APPROXIMATION BY ENTIRE FUNCTIONS
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1. INTRODUCTION

In 1927, Carleman [7] generalized the classical Weierstrass approximation
theorem by proving that every function Q(x) continuous for -« < x <  can be uni-
formly approximated by an entire function. It is the purpose of the present paper to
present several extensions of the Carleman theorem and to point out some of their
applications. For the sake of completeness, a brief proof of the Carleman theorem
is given in Section 2.

The first extension (Section 3) concerns the approximation of a function Q(z),
continuous on a subset C of a domain D, by a function f(z) analytic in D; C is
chosen as the union of a family of disjoint open arcs ¢, (n=1, 2, --.) approaching
the boundary of D individually and as a family.

In Section 4 it is shown that if Q(x) has a continuous derivative for -o< x < «,
then an entire function f(z) exists such that both f(x) - Q(x) and f'(x) - Q'(x) tend to
zero arbitrarily rapidly as lx] > «0; in Section 5 this is applied to approximation of
paths by analytic paths.

The final section is devoted to the Dirichlet problem for the unit disc; existence
of a “solution” is proved for a general class of nonintegrable boundary values and
indeed for arbitrary measurable boundary values.

2. THE CARLEMAN APPROXIMATION THEOREM

THEOREM 1. Let Q(x) be a continuous complex-valued function of x for
~—0< X<, Let E(x) be continuous and positive for - < x <. Then there exists
an entive function £(z) (z = X + iy) such that |f(x) - Q(x)| < EX) for -o <x < o,

For this theorem, originally proved by Carleman [7], we give here a brief proof
suggested by M. Brelot in a private communication.

Select constants E;, (n=0, 1, 2, --*) such that
Ec=E,>E;>E;> "> E; > -,
0<E, <E(x) for n< |x|<n+1.

Let d, =Eny) - Epyp (n=-1,0, 1, --.). A sequence of polynomials f,(z) is then
chosen inductively as follows. First f,(z) is chosen (in accordance with the Weier-
strass theorem) so that |f,(x) - Q(x)| < d, for |x| < 1. When f,(z) has been chosen,
then a function gy (z) is defined as f,(z) for |z|<n+ 1 and as Q(x) for z real
and n+1+1/2< |x|<n+2 gny1(x) is also defined for n+ 1< |x|<n+ 1+ 1/2
so0 as to remain continuous for n+ 1< x| <n+ 2 and so that [gn4+1(x) - Qx)| <.dn

on these two intervals. By a theorem of Walsh ([14], p. 47), f,,,(z) can now be
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chosen so that |f,+1(z) - gn+1(@)| < dn+1 for Izlg n+1 and for y =0,
n+1< |x| < n+ 2. The sequence of polynomials thus constructed satisfies
conditions

|fn+1(@) - £0(2)| <dp4y1  for |z|<n+1,
| &x) - Q)| <dp-1+dn for n< |x|<n+1.
It follows that

£z) = £,(z) + %0 [£01(2) - £,2)]

is entire. Also, for n+ 1< |x]§ n+ 2,
|QE) - £6)] < [QE) - £116)| + [fn41 &) - £x)]
<dp+dpyy+dpgp+ =B < E(x).

Brelot has pointed out that the same proof is valid for approximation to
tinuous real function Q(x, y) by a function u(x, y, z) harmonic in all of spa
for approximation to a function Q(x,, .-+, X,) continuous for all (x,, *-+, Xp)
function u(x,, +-+, X4 ;) harmonic for all (x,, --+, X,41). Carleman remarke
Theorem 1 can be extended to approximation of a function Q(z), continuous
union of several paths leading to « in the z-plane, by an entire function. T
“several” was shown by Roth [13] to include families of paths of the power «
continuum, and important results on asymptotic paths of entire functions we
tained by her. Lavrentieff and Keldych [9] characterized completely the sul
of the complex plane with the property that every function Q(z) continuous «
be approximated by an entire function f(z), with |[{(z) - Q(z)| approaching :
rapidly as desired as |z| > o0,

Theorem 1 can be regarded as an extension of the Weierstrass product
sentation of an entire function with prescribed zeros; the function f(z) is cc
to have given asymptotic behavior on the real axis, instead of preassigned 2
proof of Theorem 1'is also analogous to that of the Weierstrass theorem. £
shown by Bernstein [4] (see also [1] and [6], pp. 248-251), the rate of growtl
can be related to that of the entire function f(z).

