A SYSTEM OF
NONLINEAR INTEGRODIFFERENTIAL EQUATIONS

J. J. Levin and J. A. Nohel

1. INTRODUCTION

We consider the system of equations

1) w®=-§ eI ax, T 0 = T, 0+ 1608

- 0O
on -© <x<» 0<t<<o with the initial conditions
(1.2) u(0) = Uy, T(x, 0) = f(x) (-0 <x < =),

The real-valued functions a(x), n(x), f(x), and g(u) as well as the real constant u
are prescribed; u(t) and T(x, t) are the unknowns. We determine the asymptotic
behavior of solutions of (1.1) as t — «, under broad assumptions on «, 7, f, and g.
We also obtain existence and uniqueness results.

In the special case
(1.3) g(u) = -1+expu,

the system (1.1) describes the behavior of a continuous-medium nuclear reactor.
Roughly speaking, u(t) and T(x, t) denote the deviations of the reactor power and
temperature from their equilibrium values, and thus they vanish at equilibrium.

The precise physical interpretation of the various quantities involved in (1.1) as well
as references to the physical literature may be found in [4]. Comparison of (1.1)
with the equations of [4] shows that for notational simplicity we have set two pre-
scribed constants equal to 1. Since these constants do not affect the present consid-
erations and can easily be reintroduced, this causes no loss of generality.

In addition to possessing physical significance, (1.1) is also of interest because
of its intimate connection with a class of Volterra equations that have been investi-
gated elsewhere (for example, in [1], [2], [6], [7]). Most relevant to the present in-
vestigation is the lemma below concerning the Volterra equation (1.8). It is a special
case of a more general result obtained in [7]. However, as will be seen, there is
much in the analysis of (1.1) that is not contained in the lemma. It may be noted that
for several reasons the results of [1], [2], and [6] are not applicable here. The hy-
pothesis a(t) € L(0, «) N L, (0, »), which is required in [1] (see [7]), is too restric-
tive for the present application. In [2] and [6] it is assumed that b(t) =0, and in [1],
that b(t) € L;(0, ©} N L,(0, «); both of these hypotheses are much too restrictive for
our present purposes. A comparison of various conditions under which the asymp-
totic behavior of nonlinear Volterra equations has been investigated is given in [3].
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We now state the hypotheses under which we shall investigate (1.1).

We suppose that g(u) merely satisfies the conditions
N u
(1.4) g) e C(-=, »), ugu)>0 (u#0), Glu)= S g(€)at — o (Ju| — ),
0

This clearly includes the actual physical case (1.3) and the linearized case
(1.5) g(u) = u,

which was considered in [4] and [5]. (I one is interested only in initial values ug
and f(x) that are small in an appropriate sense, then the third condition of (1.4) may
be dropped. For the sake of brevity, we do not discuss this further.)

We also suppose that
(1.6) o, n,f€ Ly(-o,®), fe C(-o, ») 7 islocally Holder continuous.

From the form of (1.1} and from well-known facts about the heat equation, we see
clearly that the assumptions of (1.6) are mathematically very natural. Furthermore,
the assumptions are not physically restrictive. If the second half of (1.2) is replaced
by the condition that T(x, t) — f(x) in L (-, ©) as t — 0+, then the assumption

f € C(-, ) of (1.6) may be dropped.

In order to obtain a result on stability (or even on existence) on -« < x < o,
0 <t <= for (1.1), we need more assumptions than (1.4) and (1.6). In fact, one can
easily construct examples where (1.4) and (1.6) are satisfied but where u(t) — « as
t — <. Our additional assumptions take the form of relations between o, n, and
(less significantly) £ —and also of a nondegeneracy condition that guarantees that
the two equations of (1.1) are really coupled. Specifically, we suppose that (1.16)
below is satisfied. As will shortly be seen, this hypothesis is motivated by physical
considerations, and it is also rather general in the light of the already noted work on
Volterra equations. Since (1.16) itself is perhaps somewhat formidable in appear-
ance, we present the sequence of increasingly general conditions (1.7), (1.14), and
(1.16), which are of independent interest.

