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Normal Embeddings of Semialgebraic Sets

L ev Birbrair & Tadeusz Mostowsk i

1. Introduction

This paper is devoted to some metric properties of semialgebraic sets with singu-
larities. The metric theory of singularities considers sets as metric spaces. There
are several classification problems in this theory; here we consider the problem of
bi-Lipschitz classification.

Two metric spaces(X1, d1) and (X2, d2) are calledbi-Lipschitz equivalentif
there exist a homeomorphismF :X1→ X2 and two positive constantsK1 andK2

such that
K1d1(x, y) ≤ d2(F(x), F(y)) ≤ K2d1(x, y)

for everyx, y ∈ X1. The homeomorphismF is calleda bi-Lipschitz map. The
bi-Lipschitz classification is stronger than topological and weaker than analytical
classifications.

We can define two natural metrics on the same semialgebraic subset ofRn:
induced and length. The definition of the length metric came from differential
geometry (see, for example, [G]). It is defined as the infimum of lengths of piece-
wise smooth curves connecting two given points. The Lipschitz classification in
terms of the induced metric is more rigid: the equivalence in the induced met-
ric implies the equivalence in the length metric, but not inversely. There exists
a special type of sets—so-called normally embedded sets—such that these two
classifications are equivalent. A set isnormally embeddedif the induced metric
is equivalent to the length metric in the usual sense of metric spaces (see Defini-
tion 2.1). Every nonsingular compact semialgebraic subset is normally embedded,
but the converse is not true.

The main result of the paper is the following normal embedding theorem:Every
compact semialgebraic set is bi-Lipschitz equivalent to some normally embedded
semialgebraic set with respect to the length metric.It is a metric analog of the
normalization theorem [L] or of the desingularization theorem [H]. The proof is
based on the so-called pancake decomposition (Section 2) created by Parusinski
[P] and Kurdyka [K] (see also [KM] for details). Using a pancake decomposition
we can define the pancake metric (Section 3), a semialgebraic metric equivalent
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to the length metric. Then by the tent-procedure (Section 4), which is some sort
of blow-up, we obtain the result.

To relate this theorem to the problem of bi-Lipschitz classification, we formu-
late the following corollary:LetX be a compact semialgebraic set. LetLX be a
set of all semialgebraic sets bi-Lipschitz equivalent toX with respect to the length
metric. We define a semiorder relation onLX in the following way: X2 ≺ X1 if
there exists a mapF :X1→ X2 bi-Lipschitz with respect to the length metric and
Lipschitz with respect to the induced metric. ThenLX contains a unique(up to
a bi-Lipschitz equivalence with respect to the induced metric) maximal element.
This element is normally embedded.The local two-dimensional version of this
proposition is actually stated in [BS].

All theorems and propositions hold true for subanalytic sets. The proofs are the
same.

2. Normal Embedding of Semialgebraic Subsets

LetX be a semialgebraic connected subset ofRn. Since every connected semial-
gebraic set is arcwise connected, we can define the two following metrics onX.

The first is theinduced metricfromRn, which we denote byd ind. The second is
thelength metric(or internal metric), defined as follows. Letx1, x2 ∈X, and let0
be the set of all piecewise smooth curvesγ connectingx1 andx2 (i.e.,γ : [0,1]→
X such thatγ (0) = x1, γ (1) = x2); definedl(x1, x2) = infγ∈0 l(γ ), wherel(γ )
means the length ofγ.

Definition 2.1. The setX is callednormally embedded inRn if the metricsd ind

anddl are equivalent. It means that there exists a constantC > 0 such that, for
eachx1, x2 ∈X, we havedl(x1, x2) ≤ Cd ind(x1, x2).

Remark 2.1. In the same way, we can define the normal embedding in every
stratified arcwise connected subsetY ⊂ Rn. Observe that ifX is normally embed-
ded inY andY is normally embedded inZ, thenX is normally embedded inZ.

Definition 2.2. The setX is calledlocally normally embedded at the pointx0 ∈
X if there exists a ballBx0,r centered atx0 and of radiusr such that the setBx0,r∩X
is normally embedded. In other words, we say that the germ ofX atx0 is normally
embedded or the pair(X, x0) is normally embedded.

Definition 2.3. LetX be a semialgebraic set, and letY ⊂ X. We say thatY is
relatively normally embedded inX if there exists a constantC > 0 such that, for
all x ∈X andy ∈ Y, we havedl(x, y) ≤ Cd ind(x, y).

Remark 2.2. LetX =⋃k
i=1Yi, and let eachYi be relatively normally embedded

in X. ThenX is normally embedded.

Proposition 2.1. LetX be a compact set locally normally embedded at each
pointx ∈X. ThenX is normally embedded.
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Example 2.1. Every compact smooth submanifoldX of Rn is normally em-
bedded.