3. APPROXIMATION IN A GENERAL DOMAIN

Just as the Weierstrass product expansion can be generalized to functio
lytic in a general domain ([5], p. 295), as opposed to entire functions, so ca
proof of Theorem 1 be adapted to such a case.

THEOREM 2. Let D be a domain in the z-plane, B ils boundary. Let
¢, (m=1,2 ) be a sequence of disjoint open avcs z =z (t) (-1 <t<
each approaching B as Itl > 1. Let at most a finite number of the c., inte
each compact subset of D. Let C be the union of the c,, as point sets, ant
be a complex-valued function defined and continuous on C; let E(z) be coni
and positive on C. Then there exists a function £(z), analytic in D, for wh
|f(z) - Q(z)| < E(z) on C.
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Proof. Choose a sequence of compact subsets A, of D such that A, is contained
in the interior of A, 41, U :f= 1An =D, and A, is bounded by a set B, which is the

union of a finite number of disjoint simple closed curves. For each m there exists a
least index n = n,, for which A, meet cy,. For k > ny,,, let rpy, 1, Sy, be the

smallest and largest t for which zp,(t) is in Ay; for k = ny,, let ¢y, i = U Zm(t)
for rp,x <t<sm,k; for k> ny,, let ¢y ik = U Zm(t) for rop K <t<rpy, k.1 and
for spm k-1 <t<sm k. Let Cy = U m Cm, k- Accordingly, Cy is the union of a

finite number of disjoint Jordan arcs, each of which is outside of A, _; except possi-
bly for one endpoint, so that each component of the complement of A, _; U Cy con-
tains at least one point of B. We can assume the A, chosen so that C, is nonvoid;
then C,, C,, -+« are also nonvoid. We choose E;, (n=0,1, 2, ---) so that E; = E,,
so that E;, > E_ ) for n> 0 and E, >0 as n >, and so that E, < E(z) on C,,.
Let d, = Epy) - Epy2 (n> -1). We can now choose a polynomial f,(z) such that
|f,(z) - Q(z)| < dy on C,. Let g, (z) be defined as fy(z) in A, and as Q(z) on C,,
except in the neighborhood of C, NA,, where g,(z) is defined so as to remain con-
tinuous and so that |g,(z) - Q(z)l < dy on C,. By a theorem of Walsh ([14], p. 47)
we can now choose a rational function f,(z) whose poles lie in B, and such that
|g.(z) - £,(z)| < d, in A, UC,. Proceeding inductively we obtain a sequence of ra-
tional functions f,(z), with poles in B and such that

ltn+1(@) - £,2) <dpy1  in Anyg,
ltni1@) - Q)| < dy +dpry1 on Cpyy.
Hence the function £(z) = £,(z) + = [£,41 (@) - f,(z)] is analytic in D, and on Cpy;
Q) - 1(2)| < [Q@) - fn41@)| + |fn41(2) - £(z)]
<dp +dpgp+ o0 = Epy < E(2).

Remark. The set C can be chosen with considerably greater generality, as in
the work of Roth [13], Lavrentieff and Keldych [9] and Mergelyan [10].

4. SMOOTH APPROXIMATION OF SMOOTH FUNCTIONS

If Q(x) is of class c(n) for 0 <x<1, then a direct application of the classical
Weierstrass approximation theorem yields a polynomial f(z) such that

10)x) - Q)| < ¢ for 0<x<1, k=0,1, -, n

for we need only choose a polynomial g(z) such that |g(x) - Q(n) x| < e (0 <x<1)
Then f(z) can be chosen as that solution of the differential equation d®w/dz™ = g(z)
for which £X)(0) = Q(%)(0) (k =1, ---, n - 1). A similar extension of Theorem 1 will
now be established for the case n = 1.

THEOREM 3. Let Q(x) be a complex-valued function, defined for - < x < o
and having a continuous devivative Q'(X) over this intevval. Let E(X) be continuous
and positive for -o < x < . Then theve exists an entive function f(z) (z = x + iy)
such that, for - < x <,
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i) - Qx)| < E®&), |f'®) - Q'®)| < E®X).

Proof. We first establish two lemmas.

LEMMA 1. Let E(X) be continuous and positive for 0 <x<w, Thent
exists a function E,(x) which is continuous for 0 <x < andis such that f
values of x

0<E,®)<E®/?2, | _BEOdt<EE/2.