An important physical case is represented by the condition
(1.7) ox) = knlx) (- <x<=), | p@a>o,
- O

where k is a positive constant. (The relation between @ and n may of course be
assumed to hold only in an a.e. sense. Similar remarks apply below.)

Before we generalize (1.7), it is convenient to introduce the Volterra equation

(1.8) u'(t) = -St a(t - 7)gu(7))dr - b(t)

0

on 0 <t < with the initial condition

(1.9) ) U(O) = uo.
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In (1.8) and (1.9), the real-valued functions a(t), b(t), and g(u) and the real constant
u, are prescribed, while u(t) is the unknown. Our notation for Fourier transforms
is

(1.10) f(x) =1.i.m. A f(y)exp { -ixy } dy .
A

A—0c0

As we mentioned above, and as will be seen in Section 2, the special case of (1.8)
where

a(t) = % 500 h, () exp {-x2t}dx,

0
(1.11) (0< t < o)
1 (=]
b(t) = - SO h,(x)exp {-x?t} dx,
with
(1.12) b (x) = R(7(x) d(-x)), h,(x) = 9 (f(x) @(-x)),

and where the function g(u) is the same in (1.8) as in (1.1), arises in a natural way
in the analysis of (1.1). From (1.6) it follows that

(1.13) hy, h, € L;(0, «),

and since a, 7, and f are real, that h; and h, are even functions.

The following condition includes (1.7) as a special case. Suppose there exist a
measurable function p(x) on -~ < x <« and a constant A such that

d(x) = px)7Ax), pE)>A>0 (-0 <x< »),

(1.14) 0o X
S n%(x)dx > 0, pf?e L(-=, =).

- O

If p is also bounded from above, then the restriction pfz € Lj(-e, )} of (1.14) is
automatically satisfied as a consequence of (1.6). We note that (1.14) implies the
relations

(1.15) hy(x) = p®) [Hx)]%,  hyx) = p(x) % (E{x)7(-x)) .

It seems inherent in the problem that the hypothesis involves the Fourier trans-
forms &, 7, f as well as @, 7, f. The advantage of (1.14) over (1.7) is that in (1.14)
the ratio a(x)/n(x) need not be a constant. The next condition, (1.16), under which
we actually prove our main result, includes (1.14) as a special case. Its advantage
over (1.14) is that it does not require the ratio &(x)/7(x) to be real.

Suppose there exist a measurable function h3(x) on 0 < x < and a constant A
such that
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hi(x) < h(®)h,(x), h,(x) >0, hyx) >0 (0 < x< =),

o]
S h,(x)dx > 0, h;e€ L, (0,), A>0,
(1.16) 0

h (x)£2 + 2h,(x) £ + ho(x) > A[|7(0)|2 & + 2 0 () 7(-2)) & + |§x)[? ]
(0 < x <o, -0 < &< o),

If (1.14) holds, then, by defining h,(x) = p(x) |f(x)|* and A =X, one readily sees that
(1.16) also holds.

The following special case of (1.16) has the virtue of being much more explicit
than the latter and of not imposing any additional hypothesis (beyond (1.6)) on f(x).
It is interesting to compare it directly with (1.7). Suppose there exist real measur-
able functions p(x) and 6(x) and a constant A such that

&(x) = [p) +16(IA0, 1>1>0, § n2max >0,

- 0O

%, o] <L, p@=p-x), 6@ =-0(x (=<x<w).

By defining
2
2(2 X A & A
b (x) = [R(X'E) +§] fl®, A =3,

one verifies that (1.16) is satisfied. It should be noted that in (1.17) the requirements
that p is even and that 6 is odd are made for convenience in stating the condition.
Thus, one may verify (with the aid of @ and 7 real) that if these requirements are
deleted from (1.17), then a similar condition still obtains with p(x) replaced by the
even function (p(x) + p(-x))/2 and with 6(x) replaced by the odd function

(0(x) - 0(-x))/2.

Our main result is the following theorem, which is concerned with existence and
asymptotic behavior of solutions of (1.1). Uniqueness is discussed afterwards.

