ON A BOUNDARY PROPERTY OF CONTINUOUS FUNCTIONS

T. J. Kaczynski

Let D be the open unit disk in the plane, and let C be its boundary, the unit circle. If x is a point of C, then an arc at x is a simple arc \(\gamma \) with one endpoint at x such that \(\gamma = \{x\} \subset D \). If \(f \) is a function defined in D and taking values in a metric space K, then the set of curvilinear convergence of \(f \) is

\[
\{ x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ and there exists a point } p \in K \text{ such that } \lim_{z \to x, z \in \gamma} f(z) = p \}.
\]

J. E. McMillan proved that if \(f \) is a continuous function mapping D into the Riemann sphere, then the set of curvilinear convergence of \(f \) is of type \(F_{\delta \theta} \) [2, Theorem 5]. In this paper we shall provide a simpler proof of this theorem than McMillan’s, and we shall give a generalization and point out some of its corollaries.

Notation. If \(S \) is a subset of a topological space, \(\bar{S} \) denotes the closure and \(S^* \) denotes the interior of \(S \). Of course, when we speak of the interior of a subset of the unit circle, we mean the interior relative to the circle, not relative to the whole plane. Let \(K \) be a metric space with metric \(\rho \). If \(x_0 \in K \) and \(r > 0 \), then

\[
S(r, x_0) = \{ x \in K \mid \rho(x, x_0) < r \}.
\]

An arc of \(C \) will be called nondegenerate if and only if it contains more than one point.

Lemma 1. Let \(\mathcal{I} \) be a family of nondegenerate closed arcs of \(C \). Then \(\bigcup_{I \in \mathcal{I}} I - \bigcup_{I \in \mathcal{I}} I^* \) is countable.

Proof. Since \(\bigcup_{I \in \mathcal{I}} I^* \) is open, we can write \(\bigcup_{I \in \mathcal{I}} I^* = \bigcup_n J_n \), where \(\{J_n\} \) is a countable family of disjoint open arcs of \(C \). If

\[
x_0 \in \bigcup_{I \in \mathcal{I}} I - \bigcup_{I \in \mathcal{I}} I^*,
\]

then for some \(I_0 \in \mathcal{I} \), \(x_0 \) is an endpoint of \(I_0 \). For some \(n \), \(I_0^* \subset J_n \), so that \(x_0 \in \bar{J_n} \). But \(x_0 \notin J_n \), so that \(x_0 \) is an endpoint of \(J_n \). Thus \(\bigcup_{I \in \mathcal{I}} I - \bigcup_{I \in \mathcal{I}} I^* \) is contained in the set of all endpoints of the various \(J_n \); this proves the lemma.

In what follows we shall repeatedly use Theorem 11.8 on page 119 in [3] without making explicit reference to it. By a cross-cut we shall always mean a cross-cut of \(D \). Suppose \(\gamma \) is a cross-cut that does not pass through the point 0. If \(V \) is the component of \(D - \gamma \) that does not contain 0, let \(L(\gamma) = \bar{V} \cap C \). Then \(L(\gamma) \) is a non-degenerate closed arc of \(C \).

Received February 8, 1966.

313
Suppose Ω is a domain contained in $D - \{0\}$. Let Γ denote the family of all cross-cuts γ with $\gamma \cap D \subset \Omega$. Let

$$I(\Omega) = \bigcup_{\gamma \in \Gamma} L(\gamma), \quad I_0(\Omega) = \bigcup_{\gamma \in \Gamma} L(\gamma)^*.$$

Let $\text{acc}(\Omega)$ denote the set of all points on C that are accessible by arcs in Ω.

The following lemma is weaker than it could be, but there is no point in proving more than we need.

Lemma 2. The set $\text{acc}(\Omega) - I_0(\Omega)$ is countable.

