GENERALIZED FINITE FOURIER COSINE TRANSFORMS
R. V. Churchill

1. THE BASIC OPERATIONAL PROPERTY
The characteristic functions of the Sturm-Liouville problem
(1) y'(x)+ Kyx)=0, y'(0)=0, hy()+y'(1)=0,
Wﬁere h is a prescribed constant other than zero, are the functions
(2) y=coskyx (n=1,2, )

corresponding to the characteristic numbers k = k,,, which are the positive roots of
the equation

3) h cos k, = k,, sin k..

The operational mathematics of the linear integral transformation
1
() T{F(x)} = I F(x)coskyxdx=£f(n) m=1,2, ),
4]

where F(x) denotes any bounded integrable function on the interval (0,1), will be
developed here. According to the Sturm-Liouville theory, the inverse of the trans-
formation (4) is given by the generalized Fourier series

0 - 1
(5) Fx)= = N 'fm)coskyx (0<x<1, Ny= f cos?kpx dx),
n=1 o

whenever F(x) satisfies conditions under which it is represented by its ordinary
Fourier cosine series on the interval (0, 1).

Now let F(x) denote any function of class C' whose derivative F"(x) is bounded
and integrable on the interval. Then the basic operational property

(6) T{F'"x)} = -k23£f(n) - F'(0) + [hF(1) + F'(1)] cos ky

can be obtained from the integral T{F"(x)} by two successive integrations by parts.
Thus the transformation resolves the differential form F"(x) in terms of the trans-
form f(n) and the two boundary values F'(0) and hF(1) + F'(1) that appear in the
Sturm-Liouville problem (1). This is a characteristic operational property of the
transformation (4) in the sense that the kernel cos kyx is prescribed by that
resolution [1].

Boundary values of the type hF(1) + F'(1) appear in a broad class of physical
problems. In particular, they drise in connection with elastically supported
boundaries of elastic bodies and in connection with surface transfer of a diffusing
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substance into an adjacent medium. Aside from its utility in solving such |
however, our transformation represents one of the simplest finite integral
formations whose kernel has no common period for all values of the param
The operational properties of the common finite Fourier transformations d
upon such periodicity. Methods used in developing operational properties (
transformation (4) suggest procedures that may apply to other finite integr
formations, such as Hankel transformations, whose kernels are not periodi

We present an elementary convolution property of our transformation,
formula for the inverse transform of the product of two transforms. Our t
tion is a special case of the finite Fourier transformations treated by Roet
whose convolution property is written in terms of almost periodic extensio
functions from the finite interval to the infinite interval. Our methods app¢
applicable to those more general finite Fourier transformations.

2. DUAL TRANSFORMATIONS

Throughout this section F(x) will denote any bounded integrable functic

interval (0, 1). Elementary operational properties of the transformation *.
written conveniently in terms of certain duals of that transformation.

Let the dual transformation S be defined as follows:
1
(1) S{Fx)} = f F(x) sin k;x dx,
4]

where the k, are again the positive roots of equation (3). The kernel z =
and the numbers k,, are the characteristic functions and numbers of the m
Sturm-Liouville problem [3] ‘

z"(x) + K®z(x)=0, z(0)=0, hz'(1)+z"(1)=0.

The transformations (7) and (4) are easily shown to be related by the form

(8) S{F&)} =k, T{le(t)dt}.

A second dual transformation is one with the kernel w = cos ku(1 - x),
represents the characteristic functions of the problem

w'x)+ k®w(x) =0, hw(0)-w'(0)=0, w'(1)=0 (k=Kkp).

This transformation can be written
' 1
9) A j F(x)cos k(1 - x) dx = T{F(1 - x)}.
0

From the addition formula for cos k(1 - x), it follows that

T{F(1 - x)} = T{Fx)} cos k,, + S{Fx)} sin ky,
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and from equations (8) and (3) we can then obtain the formula

(10) T{F(@1 - x)} = cos k,, T{F(x) +h rF(t)dt}.

X

If we write G(x) for the function inside the braces on the right of equation (10)
then, formally, G'(x) = F'(x) - hF(x) and G(1) = F(1), from which we can solve for
F(1 - x). This leads to the operation on a function that corresponds to the multipli-
cation of the transform by cos k,,. We replace G(x) by F(x) and write that relation
as
(11) cos k, T{Fx)} = T{F(1 - x) - he~h** F(1 - x)},

where the asterisk denotes the convolution used with Laplace transforms:
X xX

(12) F,(x) * F,(x) = I F,(x - t)Fy(t)dt = I F,(x - t)F,(t)dt.
0 0

By writing out the transform on the right of equation (11), inverting the order of the
iterated integral and using relations (8) and (3), we can show that formula (11) is
correct whenever F(x) is bounded and integrable.