THEOREM 1. Let (1.4), (1.6), and (1.16) be satisfied. Then (1.1) has a solu-
tion u(t), T(x, t) on -0 <x<», 0<t<w that satisfies (1.2) and also

(1.18) lim u®(t) =0 (k=0,1,2),
t— 00
(1.19) lim sup |T(x,t)| = 0.

t— o0 0o {x< 0

The linearized case (1.5) of (1.1) was treated in [4]. There, under the hypothesis

(1.20) hy(x) >0 (0<x < w), Sm hy(x)dx > 0
0
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and some other conditions (which we need not consider here), it was shown that
(1.21) u(t) = 0t3/2), T(x,t) = Ot 1/2) (t - ).

The analysis revolved around a Tauberian theorem for Laplace transiorms that is
unavailable in the present nonlinear situation. The present qualitative methods in-
volve “energy” considerations of the type known in ordinary differential equations
as the Ljapounov second method. They permit the enormous generalization from
(1.5) to (1.4) at the price of strengthening the hypothesis from (1.20) to (1.16) and
weakening the conclusion from (1.21) to (1.18) and (1.19).

In [’?], the following lemma concerning (1.8) was established as a consequence of
a more general result. It is important to note that in the lemma the prescribed func-
tions a(t), b(t), g(u) are only assumed to satisfy the stated conditions. It is not as-
sumed in the lemma that a(t) and b(t) have the special form (1.11), (1.12), even
though that is the case in the present application.

LEMMA. Let g(u) satisfy (1.4), and let a(t), b(t) satisfy

a(t) € C[0, »), (-D¥a®@®) >0 (0 <t<=k=001,2 3),
(1.22)
b(t) € C[0, ), Db"(t) existson 0 < t < =,

where a(t) #a(0). Further, let theve exist a function c(t) such that

c(t) € C[0, ©), c"(t) existson 0 <t < «,
(1.23)
bn]2 < a®@eli) (0<t <o k=0,1,2).

Then for each uy there exists a solution u(t) of (1.8) on 0 <t <« that satisfies
(1.9) and also

(1.24) lim ult) =0 (k=0,1,2).

t—>co

In Section 2 we give a complete proof of Theorem 1. We show how the lemma
may be invoked to establish (1.18) as a consequence of (1.24). This is probably the
quickest way to obtain (1.18). In the proof we then introduce the energy function V(t)
of (2.13) and use it to establish (1.19).

In the proof of the lemma (see [7]), the energy function

E(t) = G(u(t)) +-1— a(t) St g(u(s)) ds i + b(t) §t g(u(s))ds + 1 c(t)
2 b o 2

2
- % ta,'(t -T) [ St g(u(s)) ds] dar
T

0

played a vital role. However, even in the special case b(t) = c¢(t) = 0, the functions
E(t) and V(t) are not the same (see [6]). The essential difference between E(t) and
V(t) is the following. E(t) generalizes a function that was introduced in [2] for the
study of the special case of (1.8) where b(t) =0 and a(t) satisfies the monotonicity
conditions (1.22). The function V(t) generalizes a function introduced in [6] for the
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study of (1.8), again with b(t) = 0, but under the stronger requirement of complete
monotonicity on a(t). From the condition h;(x) > 0 of (1.16) and the first equation
of (1.11), it follows that a(t) is completely monotonic in the present problem.

In Section 3, we show briefly how to avoid the use of E(t) (and therefore of the
lemma), and we use only' V(t). The proof of (1.19) is the same as in Section 2, but in
order to obtain (1.18), we need a much more detailed analysis of V(t) than in Section
2. However, we only carry this analysis to a point where the technique of [6] com-
pletes the proof.

The proofs of Sections 2 and 3 rest partially on the somewhat involved Tauberian
analysis of [6] and [7]. We find it of some interest that because of the special nature
of (1.1), these arguments can be replaced by others that involve (1.1) more directly.
This is done in Section 4, where the additional hypothesis

(1.25) a' € L,(-, ©)

is adjoined to Theorem 1.

The following theorem concerns the uniqueness problem for (1.1), (1.2). The
linear case, (1.5), of this result was obtained in [5] (Theorem E). Since the present
proof is an obvious modification of that of the linear case, we omit it.

THEOREM 2. Suppose that (1.6) is satisfied and 0 < tg < . Suppose further
that the Volterra equation (1.8), with a(t) and b(t) defined by (1.11) and (1.12), has
at most one solution on 0 <t <ty that satisfies the initial condition (1.9). Then
there exists at most one solution u(t), T(x, t) of (1.1) on -» <x <o, 0<t <t
such that

w(t) existson 0 < t < t,, lim  u(t) = u,,
t—0+

T(x, t), Ty(%, t), T (x,t) € C on -0 <x <, 0 <t < ty,

(1.26) o
T(x, t) € Ly(-, ©) and  sup 5 T(x, t)dx < =,
0<t$ tg -

lim S | T(x, t) - £(x)|2dx = 0.
t— 0+ Y-oo

We can of course guarantee the uniqueness supposition for (1.8) of Theorem 2 by
assuming that g(u) is locally Lipschitzian. However, more general uniqueness con-
ditions for (1.8) are possible (see for example Theorem 3.1 of [8]). It is easily seen
from the proofs of Theorem 1 that the solution u(t), T(x, t) of Theorem 1 satisfies
the conditions (1.26) for all t,.

We conclude with a few remarks concerning the perturbed version of (1.1) given
by

ur(t) = - S ax)T(x, t)dx+o(t), Ty (x,t) = T (x, t)+ n(x)gult),

-0
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where o (t) € L;(0, ») denotes the perturbation, and where the other quantities re-
main the same as before. This system, which permits the incorporation of some
physical effects ignored in (1.1), can be treated by essentially the same methods as
above. Instead of the above lemma, we require the more involved Theorem 1 of [7].
The technical details are considerable, but they follow readily from the present
work together with [7], and we omit them.

2. PROOF OF THEOREM 1
(i) Consider (1.8) with a(t) and b(t) defined by (1.11) and (1.12) and with g(u) as
in (1.1). This is a well-defined equation, regardless of whether (1.1) possesses any

solutions. (We can motivate our approach by supposing that (1.1) has a solution that
satisfies (1.2) and the well-known formula (2.6), which will be used shortly.)

From (1.11) and (1.13) it follows that

a®)g) = (-l)k% ‘S(; kahl(x)exp{-xz‘t}dx,
(2.1) 0<t<wok=01-)

b(k)(t) = (-l)k% S x2kh2(x) exp {-x%t}dx.
0

From (2.1) and the condition h;(x) > 0 of (1.16) it follows that

(2.2) a(t) e [0, ), (1)) >0 (0 <t < k=01, ).
Define
(2.3) c(t) = ;-IT Soo h3 (x) exp {-x%t}dx (0 <t < ),

0
Then, from the condition h; € L (0, <) of (1.16), we obtain the equation
1 o0
2.4) c®) = (-1 = S x%Kn (x)exp {-x®t}dx (0 <t < w3 k=0,1, ).
0

From (1.16), (2.1), (2.4), and the Schwarz inequality we obtain for k = 0, 1, -« the
relations

o0

(k) oy 2 1
™) (1) 5(;50

(

< ( .‘S:o x%kh, (x)exp {-x%t} dx) (% 5‘°° x2Kh 4(x) exp {-x2t} dX) ]

0

2
x%K | h,(x)| exp {-x%t} dx)

A=

Sw [XZkhl(x) exp {-x2t}]1/2 [x2Kh,(x) exp {—xzt}]l/zdx)Z
0

=
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Thus
(2.5) eE®)?Z < a®@) ) (0 <t <w; k=01, ).

Now, by the lemma of Section 1, the equation (1.8) has a solution u(t) on
0 <t < = that satisfies (1.9) and (1.24). If more than one such solution exists, we
choose one and call it u(t).

Define T(x,t) on -0 <x <o, 0 <t <= by

o0 t 0
(2.6) T(x,t) = S G(x - &, t)f(§)ds + S S G(x - & t - 7)n(&)glu(r))dEdT,
-0 0 “-c0

where

(2.7) G(x, t) = [41rt]'1/zexp {— %2;},

and where u(t) is the function defined in the preceding paragraph. Classical results
concerning the inhomogeneous heat equation (for their statements, see for example
Lemmas B and B, of [5]) give the following information: T(x, t), Ty(x, t), T,,(x, t)
are continuous in (x, t) for - <x <, 0 <t < », the second equation of (1.1) is
satisfied there, and T(x, t) is continuous in (x, t) for - <x <, 0 <t <, with
T(x, 0) = £(x). Thus, the pair u(t), T(x, t) satisfies (1.2) and the second half of (1.1).
It is well known (and follows from (2.6)), that for each fixed t, T(x, t) belongs to
L,(-%, «) as a function of x, and that its Fourier transform T(x, t) with respect to
x is given by the formula

(2.8) T(x, t) = #(x)exp {-x2t} + 7(x) Stg(u(f))eXp {-x2(t - 7)}ar.
0

Using (2.8), Parseval’s relation, and the definitions (1.11) and (1.12), one can verify
that

(2.9) Sm a(x) T(x, t)dx = zl—ﬂ Sw G(-x)T(x, t)dx = Sta(t - 7)e(u(r))dT +b(t),

-00 -0 0

where the necessary change of order of integration is easily justified by Fubini’s
theorem. However, from (2.9) and the fact that u(t) is a solution of (1.8), we see
that the pair u(t), T(x, t) also satisfies the first half of (1.1). The assertion (1.18)
follows, of course, from (1.24).

(ii) For the completion of the proof of Theorem 1, it remains only to establish
(1.19). Somewhat surprisingly, (1.18) will not be needed. It follows from (1.6) and
(2.8) that T, , T,, € L,(-, ») for each t > 0. We need the elementary inequality
(of Sobolev type)

sup T4(x, t) <4 S Tz(x, t)dx S Ti(x, t)dx
=00 x L ® —00 -0

(2.10)

=LS | T(x, t)Izde x2|F(x, t)|2dx (0 <t <),
[~} -00

72 J_
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whose simple proof we include for completeness. The relation

5@}—( T2(x, t) = 2T(x, t) T, (x, t)

implies that
*2
T?(x, , t) - T2(x,, t) = 2 S T(x, t)T (%, t)dx
X
1

for all x,, x,. Hence
c0 oC
| T2(x, , t) - T2(x, , )% < 45 T2(x, t)dx S T2(x, t)dx.
-0 -00

Let t > 0 be fixed. Then, letting x; pass through a sequence of values on which
T(x, t) becomes small (such a sequence must exist, because T € L, (-, »)), we ob-
tain (2.10).

Using Fubini’s theorem and (1.11), we may write (1.8) in the equivalent form

(2.11) w(t) = - % Sw[hl(x)y(X, t) + h,(x)]exp {-x*t} dx,
0
where
t
(2.12) y(x, t) = S glu(7))exp {x% 7 }dT.
0

Define the energy function V(t) by
(2.13) V(t) = G(uft)) +T21; SOO [hl(x)'yz(x, t) + 2h, (x)y(x, t) + h3(x)] exp {-2x*t}dx> 0
0

(the inequality is implied by (1.4) and (1.16)).

Differentiating (2.13) and using (2.11) to simplify the resulting expression, we
obtain (on 0 <t < «) the formula

(2.14) V'(t) = - % Soo [h; (x) y2(x, t) + 2h, (x)¥(x, t) + hs3(x)]x% exp {-2x2t} dx < 0;
0

the inequality follows from (1.16).
From (2.8) and (2.12) it follows that

2.15) | T(x, 0% = [|50]272(x, £) + 290E) 2(-x)7(x, t) + |fx) [ lexp {-2x" t},

which together with (1.16) and (2.14) implies that
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21V(0) > 20 V(t) > Sw [0y ()7 2(x, t) + 2h,(x) p(x, t) + h,()] exp {-2x2t} dx
(0

> A ‘S(‘) [|7x) |2 v2(x, t) + 2% {(x) 7(-x))y(x, t) + |f(x)|2 lexp {-2x2t} dx

= A ,Swlf*r(x, t)|2dx = % Swlff(x, t)|%ax.
0 —-00
Thus

(2.16) (" 1w olzax < B v 0<t<w).