Proof. By Lemma 1, $I(\Omega) - I_0(\Omega)$ is countable; therefore it will suffice to show that $\text{acc}(\Omega) - I(\Omega)$ is countable. If $\text{acc}(\Omega)$ has fewer than two points, we are done. Suppose, on the other hand, that $\text{acc}(\Omega)$ has two or more points. If $a \in \text{acc}(\Omega)$, then there exists $a^i \in \text{acc}(\Omega)$ with $a^i \neq a$. Let γ, γ' be arcs at a, a^i, respectively, with $\gamma \cap D \subset \Omega, \quad \gamma' \cap D \subset \Omega.$

Let p be the endpoint of γ that lies in Ω, p' the endpoint of γ' that lies in Ω. Let $\gamma'' \subset \Omega$ be an arc joining p to p'. The union of γ, γ', and γ'' is an arc δ joining a to a^i. By [4], there exists a simple arc $\delta' \subset \delta$ that joins a to a^i. Clearly, δ' is a cross-cut with $\delta' \cap D \subset \Omega$ and $a, a^i \in L(\delta')$. Thus $a \in I(\Omega)$, and so $\text{acc}(\Omega) \subset I(\Omega)$.$\blacksquare$

Lemma 3. Suppose Ω_1 and Ω_2 are domains contained in $D - \{0\}$. If

$$I_0(\Omega_1) \cap \text{acc}(\Omega_2) \quad \text{and} \quad I_0(\Omega_2) \cap \text{acc}(\Omega_1)$$

are not disjoint, then Ω_1 and Ω_2 are not disjoint.

Proof. We assume Ω_1 and Ω_2 are disjoint, and we derive a contradiction. Let a be a point in both of the two sets (1). Let γ_1 be a cross-cut with $\gamma_1 \cap D \subset \Omega_1$ such that $a \in L(\gamma_1)^*$ ($i = 1, 2$). Let U_i and V_i be the components of $D - \gamma_i$, and (to be specific), let U_1 be the component containing 0. Note that $\gamma_1 \cap D$ and $\gamma_2 \cap D$ are disjoint.

Suppose $\gamma_1 \cap D \subset V_2$ and $\gamma_2 \cap D \subset V_1$. Then, since $\gamma_1 \cap D \subset \overline{U}_1$, U_1 has a point in common with V_2. But $0 \in U_1 \cap U_2$, so that U_1 has a point in common with U_2 also. Since U_1 is connected, this implies that U_1 has a common point with $\gamma_2 \cap D$, which contradicts the assumption that $\gamma_2 \cap D \subset V_1$. Therefore $\gamma_1 \cap D \not\subset V_2$ or $\gamma_2 \cap D \not\subset V_1$. We conclude that either $\gamma_1 \cap D \subset U_2$ or $\gamma_2 \cap D \subset U_1$. By symmetry, we may assume that $\gamma_2 \cap D \subset U_1$.

It is possible to choose a point $b \in L(\gamma_1)^*$ that is accessible by an arc in Ω_2, because a is in the closure of $\text{acc}(\Omega_2)$. Let γ be a simple arc joining b to a point of $\gamma_2 \cap D$, such that $\gamma - \{b\} \subset \Omega_2$. Then $\gamma - \{b\}$ and γ_1 are disjoint. Also, $\gamma - \{b\}$ contains a point of U_1 (namely, the point where γ meets $\gamma_2 \cap D$); therefore $\gamma - \{b\} \subset U_1$. Hence $b \in \overline{U}_1$. Since $b \in L(\gamma_1)^*$, this is a contradiction.\blacksquare

Theorem 1 (J. E. McMillan). Let K be a complete separable metric space, and let f be a continuous function mapping D into K. Let

$$X = \{x \in \mathbb{C} \mid \text{there exists an arc } \gamma \text{ at } x \text{ for which } \lim_{z \to x} f(z) \text{ exists} \}.$$
Then X is of type $F_{\sigma \delta}$.

Proof. Let $\{p_k\}_{k=1}^{\infty}$ be a countable dense subset of K. Let $\{Q(n, m)\}_{m=1}^{\infty}$ be a counting of all sets of the form

$$\left\{ \text{re}^{it} \left| 1 - \frac{1}{n} < r < 1 \text{ and } \theta < t < \theta + \frac{2\pi}{n} \right. \right\},$$

where θ is a rational number. Let $\{U(n, m, k, \ell)\}_{\ell=1}^{\infty}$ be a counting (with repetitions allowed) of the components of

$$f^{-1}\left(S\left(\frac{1}{2n}, p_k\right)\right) \cap Q(n, m).$$

(We consider \emptyset to be a component of \emptyset.) Let

$$A(n, m, k, \ell) = \text{acc}[U(n, m, k, \ell)].$$

Set

$$Y = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} I_0(U(n, m, k, \ell)) \cap A(n, m, k, \ell).$$

Since $I_0(U(n, m, k, \ell))$ is open, it is of type $F_{\sigma \delta}$. It follows that Y is of type $F_{\sigma \delta}$.

I claim that $Y \subset X$. Take any $y \in Y$. For each n, choose $m[n], k[n], \ell[n]$ with

(2) $y \in I_0(U(n, m[n], k[n], \ell[n])) \cap A(n, m[n], k[n], \ell[n])$ (n = 1, 2, 3, ...).

For convenience, set $U_n = U(n, m[n], k[n], \ell[n])$. By (2) and Lemma 3, U_n and U_{n+1} have some point z_n in common. For each n, we can choose an arc $\gamma_n \subset U_{n+1}$ with one endpoint at z_n and the other at z_{n+1}. Then $\gamma_n \subset Q(n+1, m[n+1])$. Also,

$$y \in A(n+1, m[n+1], k[n+1], \ell[n+1]) \subset \bigcup_{n=1}^{\infty} \subset Q(n+1, m[n+1]),$$

and therefore each point of γ_n has distance less than $\frac{2\pi + 1}{n+1}$ from y. Now

$$\frac{2\pi + 1}{n+1} \to 0 \text{ as } n \to \infty; \text{ hence, if we set } \gamma = \{y\} \cup \bigcup_{n=1}^{\infty} \gamma_n, \text{ then } \gamma \text{ is an arc with one endpoint at } y.$$

Since U_n and U_{n+1} have a point in common,

$$f^{-1}\left(S\left(\frac{1}{2n}, p_k[n]\right)\right) \text{ and } f^{-1}\left(S\left(\frac{1}{2n+1}, p_k[n+1]\right)\right)$$

have a common point, and hence

$$S\left(\frac{1}{2n}, p_k[n]\right) \text{ and } S\left(\frac{1}{2n+1}, p_k[n+1]\right)$$

have a common point. Therefore, if ρ is the metric on K, then

$$\rho(p_k[n], p_k[n+1]) \leq \frac{1}{2n} + \frac{1}{2n+1} < \frac{1}{2n-1},$$
and therefore
\[\rho(p_k[n], p_{k[n+r]} \leq \sum_{i=1}^{r} \rho(p_k[n+i-1], p_{k[n+i]}) < \sum_{i=1}^{r} \frac{1}{2^{n+i-2}} < \frac{1}{2^{n-2}}. \]

Thus \(\{p_k[n]\} \) is a Cauchy sequence and must converge to some point \(p \in K \). Because
\[\gamma_n \subset U_{n+1} \subset f^{-1}\left(S\left(\frac{1}{2^n+1}, p_{k[n+1]} \right) \right) \quad \text{and} \quad p_k[n] \rightarrow p, \]
\[\lim_{z \rightarrow \gamma} \gamma_n = \gamma \] by a simple arc \(\gamma' \subset \gamma \). Thus \(y \in Y \), and we have shown that \(Y \subset X \).

Suppose \(x \in X \). Let \(\gamma_0 \) be an arc at \(x \) such that \(f \) approaches a limit \(p^* \) along \(\gamma_0 \). Take any \(n \). Choose \(k \) with \(p^* \in S\left(\frac{1}{2^n}, p_k \right) \). Choose \(m \) so that \(x \) is in the interior of \(Q(n, m) \cap C \). Then \(\gamma_0 \) has a subarc \(\gamma'_0 \), with one endpoint at \(x \), such that
\[\gamma'_0 \cdot \{x\} \subset Q(n, m) \cap f^{-1}\left(S\left(\frac{1}{2^n}, p_k \right) \right). \]

Hence, for some \(\ell \), \(x \in \text{acc}[U(n, m, k, \ell)] = A(n, m, k, \ell) \). This shows that
\[X \subset \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} A(n, m, k, \ell). \]