Proof. We first choose a function r(x) of class C' for x > 0 such that
r'x)>0, rix)>-3EX), and r(x)>0 as r > +wo.
We then define
E,(x) = min [r'(x), E(x)/3].

Accordingly, E,(x) < E(x)/2 and

0

0< jx E,mat <[ ri®at=-re < Baye.

LEMMA 2. Let E,(x) be continuous and positive for -« < x < «, Let
E,x) = E,(-x), and let

k = J: E,(x)dx

be finite. Let A, B be complex numbers such that |A - B| < 2k. Then the
an entive function h(z) such that

|h'&)| < E (x) (-0 < x < ),

lim hi)= B, lim h(x) = A.
X - 400 X D =00

Proof. It A = B, we can take h(z) = A. Otherwise, let

|A - B| 1-r
S S A TPy

sothat 0<r <1 and 0< q< 1/2. By virtue of Theorem 1, we can choose
function hy(z) such that for all x

|hix) - E,(x)] < qE, ).

Then |hi(x)| < (1 + Q)E,(x), so that

0

lim hy(x) = j hi(x)dx + h(0) = B,,

X > +00 0
-0

x};@w ho(x) = -[0 hi{(x)dx + h(0) = A,
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exist. Furthermore, % [h(x)] > (1 - q)E,(x), so that

|40 - Bo| = || nyeoax| > [ omyen ax> 20 - @)

~-00 =00
It follows that constants a, b can be chosen such that
aA,+b=A, aB,+b=B.

We now set h(z) = ahy(z) + b, so that lim h(x)=B and lim h(x)=A. Also
X 400 X =00

_lA—B| 2rk _ r
|a|‘|AO_Bo|<2k(1-q)“1-q

Hence

r2 + 3r
TS E,(x) < E,(x).

0] < 15 6] < r 13, o) =

We now prove Theorem 3. We can assume without loss of generality that
E(x) = E(-x) for all x. Let E,(x) then be chosen in accordance with Lemma 1, and
define E, for negative x so that E,(x) is also even. By Theorem 1 we can choose
an entire function f,(z) such that |f,(x) - Q'(x)| < E,(x). We set

gx) =I o[fl(t) - Q'(t)] dt.

Then, by the choice of E,(x), the function g(x) has finite limits B as x approaches
+0 and A as X approaches -«, and

|A - B| <f E,(x)dx = 2k.

We now choose a function h(z) in accordance with Lemma 2, and let
2
@) =] £,0)dz + QO - n2).

Then

|f'&x) - Q'&®)| = |f,&x) - Q'®) - h'(x)| < E;(x) + E,(x) < E(x),
lim [f(x) - Q )] = lim{| [f,(t)-Q'(t)]dt - h(x)} =B - B=0.
X =400 X< 00 0

Hence for x> 0

f(x) - Qx) = f [£(t) - Q ()] dt,

|£(x) - Q)| <f 2E,(t)dt < E(x).

47
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Similarly, this inequality holds for x < 0, and the theorem is proved.

Remark. The preceding proof carries over without essential change to
of a function Q defined on a locally rectifiable simple path C from « to «
Q has a continuous derivative with respect to arc length on C. Approximat
function Q defined on several curves leads to difficulties, namely in constr
analogue of h(z). However, it appears probable that the theorem can be so
ized.

5. ANALYTIC APPROXIMATION OF CURVES

From Theorem 1 we deduce at once that a continuous path w = Q(t) (-«
can be approximated as closely as desired by an entire function w = f(z):

() - QU] < E@®) (-0 < t < w),

for a given positive and continuous E(t). If the path w = Q(t) has unique en
i.e., if Q(t) has a limit (in the extended plane) as t > +» and as t > -~ —a;
tends to 0 as t > and as t > -, then for the entire function f(z) the res:
an asymptotic path in both directions. This is the basis of the work of Roth
w = Q(t) displays complicated behavior as t-> +w, then w = f(z) has corres
complicated behavior on the real axis. For example, w = Q(t) can be chose
the finite w-plane (as a Peano curve), each value w being taken on a sequer
points t,(w) (|tn(W)|> «); the corresponding curve w = f(t) will hence be d
the extended plane; the real axis is then a “path of complete indeterminatio:
f(z). Corresponding results hold for systems of curves, as in Theorem 2 al
as in the work of Roth [13], and of Bagemihl and Seidel [2], [3].