-0

Similarly, from (1.16), (2.14), and (2.15) we deduce that

O {~e]
avi)) > A x2 B 02 ax = 24§ x2|f, o]2ax,
0 -0
that is,

(2.17) 5” 2 | Bz, 2 ax < -2 vi) (0 < t< ).

-0

From (2.10), (2.16), and (2.17) we obtain the inequality

(2.18) sup THx, t) < - S VOVIE) (0 <t < ),
—o0 < x L oo A

It follows from (1.18) that there exists a constant K; < such that
(2.19) [ut)] < K; (0 <t < =),

Alternatively (and we use this in Sections 3 and 4) formulas (2.13) and (2.14) imply
that

Gla(®) < V() < V(0) = Glug) +5- { hyax,
0

which together with (1.4) implies that (2.19) holds, with K; depending only on V(0).
The positive constants K; (j =2, 3, ---) appearing below depend only on V(0).
Observe that (1.4) and (2.19) imply

(2.20) |x29(x, t)] < K,exp{x2t}] (0 <x <o, 0<t <),

Differentiating (2.14), one obtains the relation



A SYSTEM OF NONLINEAR INTEGRODIFFERENTIAL EQUATIONS 267

vrt) = - % g(u(t)) S [hl(x) y(x, t) + hz(x)] x%exp {-x%t} dx
0
(2.21)

= SO [h, () v2(x, ) + 2hy(x)¥(x, ©) + hy(x)]x* exp {-2x" t} dx

on 0 <t <. Since h;,h,, h; € Ll(O, »), conditions (2.19), (2.20), and (2.21) im-
ply directly that

(2.22) [Vv'@t)| <K; (1 <t < ).

(Of course, we may replace 1 in 1 <t < « by any positive constant, provided we
make an appropriate change in K5 .)

From the conditions V(t) > 0, V'(t) <0, (2.22), and the mean-value theorem it
follows (a proof is given in Lemma 1 of [2]) that

(2.23) lim V'(t) = 0;

t—o

together with (2.18), this implies (1.19), and the proof is complete.

3. ANOTHER PROOF OF THEOREM 1

This proof, unlike that of Section 2, rests entirely on the function V(t) of (2.13).
Its starting point is the same as that of Section 2, namely (1.8) with a(t) and b(t)
defined by (1.11) and (1.12) and with g(u) as in (1.1). From (1.13) it follows that

(3.1) a(t), b(t) € C[0, «).

By a result of [8], the condition g € C(-», ) of (1.4) and condition (3.1) imply the

existence (but not the uniqueness) of a solution u(t) of (1.8) on 0 <t <ty (for some
t, > 0) that satisfies (1.9). (If g is locally Lipschitzian, the existence and unique-

ness of u(t) follow from the usual successive approximations of Picard.)

Define V(t) on 0 <t <ty by (2.13). The calculation of Section 2 yields (2.14) on
0 <t<t;. From (2.13) and (2.14), we obtain (2.19) on 0 <t <t; (as noted in Sec-
tion 2 for the interval 0 <t < «), where K; does not depend on t;. However, the
a priori bound (2.19), together with a result of [8], implies that u(t) may be con-
tinued as a solution of (1.8) onto 0 <t < ., (If g is locally Lipschitzian, this con-
tinuation can also be accomplished by an argument that is classical for ordinary
differential equations.)

Having established (2.19) on 0 <t < «, and with it also (2.13) and (2.14) on
0 <t < =, we proceed as in Section 2 to obtain (2.23). Inspection of (2.14) shows
that (2.23), together with (2.20) and the condition hy , h, , hy € L;(0, «), implies

(3.2) lim 5; x2h, (x) T%(x, t)dx = 0,

t—c0

where
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t
Tl §) = 76 Dexp {2t} = | g(u(r)exp{-x2(t- r)}ar.
0

Differentiation of (2.11) yields a formula for u"(t), which together with (2.19) implies
|u" (t)| <K, (1 £t < ). The latter inequality, together with (2.19) and the mean-
value theorem, implies

(3.3) lu'®)] < Ks (0 <t<e),

It may now be shown that (1.16), (3.2), and (3.3) imply the result (1.18). As noted in
Section 1, a proof of this last assertion is contained in [6].