Example 2.2. The standard cuspX = {(x1, x2) ∈ R2 | x3
1 = x2

2} is not nor-
mally embedded at 0. To see this, consider a sequenceti = 1/i and the points
xi = (ti , t3/2

i ) andyi = (ti ,−t3/2
i ). Then we havedl(x i, y i) = 2ti + o(ti), but

d ind(x
i, y i) = 2t3/2

i . This means thatdl(x i, y i) cannot be estimated from above
byCd ind(x

i, y i).

Example 2.3. A standardβ-horn(β ≥ 1) (see [B])

Hβ = {(x1, x2, y)∈R3 | (x2
1 + x2

2)
q = y2p; y ≥ 0; β = p/q; p, q ∈N}

is normally embedded.

Example 2.4. A standardβ-Holder triangle(β ≥ 1) (see [B])

Tβ = {(x, y)∈R2 | y ≤ xβ; y ≥ 0; 0 ≤ x ≤ 1}
is normally embedded. (The proof of this fact is straightforward.) A doubleβ-
Holder triangle

DTβ = {(x, y)∈R2 | |y| ≤ xβ, 0 ≤ x ≤ 1}
is also normally embedded.

Example 2.5. Consider a subsetX of R3 defined in the following way. LetHβ
be a standardβ-horn and letPx1:Hβ → R2 be a projection:Px1(x1, x2, y) =
(x2, y). Clearly,Px1(Hβ) = DTβ. Let β1 > β; thenDTβ1 ⊂ DTβ. DefineX =
Hβ − Int(P−1

x1
(DTβ1)). By the same arguments as in Example 2.2, we obtain that

X is not normally embedded.

Proposition 2.2 (Pancake Decomposition) [K; KM; P].LetX ⊂ Rn be a closed
semialgebraic set. Then there exists a finite set of subsets{Xi} such that:

(1) all Xi are semialgebraic closed subsets ofX;
(2) X =⋃i Xi;
(3) dim(Xi ∩Xj) < min(dimXi,dimXj) for everyi 6= j ; and
(4) Xi are normally embedded inRn.

We shall call these setsXi pancakesand a decomposition satisfying conditions
(1)–(4) will be calleda pancake decomposition.

Remark 2.3. This result is due toA. Parusinski. Another proof was given in [K];
this proof is presented (for openX being the essential case) in [KM]. In general,
L-regular sets from [P] have some additional properties. Namely, eachL-regular
set is normally embedded but not vice versa. Here we shall use only the properties
(1)–(4) just described.

Our main result is the following.
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Theorem 2.1. LetX be a compact connected semialgebraic subset ofRn. Then,
for everyε > 0, there exists a semialgebraic setXε ⊂ Rm such that:

(1) Xε is semialgebraically bi-Lipschitz equivalent toX with respect to the length
metric;

(2) Xε is normally embedded inRm; and
(3) the Hausdorff distance betweenX andXε is less thanε.

3. Pancake Metric

Let X ⊂ Rn be a closed connected semialgebraic set. Let{Xj }N1 be a pancake
decomposition ofX. Considerx1, x2 ∈ X, and let{y1, . . . , yk} be a sequence of
points satisfying the following conditions:

(1) y1= x1 andyk = x2;
(2) every coupleyi, yi+1 lies in one pancakeXj ; and
(3) if yi, yi+1∈Xj, thenys /∈Xj for s 6= i, s 6= i +1.

Denote byYx1,x2 the set of all finite sequences satisfying conditions (1)–(3). For
every sequencey = {y1, . . . , yk} ∈ Yx1,x2, we setl(y) =∑k

i=2 d ind(yi, yi−1) and
(finally) we put

dp(x1, x2) = inf
y∈Yx1,x2

l(y).

Note thatX, being semialgebraic and connected, is actually arcwise connected;
hencedp(x1, x2) is well-defined for any couple(x1, x2) (see the proof of Theo-
rem 3.2 to follow). We calldp thepancake metric.

Theorem 3.1. The functiondp:X×X→ R is semialgebraic and defines a met-
ric in X.

This was actually proved in [KO]; we recall the argument for convenience. We
shall need the following lemmas.

Lemma 3.1. There existsK > 0 such that, for anyx1, x2 ∈X, we have

dp(x1, x2) ≥ Kdl(x1, x2).

Proof. LetK = minKj, whereKj is a constant corresponding to the pancakeXj
(see Section 2). Thus, for everyy = {y1, . . . , yk} we have

d ind(yi, yi−1) ≥ Kdl(yi, yi−1).

Hence

dp(x1, x2) ≥
k∑
i=2

Kdl(yi, yi−1) ≥ Kdl(x1, x2),

and the lemma is proved.

Lemma 3.2. For everyx1, x2 ∈X, there existsy ∈ Yx1,x2 such thatdp(x1, x2) =
l(y).
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Proof. A subsequence of pancakes{Xi} ