,, and so forth. Also, we shall prove a generalization of
Koebe’s Lemma (see [8]).
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We shall say that f € & , # ,or & iffe A , B ,or L., vespectively,
and N(r, ©, f) = O( 1) The conclusion of Theorem 3 can be improved if f is in one of
the classes AL , or £

THEOREM 9. .;z{rn =R 2 Q;n

Remark. It is an open question whether or not &, C Z..- An affirmative

answer would be interesting because it would generalize [12 Theorem 1]
(A =B = &) from holomorphic functions to meromorphic functions with
N(r, *, f) = O(1).

Proof. It has already been shown that «/,, C #,, and £,,C B, ; see (3.4) and
Theorem 3. Thus, in particular, «; C B and %! C %! , and we need only show
that %, C o}, . Suppose f € #),,, and let ¥ be any subarc of €. We shall show
that f has an asymptotic value at some point of y. This is obvious if A(f) Ny # O;
therefore we may suppose that A, Ny = 0. Then, by Corollary 2 of Theorem 5,

(A N y)> 0. Thus f has asymptotic values at many points of y. Hence f € d'
and B, C AL

Gross [7] generalized Koebe’s Lemma from bounded holomorphic functions to
meromorphic functions that omit three values. Bagemihl and Seidel [4, Theorem 1]
then proved the lemma for normal meromorphic functions, and MacLane [12, Theo-
rem 9] later generalized it to functions in . The results of MacLane and of
Bagemihl and Seidel overlap, but neither contains the other. We can improve Mac-
Lane’s result.

THEOREM 10. Let f € &, and let {'yn} be a sequence of simple arvcs in D
that tend to an avc v C C. Let a be any finite complex number, and let

(6.1) Bn = max |f-al.
Ze'yn

Then

(6.2) p = liminf p, > 0.
n— o

Remarks. Example 2 shows that some hypothesis other than just f € ol is
necessary for the conclusion of Theorem 10 to be true. However, it will be clear
from the proof that the hypotheses of Theorem 10 may be weakened. The condition
f € </, may be replaced by the requirement that f € ., and there exist a point
¢ € v and a neighborhood U(d, ¢) = {z: |z - £| < 6 and |z| <1} such that
N(R, «, £(G(Z))) = O(1), where G(Z) maps {]Z] < 1} one-to-one and conformally
onto U( 5, &).

Proof. Suppose i =0. As in the proof of Theorem 5, let B(z) be the Blaschke
Product with zeros at the poles of f. Then
(6.3) g(z) = (z) B(z)
is holomorphic in ®. The assumption p = 0 implies that A_(f) N v0 is dense in 99.
Let

. .0
§ .8 e A (B) Nyl g = e’1, ¢, = e 2 with 6, <90,

Since |B(z)| <1, we see that
(6.4) lg(z)] < [1(2)].
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Thus we may construct two curves I'; and I', such that I';, I'; C i‘b, I'; begins at
z=0andendsat ¢; (i=1,2), ;N T,=0, T’gl is bounded on I'; U T',, and £ has
the asymptotic value a on T; (i=1, 2). Let yy= {eiB: 6, <0<L 02}, and let H be
the domain bounded by I'; U T, Uyy. Now I'} and T, intersect all but a finite
number of the y,,; thus we can find a sequence {7y }}-) of crosscuts of H such

that 7, joins a point of I'; to a point of T',, 7y4; separates 7y from y, in H, for
each k there exists an n such that 74 C v, and 7y — yo. Let Dy be the subdo-
main of H bounded by Ty, Ty, and subarcs of T'; and I",. Using (6.4), applying
the maximum principle to D, and letting k — <, we see that

lim sup |g(z)] < |al.

Z'—>')/0
z €H
Thus
(6.5) g is bounded in H.

Now map H one-to-one and conformally onto {|Z| <1} by z =G(Z). Let
®(z) = g(G(Z)) = gz) (z € H),

B(G(Z)) = B(z) (z € H).

¥(Z)
By (6.5), ®(Z) and ¥(Z) are bounded in {|Z| <1}. Hence the function

®(z) _

F(Z) = 717(_2—5 = f(Z)

(z € H)

is the quotient of two bounded holomorphic functions in { | Z| <1} and is thus of
bounded characteristic. y, corresponds to a subarc 'yb of {|Z| = 1}. Thus, by
(6.1) and the assumption that o = 0 (see (6.2)), F has the angular limit a at almost
every point of y{,. By [14, p. 209], F = a, which implies that f =a. This contradicts
the hypothesis that f € ., ; therefore y must be positive.

7. RESULTS ON ASYMPTOTIC TRACTS

Theorems 1 and 2 give information about asymptotic tracts of functions in ..
Our next theorems give conditions for the existence of arc tracts for functions in
o, . MacLane [12, p. 61] has pointed out that if f € « is unbounded, then the
growth of M(r) has nothing to do with the existence of arc tracts. However, we
shall see (Theorem 12) that conditions on the growth of N(r, a, f) are relevant to the
existence of arc tracts. We first prove a generalization of [12, Theorem 4].