By Lemma 2, the set
\[A(n, m, k, \ell) - I_0(U(n, m, k, \ell)) = A(n, m, k, \ell) - [I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}] \]
is countable. It follows by a routine argument that
\[\bigcap_{n} \bigcup_{m,k,\ell} A(n, m, k, \ell) - \bigcup_{n} \bigcup_{m,k,\ell} [I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}] \]
is countable. Because
\[\bigcap_{n} \bigcup_{m,k,\ell} [I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}] \subset \bigcup_{n} A(n, m, k, \ell), \]
the set \(X - Y \) is countable, and therefore \(X \) is of type \(F_{\sigma, \delta} \).

Before stating our generalization of the foregoing theorem, we must say a few words about spaces of closed sets. If \(K \) is a bounded metric space with metric \(\rho \), let \(\mathcal{C}(K) \) denote the set of all nonempty closed subsets of \(K \). Hausdorff [1, page 146] defined a metric \(\bar{\rho} \) on \(\mathcal{C}(K) \) by setting
\[\bar{\rho}(A, B) = \max \left\{ \sup_{a \in A} \text{dist}(a, B), \sup_{b \in B} \text{dist}(b, A) \right\}, \]
where dist \((x, E)\) denotes \(\inf_{e \in E} \rho(x, e)\). If \(K\) is compact, then \(\mathcal{C}(K)\) is a compact metric space with \(\bar{\rho}\) as metric [1, page 150].

If \(f\) maps \(D\) into \(K\) and if \(\gamma\) is an arc at a point \(x \in C\), we let \(C(f, \gamma)\) denote the cluster set of \(f\) along \(\gamma\); that is, we write

\[
C(f, \gamma) = \{ p \in K \mid \text{there exists a sequence } \{ z_n \} \subset \gamma \cap D \text{ such that } z_n \to x \text{ and } f(z_n) \to p \}.
\]

THEOREM 2. Let \(K\) be a compact metric space, and let \(E\) be a closed subset of \(\mathcal{C}(K)\). Let \(f : D \to K\) be a continuous function. Then

\[
\{ x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ and there exists } E \in \mathcal{E} \text{ such that } C(f, \gamma) \subset E \}
\]

is a set of type \(F_{\sigma\delta}\).

Proof. If \(\varepsilon > 0\) and \(E \in \mathcal{C}(K)\), let

\[
\mathcal{J}(\varepsilon, E) = \{ a \in K \mid \text{there exists } b \in E \text{ with } \rho(a, b) < \varepsilon \}.
\]

Note that \(\mathcal{J}(\varepsilon, E)\) is open and that

\[
F \in \mathcal{C}(K), \ \bar{\rho}(E, F) < \varepsilon \Rightarrow F \subset \mathcal{J}(\varepsilon, E).
\]

Let \(\{ P(k) \}_{k=1}^{\infty} \) be a countable dense subset of \(E\) (such a subset exists, because every compact metric space is separable). Let

\[
X = \{ x \in C \mid \text{there exist an arc } \gamma \text{ at } x \text{ and an } E \in \mathcal{E} \text{ such that } C(f, \gamma) \subset E \}.
\]

Let \(\{ Q(n, m) \}_{m=1}^{\infty} \) be defined as in the proof of the preceding theorem. Let \(\{ U(n, m, k, \ell) \}_{\ell=1}^{\infty} \) be a counting (with repetitions allowed) of the components of

\[
f^{-1}\left(\mathcal{J}\left(\frac{1}{n}, P(k) \right) \right) \cap Q(n, m).
\]

Let \(A(n, m, k, \ell) = \text{acc}[U(n, m, k, \ell)]\), and set

\[
Y = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^{\infty} I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}.
\]

Since \(I_0(U(n, m, k, \ell))\) is open, it is of type \(F_{\sigma}\). It follows that \(Y\) is of type \(F_{\sigma\delta}\).