It is convenient to introduce a third dual transformation
1
(13) U{F®E)} = j F(x)cos k(1 + x) dx.
o

Since
. 1 1 1
2 cos k, j F(x)cos k x dx = J F(x)cos k(1 + x) dx + I F(x)cos k,(1 - x) dx
. 0 0 0

=U{F&x)} + T{FQ1 - x)},
it follows from formula (11) that
(14) U{F&x)} = T{F( - x) - 2he DX * F(1 - x)} .
The transformation T is a special case of the Sturm-Liouville transformation
[1]; therefore it has the properties of that transformation. In particular, the image
of the function -f(n)/k? is the function Y(x) that satisfies the conditions

Y"(x)=F(x), Y'(0)=0, hY(1)+Y'(1)=0.

Thus

(15) f—k(;‘—) = T{JJl jr F(t)dtdr + % le(t)dt}.
n X 0 [}
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3. CONVOLUTION

Let F(x) and G(x) denote bounded integrable functions on the interval
Then the product of their transforms can be written

DO =
HMJA

(16) f(n)g(n) = J' j F(x)G(y)cos kx cos kyy dxdy = I;,

i=1

where the integrals I; are defined as follows:

JJ F(x)G(y)cos k,(x - y) dxdy when i=1, 2,

— R:
Ii_ 1

JJ F(x)G(y)cos k,(x + y) dxdy when i= 3, 4,

Rj
and the triangular regions R; are those halves of the unit square 0 < x <
that lie on either side of one of the diagonals. The order of numeration is
as follows.

Ri:y<x; Ryy>x; Ragx+y<l1l, Rgx+y>1.

Upon introducing new variables of integration in each of the iterated in
we find that

1-s 1-x
I, = E cos ks J F(s + t)G(t)dtds = T{f F(x + t)G(t)dt},
0 0
1
L= j cos k_s j F(t - s)G(t)dtds = {j F(t - x)G(t)dt},
(17) ) }
I, = cosk s | F(s - t)G(t)dtds = { F(x - t)G(t)dt &,
b | comis J }
2 1
I, = j cos ks 5 F(s - t)G(t)dtds.

1 s-1

In order to write the integral I, as a transform, we introduce a new varial
X = s - 1; then, in view of the definition (13) of the transformation U,
1 1 1
I, = _[ cos k, (1 + x)J F(1+ x - )G(t)dtdx = U{J F(1+x-t)G(t
(1] X X

Formula (14) now enables us to write

1 1 .
18) I, =T {-[1 F(2 - x - t)G(t)dt - 2he™P* * I F@ - x - t)G(t)dt
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and, in view of equations (16) and (17), f(n)g(n) can be written as a transform.

To simplify the result, we introduce the function F,(x) as the even periodic ex-
tension of F(x), with period 2; that is,
(19) Fox)= F(x) when 0 <x< 1, Fy(-x)=Fy(x) and Fy(x + 2) = F,(x) for all x.

Then in equation (17), F(t - x) = Fo(x - t), since 0 < x < 1. In equation (18),
F(2 - x - t) = Fy(x + t), and equation (16) can be written

1

1
(20) f(n)g(n) = T{% j' [Fox + t) + Fo(x - t)]G(t)dt - he-hx * j Fox + t)G(t)dt}.
0 .

l-x

This is one form of the convolution property for the transformation T. Elementary
changes in the form of the last term in the braces lead to other forms of the convolu-
tion corresponding to the transformation T, two of which are given in the following
theorem.

THEOREM. Under the transformation (4) the image of the product of the trans-
Sorms of two bounded integrable functions F(x) and G(x) is the convolution X[F, G],
that is,

(21) f()g(n) = T{X[F, G]},

where the convolution of F(x) and G(X) can be written

1
(22) X[F, G] =% j [Folx + t) + Fo(x - t)] G(t)dt - he P * F(1 - x) * G(1 - x)
0

1 1
-5 L[Fo(x + 1)+ Folx - 0]GMdt - h [ Folx+ G, (t)at.

1-x

Herve F,(x) is the even periodic extension (19) of F(x) with peviod 2, the asterisk
denotes the convolution (12), and

1
(23) G (x) = éh* j e Pt G(t)dt.
p.<
4, TRANSFORMS OF ELEMENTARY FUNCTIONS
From the theory of Sturm-Liouville transforms [1], it follows that -kj%cos k,c,
where c is a parameter such that 0 < ¢ < 1, is the transform of Green’s function

G(x, c) of problem (1) with k= 0. Thus

k
T{G(x, o)} = - 7™ (O<c<1),
n

where

(24) G(x,c)=c-1-1/h when x<¢, G(x,c)=x-1-1/h when x>c.
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The operational properties presented in the preceding sections are usef
writing transforms of particular functions. The application of formula (6),
ample, to the function F(x) = cos cx, where c is a constant (c? # k2), gives

- c%f(n) = - kflf(n\)+ (h cos ¢ - ¢ sin ¢)cos ky,,

or

T{cos cx} = (h cos c - ¢ sin C)w

cos k
= (% Kk2).