If the path function Q(t) has a continuous derivative Q'(t), then Theorei
that one can choose f(z) so that Q(t), Q'(t) are approximated as closely as
by f(t), £'(t). It is of interest to remark that if the path w = Q(t) is a homec
image of the t-axis, then the same applies to the path w = £(t):

THEOREM 4. Let w = Q(t) be a complex-valued function defined and h
continuous devivative Q'(t) # 0 for -o <t < «; let w = Q(t) define a home
ism of the t-axis into the w-plane. Let E(t) be continuous and positive for
Then theve exists an entirve function w = £(z) such that

l1®) - Q)| < E@®), |£'®) - Q'(t)| < E(t),

and the path w =£(t) (-~ <t < ) is also a homeomorphic image of the t-a

Proof. First we remark that there exist an open set D containing the
w=Q() (w=u +iv) and a homeomorphism of D:

x=Fu,v), y= G(u, v)
onto an open set D, in the xy-plane, where F and G are of class C',
a(F, G)/at, v) # 0,

and w = Q(t) is mapped on the point x =t, y = 0. This is proved by piecing
homeomorphisms, as was done by Morse ([11], pp. 108-110).

Now along w = Q(t)
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a=1= (5 )0 )

du

It follows from the continuity of the functions appearing that we can choose E,(t)
continuous, positive, and such that

Q) - Q)| < E 1), 1Q'@®) - Q)| < Ej(t) (-0 <t < o)

imply that, for each t, w = Q,(t) isin D and

9% [(gz + 1aF)_—5] > 1/2,

where the partial derivatives are evaluated at u + iv = Q,(t); that is, dx/dt>1/2 on
the path w = Q,(t). Since x increases steadily on the path w = Q,(t), the mapping
w = Q,(t) must be a homeomorphism of the t-axis into D.

Let E,(t) = min[E(t), E,(t)]. Then by Theorem 3 we can choose an entire func-
tion f(z) such that

li®) - Q)| < E,t),  [|£'(t) - Q' ®)I< E,(t)

for all t. Hence also the path w = f(f) (-0 <t < ») is a homeomorphic image of the
t-axis.,

Remark. The condition that the mapping w = Q(t) of the t-axis be a homeomorph-
ism permits paths of considerable complexity; e.g., the path may spiral towards a
closed curve, or it may oscillate towards a segment as does the curve y = sin (1/x).
If the path tends to « as t-> 4o, then the approximating smooth path w = f(t) must
do the same. Thus a domain H bounded by a simple curve w = Q(t) tending to < in
both directions can be arbitrarily closely approximated by a domain H, whose
boundary is w = f(t), where f is entire; for the homeomorphism Q(t) can be ap-
proximated by a homeomorphism Q,(t) of class C' and then, by the theorem above,
by an entire homeomorphism.

6. THE DIRICHLET PROBLEM

In 1925 R. Nevanlinna [12] established the following existence theorem:

THEOREM 5. Let Q(x) be a continuous veal-valued function of X for -o< x < o,
Then there exists a function u(x, y), harmonic for y > 0, and such that, for every
X, U, y)> Qx,) as (x, y)> (x4, 0).

Thus the Dirichlet problem for a half-plane, with continuous boundary values, can
always be solved. The solution is not unique, for u(x, y) + v(x, y) is also a solution,
provided v is the imaginary part of an entire function £(z) = Za z", with a, real.

Theorem 5 is a covollary of Theovem 1. For we can choose an entire function
£,(z) = u,(x, y) + iv,(x, y) such that |f,(x) - Q)| < 1 for - < x < «. Hence
Q,(x) = Q(x) - u,(x, 0) is continuous, and |Q,{x)| < 1 for all x. We can solve the
Dirichlet problem for the hali-plane with boundary values Q,(x) by the Poisson
integral; let u,(x, y) be the solution. Then u(x, y) = u,(x, y) + u,(x, y) is harmonic
for y > 0 and has boundary values Q(x).

The same reasoning applies to the analogous Dirichlet problem in higher dimen-
sions. As the following theorem shows, one can also establish the existence of solu-
tions for more general boundary values.
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THEOREM 6. Let C be an open subsel of the civcumference K: |z| =
C is the union of disjoint open avcs c, (n=1, 2, +-+). Let Q(z) be a real
Sunction defined on C and integrable on each c,. Then there exists a func
harmonic for |z| < 1 and such that u(re*f) > Q(eif) as r > 1, almost eve
in C. Moreover, u can be represented as follows:

2T

(1) u(reif) = u,(reib) +%J Q(eid) 1-rf
0

1 +r2-2r cos(¢p - 9)d¢’

wheve u, is harmonic for |z| <1, for |z| > 1, and on C, and Qz(eie) is
on [0, 27].