I claim that \(Y \subset X\). Take any \(y \in Y\). For each \(n\), choose \(m[n], k[n], \ell[n]\) so that

\[(3) \quad y \in I_0(U(n, m[n], k[n], \ell[n])) \cap \overline{A(n, m[n], k[n], \ell[n])}.
\]

Set \(U_n = U(n, m[n], k[n], \ell[n])\). Since \(\mathcal{E}\) is compact, there exist a \(P \in \mathcal{E}\) and some strictly ascending sequence \(\{ n_j \}_{j=1}^{\infty} \) of natural numbers such that
By (3) and Lemma 3, \(U_{n_j} \) and \(U_{n_{j+1}} \) have some point \(z_j \) in common. For each \(j \), choose an arc \(\gamma_j \subset U_{n_{j+1}} \) with one endpoint at \(z_j \) and the other at \(z_{j+1} \). Then \(\gamma_j \subset Q(n_{j+1}, m[n_{j+1}]) \). Also,

\[
y \in A(n_{j+1}, m[n_{j+1}], k[n_{j+1}], l[n_{j+1}]) \subset U_{n_{j+1}} \subset Q(n_{j+1}, m[n_{j+1}]),
\]

and therefore each point of \(\gamma_j \) has distance less than \(\frac{2\pi + 1}{n_{j+1}} \) from \(y \). Now

\[
\frac{2\pi + 1}{n_{j+1}} \to 0 \text{ as } j \to \infty;
\]

therefore, if we set \(\gamma = \{y\} \cup \bigcup_{j=1}^{\infty} \gamma_j \), then \(\gamma \) is an arc with one endpoint at \(y \).

I claim that \(C(f, \gamma) \subset P \). Take any \(p \in C(f, \gamma) \). There exists a sequence \(\{w_s\}_{s=1}^{\infty} \) in \(\gamma - \{y\} \) such that \(w_s \to y \) and \(f(w_s) \to p \). Let \(\varepsilon \) be an arbitrary positive number. Choose \(j_0 \) so that \(\bar{p}(P(k[n_j]), P) < \varepsilon/3 \) for all \(j \geq j_0 \). Choose \(j_1 \) so that \(j \geq j_1 \) implies \(1/n_{j+1} < \varepsilon/3 \). We can choose an \(s \) such that \(w_s \in \gamma_i \) for some \(i \geq j_0, j_1 \) and such that

\[
(4) \quad \rho(f(w_s), p) < \frac{\varepsilon}{3}.
\]

Then

\[
f(w_s) \in f(\gamma_i) \subset f(U_{n_{i+1}}) \subset \mathcal{F}\left(\frac{1}{n_{i+1}}, P(k[n_{i+1}])\right),
\]

and therefore we can choose a point \(q \in P(k[n_{i+1}]) \) with

\[
(5) \quad \rho(f(w_s), q) < \frac{1}{n_{i+1}} < \frac{\varepsilon}{3}.
\]

Moreover, because \(\bar{p}(P(k[n_{i+1}]), P) < \varepsilon/3 \), there exists some \(q' \in P \) with

\[
(6) \quad \rho(q, q') < \frac{\varepsilon}{3}.
\]

Together, (4), (5), and (6) show that \(\rho(p, q') < \varepsilon \). Since \(P \) is closed and \(\varepsilon \) is arbitrary, this proves that \(p \in P \). Hence \(C(f, \gamma) \subset P \in E \). By [4], we can if necessary replace \(\gamma \) by a simple arc \(\gamma' \subset \gamma \); it follows that \(y \in X \). Thus \(Y \subset X \).

Now suppose \(x \in X \). Choose an arc \(\gamma_0 \) at \(x \) such that \(C(f, \gamma_0) \subset P_0 \) for some \(P_0 \in E \). Take any \(n \). Choose \(k \) with \(\bar{p}(P_0, P(k)) < 1/n \). Then

\[
P_0 \subset \mathcal{F}\left(\frac{1}{n}, P(k)\right), \quad \text{hence } \mathcal{C}(f, \gamma_0) \subset \mathcal{F}\left(\frac{1}{n}, P(k)\right).
\]

Choose \(m \) so that \(x \) is in the interior of \(\bar{Q}(n, m) \cap C \).