T(x, t) is now defined by (2.6), and the proof is completed as in Section 2.

4, STILL. ANOTHER PROOF OF THEOREM 1

Here we follow the method of Section 3 through the verification of both (2.19), by
way of V(t), on 0 <t < and the limit (2.23). Thus, T(x, t) is defined by (2.6), and
the relations (2.15), (2.16), (2.17), and (2.18), together with the result (1.19), are
established as before. We note that this much of the proof is self-contained. Only
(1.18) remains to be established. This we now do directly from (1.1) without any
appeal to earlier asymptotic results for the Volterra equation. Here it is convenient
to make the additional integrability assumption (1.25).

First we show that

(4.1) lim u'(t) = 0,

t-—c0

which is (1.18) for k = 1. Let € > 0. Then (1.16) implies that

s -X
(4.2) S a?(x)dx < €, ‘S‘ a?(x)dx < €
X -00

for some X = X(¢) <. From (2.16) and (4.2), together with Schwarz’s inequality
and Parseval’s theorem, we get the bounds

2

2 2
S A V(O) €

-X
< 2 v()e, et e, pax

- 00

5-°° a(x) T(x, t)dx
X

(4.3)

for 0 <t <. On the other hand,

% o 1/2
S < [ZX ‘S‘ a?(x) dle sup lT(X, t)| .

(4.4)

a(x) T(x, t)dx
-X - oo < x L0

From (1.19), (4.3), (4.4), and the first equation of (1.1) one obtains the relations

1/2
lw(t)| = < 3[% V(O)S] (b < t < =)

‘S‘w a(x) T(x, t)dx
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for some t( = t(e) < «; this establishes (4.1).

Use of the Parseval relation in the first equation of (1.1) and differentiation of
(2.8) leads to the equations

4.5) w(t) = -21;5 G(-x) B, hax, Ty ) = -x2T(x, 1) + 7)) .

Differentiating both sides of the first equation of (4.5), we find that

W = - L T a0tk Ddx (0 < t< ),

which together with the second equation of (4.5) implies that

(4.6) w(t) +vgt) = - It (0 <t < ),
where
(4.7) v = %T- ‘S:Z N(x) d(-x)dx = -—S h;(x)ax > 0,

(4.8) It) = 'S-oo x2a(-x)T(x, t)dx = - 27 SOO a(x) T (x, t)dx (0 <t < ).

-0 - 00

From (2.17), (4.8), and (1.25) it follows that

Iz(t) < Soo x% |o:32(—x)|‘Z dx Xw x2 ]’f‘(x, t)l2 dx < - - V'(t) S Ioz’(x)l2 dx,

- 00
which together with (2.23) yields the relation

(4.9) lim I(t) =

t ~>00

Suppose u(t) # 0 as t — «. Then there exist a real number u* # 0 (with
|u*| <K;) and a sequence {t_}, with t, — « as n — e, such that u(t,) — u* as
n — o, Suppose u* > 0 (a similar argument holds if u* < 0). From (4.1) and the
mean-value theorem it now follows that there exist a sequence {An} (An — 0 as
n — ) and an integer N; such that

(4.10) uk/2 <ut) <Ky (t, <t<t,+A,, n>N;).

Define

(4.11) L= min g(u) > 0
wk/2<u<K;

(the inequality follows from (1.4)). Clearly, (4.10) and (4.11) imply
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vgt) > vp  (t, <t <t +4,, n> N,
which together with (4.6) and (4.9) yields the inequality
u(t) < - vp/2 t, <t<t +A,n> NZ)

for some integer N, > N; . Integrating, we find that
1
u'(t, +A,) -u'ty) < - 5 VI AN (n > N,),

which is obviously incompatible with (4.1) and the condition that A, — © as n — o,
Hence u(t) — 0 as t — =, which is (1.18) for k = 0. From (1.18) for k =0, (4.6), and
(4.9), we obtain (1.18) for k = 2; this completes the proof.
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