By means of such procedures and elementary integrations, we can cons

table of transforms. A short table is shown here. Formulas (6), (11), (15),
serve to extend any such table.

TABLE OF TRANSFORMS

f(n) = T{F)}

F(x)
1. 1 k;'sink, (= hk;? cos k)
2. Jix, c)=1 (0<x<ec), k;! sin k¢
Jx,c)=0 (c<x<1)
3.1+h™!-x k;?
4. G(x, c) [see eq. (24), 0<c < 1] - k;% cos k¢
5. e"P* [h in eq. (3)] h(h? + k2)™!
6. sinh ¢ (c® # -k%) [(h sinh ¢ + c cosh c)cosh k, - c]
7. cosh ¢ (c? # -k?) (h cosh ¢ + ¢ sinh ¢)(c? + k%)™ cc
8. h sinh c(1 - x) + ¢ cosh ¢(1 - x) (h cosh ¢ + ¢ sinh c)c(c? + k2)~!
(c® # -K2)
9. Gyx,c)=1 x<ec), hk37? cos k, cos k(1 - ¢)
G,x, c)= ehc-x) (¢ <x<1)
10. 2G,(x, ¢)+ hG(x, c) (0<c< 1) hkz? cos k,(2 - ¢)
11. G,(x, ¢) =0 (x <c), k7! cos k,, sin k(1 - ¢)
G,(x, ¢) = ePle®) (c <x < 1)
12. 2G,(x, ¢)+ J{x, ¢) (0< c < 1) ky! sin ky(2 - c)
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5. A BOUNDARY VALUE PROBLEM

As an illustration of the use of the preceding operational mathematics, consider
the following problem in the longitudinal displacements Y(x, t) of an elastic bar.
One end, x = 0, of the bar is free; the other end, taken as x = 1, is elastically sup-
ported and subject to a force that may vary with time. If a general longitudinal body
force is allowed for and the bar is initially at rest and unstrained, and if the unit of
time t is properly chosen, the displacements Y(x, t) satisfy the conditions

) Y, (x, t)=Y_(x, t)+ Fix,t), Y(x, 0)=Y,(x, 0)=0,
(25
Y 0,t)=0, Y_(1,t)=-hY(, t)+ P(),

where the positive constant h depends on the coefficients of elasticity of the support
and the bar.

The transformation T, with respect to x, can be applied to this problem because
the differential form and boundary values with respect to x are Y__(x, t), Y_(0, t)
and hY(1, t) + Yx(l, t). Let

y(n, t) = T{Y(, t} = IIY(X, t)cos kyx dx.

In view of formula (6), the image of problem (25) is, formally,
(26) Vo, t) = -2y, t) + P(t)cos k, + f(n, t), y(m, 0) =y, 0)=0,

where the dots denote derivatives with respect to t, and where f(n, t) is the trans-
form of F(x, t). The solution of problem (26) is

sin k,(t - 7)

te .
7 sink,(t - 7)
[—————n—(———f(n, 7) + cos kp i
n

@1)  y(m, t) = j 2 P(r)]ar t>0).

One form of the solution of problem (25) follows from the inversion formula (5);
that is,

> o]
Y, t) = I, N7 'y, t)cos k x.

But for each finite range of the variable t, the properties of our transformation T
enable us to write Y(x, t) in closed forms, and these forms can be verified as solu-
tions when the prescribed functions F(x, t) and P(t) are sectionally continuous.

When 0 < t< 1, then the variable t - 7 in the integrand in equation (27) is con-
fined to that range, and the coefficients of f(n, 7) and P(7) are transforms of func-
tions shown in entries No. 2 and No. 11 of the Table of Transforms. With the aid of
the convolution property (21), it follows from equation (27) that

.t
(28) Y(x, t)= f [X[Ix, t - 7), Fx, T)] - Gy(x, 1 - t+ T)P(r)}dr (0<t< 1),
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When 1 <t < 2, let the integral of the first term inside the brackets in
(27) be written

t-1 . t .
k_ (t - sin k. (t - 7)
J. Mf(n’ T)dT+ J ___L(__.f(n’ T)dT.
0 kn t-1 kn

In the first integrand 1 <t - 7 <t; thus the inverse transform of k3 sin k
is given by No. 12 in the table. In the second integrand 0 <t - 7 <1, and

the table applies again. The convolution therefore gives the inverse transf'
these integrals. The integral of the second term in equation (27) can be br
the corresponding sum, whose inverse transforms are given by No. 11 and
the table and by property (11). Thus Y(x, t) can be written in closed form
1<t<2,

For higher integral ranges of t, the additional transforms needed to wi
can be found by first writing

sin k(2 - ¢ sin k,(3 - ¢ sin k,(1'- ¢
1 n( )= n( )+ n( ) (O<C<1).