If for each natural number \(t \) there exists a point \(z_t' \in \gamma_0 \cap \mathcal{S}\left(\frac{1}{t}, x\right) \cap D \) with \(z_t' \notin f^{-1}\left(\mathcal{F}\left(\frac{1}{n}, P(k)\right)\right) \), then
ON A BOUNDARY PROPERTY OF CONTINUOUS FUNCTIONS

\[f(z_t^i) \in K - \mathcal{G} \left(\frac{1}{n}, P(k) \right), \]

and since \(K - \mathcal{G} \left(\frac{1}{n}, P(k) \right) \) is compact, there exist some \(a \in K - \mathcal{G} \left(\frac{1}{n}, P(k) \right) \) and a subsequence \(\{f(z_{t_i}^i)\}_{i=1}^{\infty} \) such that \(f(z_{t_i}^i) \xrightarrow{t} a \). But then \(a \in C(t, \gamma_0) \), contrary to the relation \(C(t, \gamma_0) \subset \mathcal{G} \left(\frac{1}{n}, P(k) \right) \). We conclude that there exists a natural number \(t \) for which

\[\gamma_0 \cap S \left(\frac{1}{t}, x \right) \cap D \subset f^{-1} \left(\mathcal{G} \left(\frac{1}{n}, P(k) \right) \right). \]

It follows that \(\gamma_0 \) has a subarc \(\gamma_0' \) with one endpoint at \(x \) such that

\[\gamma_0' - \{x\} \subset f^{-1} \left(\mathcal{G} \left(\frac{1}{n}, P(k) \right) \right) \cap Q(n, m). \]

Hence there exists an \(\ell \) such that

\[x \in \text{acc} \left[U(n, m, k, \ell) \right] = A(n, m, k, \ell). \]

This shows that

\[X \subset \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} A(n, m, k, \ell). \]

By Lemma 2, the set

\[A(n, m, k, \ell) - I_0(U(n, m, k, \ell)) = A(n, m, k, \ell) - [I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}] \]

is countable. It follows easily that

\[\bigcap_{n} \bigcup_{m, k, \ell} A(n, m, k, \ell) - \bigcap_{n} \bigcup_{m, k, \ell} [I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}] \]

is countable. Since

\[\bigcap_{n} \bigcup_{m, k, \ell} [I_0(U(n, m, k, \ell)) \cap \overline{A(n, m, k, \ell)}] = Y \subset X \subset \bigcap_{n} \bigcup_{m, k, \ell} A(n, m, k, \ell), \]

\(X - Y \) must be countable. Thus \(X \) is the union of an \(F_{\sigma \delta} \) - set and a countable set, and hence it is of type \(F_{\sigma \delta} \).

In each of the following four corollaries, let \(f \) denote a continuous function mapping \(D \) into the Riemann sphere.

COROLLARY 1 (J. E. McMillan). Let \(E \) be a closed subset of the Riemann sphere. Then the set

\[\{x \in C \mid \text{there exist an arc } \gamma \text{ at } x \text{ and a point } p \in E \]

\[\text{such that } \lim_{z \to x} f(z) = p \}

\[z \in \gamma \]
is of type $F_{\sigma \delta}$.

COROLLARY 2. Suppose $d \geq 0$. Then the set
\[
\{ x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ such that} \\
[\text{diameter } C(f, \gamma)] \leq d \}
\]
is of type $F_{\sigma \delta}$.

COROLLARY 3. Let E be a closed subset of the Riemann sphere. Then the set
\[
\{ x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ with } C(f, \gamma) \subset E \}
\]
is of type $F_{\sigma \delta}$.

COROLLARY 4. The set
\[
\{ x \in C \mid \text{there exists an arc } \gamma \text{ at } x \text{ such that } C(f, \gamma) \text{ is an arc of a great circle} \}
\]
is of type $F_{\sigma \delta}$.

We can obtain all these corollaries by taking E to be a suitable family of closed sets and applying Theorem 2. To prove Corollary 4, we need the fact that $C(f, \gamma)$ is always connected. One could go on listing such corollaries ad infinitum, but we refrain.

It is interesting to note that in Corollary 1 it is not necessary to assume that E is closed. By combining Corollary 1 with Theorem 6 of [2], one can prove that the conclusion of Corollary 1 holds even if E is merely assumed to be of type G_δ.

REFERENCES

The University of Michigan