Proof. Since Q is integrable on each c,, we can choose a function Q
fined and continuous on C, and such that the integral of |Q(z) - Qo(z)| on
than 27", Let D be the domain consisting of the finite z-plane minus the
of C relative to K. As a consequence of Theorem 2 we can choose a func
harmonic in D and such that |u1(z) - Qo(z)l <1 on C. Let Q,(z)=Q(z) -
z in C, and let Q,(z) =0 for z in K - C. Then

f |Qa2)|d6 < f u,(2) - Qqo(z)|do + f |Qu(2) - Qz)|d6 < m(cy)

Cn Cn Cn
Hence Q,(z) is integrable on C, and the corresponding Poisson integral r
a function u,(z) harmonic for le < 1 and such that u,(reif) > Q,(eif) air
where on C, as r> 1. The function u(z) = u,(z) + u,(z) is then harmonic .
and has boundary values u,(z) + Q,(z) = Q(z) almost everywhere on C. Tk
the theorem.

If C has measure 2w, we can state simply: u(reif) > Q(reif), as r »
everywhere. Even in this case the boundary function Q(z), although meas
K, is not in general integrable on K. This suggests the conjecture that, fq
measurable function Q(z) on K, there exists a solution (not unique) of the
problem: i.e., a function u(z) with radial limits equal to Q(eif) almost «
where. Such a solution does indeed exist. For there exists a function F(z
uous for |z| < 1 and having Q(z) as radial limit almost everywhere. Tt
from the fact that arctan Q(z) is an integrable function for which the Diri
lem has a solution U(z); we take F(z) = tan U(z). Let E be an Fy set of
gory on |z| = 1. Then by results of Roth ([13], p. 124) and Bagemihl and S
p. 188) there exists a harmonic function u(z) in |z| < 1 such that u(z) - 1
radial Ilimit O on E. Now E can be chosen to have measure 27. With suc
u(z) - F(z) has radial limit 0 almost everywhere. Since F(z) has radial 1
almost everywhere, it follows that u(z) also has radial limit Q(z) almost
where.

THEOREM 7. Let Q(z) be a veal-valued function, defined for |z|=1
uvable. Then theve exists a function u(z), havmonic for |z| <1, and suc
u(rei®) > Qelf), as r > 1, for almost all 6.

The crucial idea behind the proof above was pointed out to the author |
that every measurable function on [0, 27] is of Baire class at most 1 on a
measure 27 (see [8], p. 567).

The solution of the Dirichlet problem obtained in this way is not in ge1
sentable in the form (1)—i.e., as a Poisson integral plus a function with sc
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smoothness property on |z| = 1; in general the solution is unaffected by continuity of
Q along any portion of |z| = 1. In particular, one can thus not assert existence of
nontangential limits for u at any point of [z| = 1; such nontangential limits do exist
almost everywhere for (1), by virtue of familiar properties of the Poisson integral.
The “almost all 6” in Theorem 7 refers only to a set of first category; it is an open
question whether the theorem can be strengthened by enlarging this set.

In both of Theorems 6 and 7 the solution provided is not unique, and uniqueness
can not be expected unless some supplementary conditions are imposed. It would
be very desirable to obtain such conditions, and in general to determine a linear
correspondence between boundary functions Q and solutions u. More specifically,
let M be the space of all measurable functions on K, and let U be the space of all
functions harmonic for |z| < 1. We then seek a mapping T of M into U such that
TQ =u is a solution of the Dirichlet problem for boundary values Q, such that
T(c,Q, + ¢,Q,) = ¢,TQ, + ¢,TQ, for all constants c,, c,, and such that TQ is bounded
when Q is bounded. As remarked by R. K. Ritt, the existence of such a mapping
can be established by an argument employing a Hamel basis in M. However, one
would like to exhibit T explicitly and, moreover, to achieve some sort of continuity
properties. It would be of considerable value if this could be achieved for the class
M, corresponding to the functions of Theorem 5; one would then have the basis of an
operational calculus for arbitrary continuous functions on the infinite interval
-0 < X < oo,
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