2 cos ky,

From No. 2, No. 12, and property (11), the inverse transform of k3! sin k,
follows. Iterations of the procedure give the inverse transform of kj! sin
m<t<m+1 (m=3,4,- )

Let us write Y(x, t) for 0 <t < 1 in the case where P(t) = 0 and F(x,
Then the transform (27) reduces to

(29) y(@, t)-f(“) - cols(znk“tf(n),

and formula (15) gives the inverse transform of the first term on the right
convolution property and No. 4 in the table give the inverse of the second.

i T 1 1
(B0) Y, t)= J j F(s)dsdr + Ej F(s)ds + X[G(x, t), Fx)] (0<t<1
X 0 0

where G(x, t) is defined by equation (24). When 1 <t < 2, the function G
(30) should be replaced by 2h™'G,(x, 2 - t) + G(x, 2 - t), according to entr;
in the table. When F(x) = 1, formula (30) reduces to

%t"’ when x <1 -t,

Y, t)=
1 2 X t 1 h2' 1 h(l -x-t
—-2— +E(1+h—ht)+H(1+h)_H§(1+h+_2_)+}—1§e( ) wher

where OS tS 1.
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6. OBSERVATIONS

The preceding development of operational properties of the transformation (4)
depended on the Sturm-Liouville problem (1) that generates the kernel cos k,x, and
on addition and product properties of trigonometric kernels. These properties them-
selves can be found directly from the Sturm-Liouville equation and one of the bound-
ary conditions. The function y = cos kx is the solution of the system

(31) y'"(x)+ k*yx)=0, y'(0)=0, y0)=1,

where the last condition is a matter of convenient normalization of y(x).

If s denotes any parameter, it follows from the differential equation in the
system (31) that

(32) y"x + 8)+ kK2y(x + s) = 0,

and upon eliminating k® between the two differential equations, we find that
d
y)y"x + 8) - y"x)yx + 8) = —(r-x[y(x)y'(x +8)-y'®)yx+s)=0.

Since y'(0) = 0 and y(0) = 1, then
yX)y' x+ 8) -y &)yx+ s)=y'(s).

In the last equation we differentiate all terms with respect to s, and we use equation
(32) to obtain the relation \

Kyx)yx+ 8)+ y'x)y' (x + 8) = k®y(s).

The addition property for the function y = cos kx follows when we substitute r - x
for s:

(33) yr -x)=y{r)yx)+ E1§Y' (r)y'(x).

Formula (33), with r = 0, shows that y(x) is an even function, and hence y'(x)
is odd; that is,

(34) y(-x)=y&), y'(-x)=-y'x).

Then, in view of the addition formula (33),

(35) 2y(r)y®) =y + x) + y(r - x),

which is the product formula for the function y = cos kx.

The addition and product formulas for sin kx and for the product sin kr cos kx
follow from formulas (33) and (35) by differentiation with respect to r and x.

The simplicity of the derivations here is due, of course, to the fact that the co-
efficients in the differential equation (31) are constants. But if the development of
the operational properties for the transformation T could be described in a more
unified way, in terms of the Sturm-Liouville equation and boundary conditions, it
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seems plausible that the program may apply to other integral transformatis
even to general Sturm-Liouville transformations [1].

The advantages of a convolution property depend on the simplicity of the
tion and on the existence of a satisfactory table of transforms. Although th
volution derived in Section 3 is elementary, its application is likely to be te
If the inverse transform of certain exponential functions such as kjZexp(-c
known in closed forms, then some quite general boundary value problems i
son’s equation, including problems that are adapted only to the transformat
could be solved in closed form with the aid of the operational mathematics
in this paper.

REFERENCES
1. R. V. Churchill, Extensions of operational mathematics, to appear in th
ceedings of the Maryland Conference on Differential Equations.

2. I. Roettinger, Note on the use of almost periodic functions in the solutic
certain boundary value problems, J. Math, Phys. 27 (1948), 232-239.

3. R. E. Gaskell, A problem in heat conduction and an expansion theovem,
J. Math. 64 (1942), 447-455.

University of Michigan



