AN ELEMENTARY PROOF OF THE POWER INEQUALITY FOR THE NUMERICAL RADIUS

Carl Pearcy

Let \mathscr{H} be a complex Hilbert space, finite- or infinite-dimensional. With each bounded linear operator A on \mathscr{H} there is associated the nonnegative number

$$w(A) = \sup_{\|x\|=1} |(Ax, x)|,$$

called the *numerical radius* of A. Many properties of the function w are well known and quite elementary. Among these are the following:

- (1) w(A) = 0 if and only if A = 0;
- (2) $w(\lambda A) = |\lambda| w(A)$ for every scalar λ ;
- (3) $w(A + B) \le w(A) + w(B)$;
- (4) $\frac{1}{2} \|A\| \le w(A) \le \|A\|$;
- (5) r(A) < w(A), where r(A) denotes the spectral radius of A;
- (6) w is not continuous in either the weak or the strong operator topology, but is continuous in the uniform operator topology.

When we inquire into the multiplicative properties of w, the inequality

$$(*) w(AB) \le w(A)w(B)$$

naturally comes to mind. It is easy to see that (*) cannot hold universally, and perhaps somewhat more surprising that (*) can fail for commutative A and B. In fact, the following example, pointed out by Arlen Brown and Allen Shields, shows that (*) can fail when A and B are powers of the same operator. Let N denote the nilpotent operator on a 4-dimensional space whose matrix relative to some orthonormal basis is

$$\begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & 0 \end{pmatrix}$$

Easy calculations show that $w(N) \le 1$, $w(N^2) = 1/2$, and $w(N^3) = 1/2$. Thus (*) fails with A = N and $B = N^2$.

In spite of all this unpleasantness, the following theorem is true.

THEOREM. If A is an operator on H, and n is a positive integer, then

Received April 26, 1966.

(H)
$$w(A^n) < [w(A)]^n$$
.

Before proceeding to a proof of this inequality, I briefly discuss its background. In [4], Lax and Wendroff proved that if $\mathscr H$ is finite-dimensional and A is an operator on $\mathscr H$ satisfying $w(A) \leq 1$, then A is power bounded; that is, there exists a constant M such that $\|A^n\| \leq M$ for all positive integers n. (The constant M depends on the dimension k of $\mathscr H$, and it tends to infinity with k.)

P. R. Halmos, in trying to extend this result to infinite-dimensional spaces, conjectured a stronger result—namely (H). (To see that (H) is stronger, note that if $w(A) \leq 1$, it follows from (H) and property (4) of w that $||A^n|| \leq 2$ for all positive integers n.) The special case of (H) in which n is a power of 2 was proved in [2], and the special case in which \mathscr{H} is 2-dimensional was proved by Arlen Brown. The arguments for the special cases refused to generalize, however, and the first complete proof of (H) was a beautiful argument given by Charles Berger [1], who used dilation theory. Berger's argument was simplified considerably by Stampfli, and after consideration of Stampfli's simplification, I was able to extract an argument that is essentially elementary. The argument depends upon the following identity, which seems interesting in its own right.

LEMMA. If x is a unit vector, A is an operator, and n is a positive integer, then

(**)
$$1 - (A^{n}x, x) = \frac{1}{n} \sum_{j=1}^{n} \|x_{j}\|^{2} \left[1 - w_{j} \left(\frac{Ax_{j}}{\|x_{j}\|}, \frac{x_{j}}{\|x_{j}\|} \right) \right],$$

where

$$w_{j} = e^{2\pi i j/n}$$
 and $x_{j} = \left(\prod_{\substack{k=1\\k\neq j}}^{n} (1 - w_{k} A)\right) x$ $(j = 1, 2, \dots, n)$.

Proof. Note first the two polynomial identities

$$1 - z^n \equiv \prod_{k=1}^{n} (1 - w_k z)$$

and

$$1 \equiv \frac{1}{n} \sum_{\substack{j=1 \ k=1 \\ k \neq j}}^{n} \prod_{k=1}^{n} (1 - w_k z).$$

Since these identities remain valid with z replaced by A, they imply that

$$\frac{1}{n} \sum_{j=1}^{n} \|\mathbf{x}_{j}\|^{2} \left[1 - \mathbf{w}_{j} \left(\frac{\mathbf{A}\mathbf{x}_{j}}{\|\mathbf{x}_{j}\|}, \frac{\mathbf{x}_{j}}{\|\mathbf{x}_{j}\|} \right) \right]$$

$$= \frac{1}{n} \sum_{j=1}^{n} ([1 - \mathbf{w}_{j}\mathbf{A}]\mathbf{x}_{j}, \mathbf{x}_{j}) = \frac{1}{n} \sum_{j=1}^{n} ([1 - \mathbf{A}^{n}]\mathbf{x}, \mathbf{x}_{j})$$

$$= \left(\left[1 - A^{n} \right] x, \frac{1}{n} \sum_{j=1}^{n} \left[\prod_{\substack{k=1 \ k \neq j}}^{n} (1 - w_{k} A) \right] x \right)$$

$$= ([1 - A^n]x, x) = 1 - (A^n x, x).$$

Proof of the theorem. By virtue of property (2) of w, it suffices to assume that $w(A) \le 1$ and to prove that $w(A^n) \le 1$. Let x be any unit vector, and let θ be any real number; replacing A in (**) by $e^{i\theta}A$, we obtain the relation

$$1 - e^{in\theta} (A^n x, x) = \frac{1}{n} \sum_{j=1}^{n} \|x_j\|^2 \left[1 - w_j e^{i\theta} \left(\frac{Ax_j}{\|x_j\|}, \frac{x_j}{\|x_j\|} \right) \right].$$

Since $w(A) \le 1$, the real part of each term on the right-hand side of this equation is nonnegative, so that $\Re \left[1 - e^{in\theta} (A^n x, x)\right] \ge 0$. The validity of this inequality for all real θ implies that $\left|(A^n x, x)\right| \le 1$, and the theorem follows.

Remark. After this note was written, Kato [3] obtained a generalization of the above power inequality. Theorem 5 of [3], which Kato mistakenly attributes to Sz.-Nagy, is actually due to Stampfli.

REFERENCES

- 1. C. Berger, On the numerical range of powers of an operator (to appear).
- 2. S. J. Bernau and F. Smithies, A note on normal operators, Proc. Cambridge Philos. Soc. 59 (1963), 727-729.
- 3. T. Kato, Some mapping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652-655.
- 4. P. Lax and B. Wendroff, Difference schemes with high order of accuracy for solving hyperbolic equations, AEC Research and development report, Courant Institute of Mathematical Sciences (1962), 1-49.

The University of Michigan