THEOREM 11. Letf € ., ,and let a be any complex number (possibly )
such that N(r, a, £) =0(1). If {T(E), b} (b #a) is a tract of £, then {T(€), b} isa
point tract.

Proof. Suppose that {2 (), b} is an arc tract. First consider the case where
a =, Then f € &, N(r, =, f) = O(1), and we can find an arc ¥ C € and a se-
quence of continuous arcs y,, compact {in D), such that y, — ¥ and

(7.1) liminfp_ =0 (u, = max |f(z) - b]).

o
n— ZE'yn
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But (7.1) contradicts Theorem 10, so that {Z(g), b} must be a point tract.

Now consider the case where a # ©, Here g=1/(f -a) € A4, and
N(r, ©, g) = N(r, a, f) = O(1). Using the same argument as above, we obtain a con-
tradiction. Hence we see that in all cases {Z(g), b} is a point tract.

Some results about the nonexistence of arc tracts follow easily from Theorem
11. The following theorem extends [6, Theorem 4].

THEOREM 12. Let f € A, and suppose that theve exist two complex numbers
a, b (one of which may be «) such that a #b, N(r, a, f) = O(1), and N(r, b, £) = O(1).
Then f has no arc tracis.

Proof. By Theorem 11, all tracts {%(g), c} (c #a) must be point tracts, and
again by Theorem 11, all tracts {<(c), d} (d #b) must be point tracts. Hence all
tracts of f are point tracts.

COROLLARY. Letf € &, and suppose N(r, a, £} = O(1) for some finite complex
numbey a. Then f has no arc tracts.

Bagemihl and Seidel [3, Corollary 1 to Theorem 3] proved that a nonconstant,
mevomorphic, normal function in D has no arvc tracts; in particular, a function in
A, that is normal has no arc tracts.

The next theorem concerns conditions for the existence of global tracts. Itis a
generalization of [12, Theorem 6B].

THEOREM 13. Let f € «y,. Then f has a global tract for a if and only if £ is
not bounded away from a on any curve T' in ® on which |z| — 1.

Proof. Suppose first that a = «, We must prove that f has a global tract for «
if and only if f is unbounded on every curve I' in D on which lzl — 1. Suppose
that f has a global tract for «. Since f € ., we know that A is dense in €. It
follows easily that f € £ ,,. Suppose next that some level curve C(A) is not com-
pact. Then it ends at some point { of €. There exist a subarc ¥y of € and a se-
quence {y_}%T_, of continuous arcs, compact in ®, such that ¢ € y9, v, — v, and

(1.2) lim inf [f| = o,

n— o zE'yn

The curve C(A) must intersect all but a finite number of the y,, , and we have a con-
tradiction (|| =X on C(r)). Thus all level curves of f are compact. Hence f
satisfies the hypotheses of Theorem 2, and one can easily prove that (3.5) cannot
happen. From the proof of (3.6) it is clear that there exists a sequence of closed
Jordan curves J(A,) such that

(7.3) I — {|z] =1} @ — «)
and
(7.4) lim inf |f(z)| = .

n—° z€ J(A,)

Any curve I' on which |z| — 1 must cross all but a finite number of the J(A,), and
thus by (7.4) £ is unbounded on T.

Now suppose f is unbounded on each curve I' on which |z| — 1. Then A is
dense in €. Again we see that f € £_ . Also, all level curves of f must be com-
pact, since f is unbounded on every curve I' on which ]z| — 1. Therefore f
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satisfies the hypotheses of Theorem 2. Again, conclusion (3.5) of Theorem 2 cannot
hold, so that (3.6) must hold. It follows from the proof of (3.6) that the arc tract of
(3.6) is actually a global tract.

If a is finite, the result follows if we apply the argument above to 1/(f - a).

If we recall the generalization of Theorem 2 mentioned in Section 3, then it is
clear that the proof of Theorem 13 may be generalized so that it yields a correspond-
ing result for arc tracts.

THEOREM 14. Let f € A _ , and let v be a subarc of €. Then £ has an arc
tract for the value a with end X D vy if and only if { is not bounded away from a on
any curve T on which |z| — 1 and whose closure meets the interior of vy.

We end this section by extending a theorem that MacLane proved for f € [12,
Theorem 7]. Since MacLane’s proof works for f € ., , it is sufficient to state the
extension.

THEOREM 15. Let f € &, andlet {T(c), ©} be an arc tract of £ with end K.
Let € be any point of K, let 6 > 0, and let

UG, ¢ =1lz] <t}n{lz-¢| <s}.

Then the following thrvee conclusions hold.
(A) 1(z) assumes every finite value infinitely often in U(6, €).

(B) Let w = 1(z) map D onto the Riemann suvface ¥ over the w-spherve. For
any r > 0, let the components of ¥ over {le <r} be Alr, 1), Alr, 2), . Let
G(r, n) be the domain in D corvesponding to N(r, n). Then, for each r > 0, theve
exist infinitely many integers ny such that Ar, n) is velatively compact and
G(r, n, ) € U(5, €).

(C) Each %(&) has infinite connectivity.

Remark. We can obtain information about an arc tract { T(e), a} for finite
values of a by applying Theorem 15 to 1/(f - a).
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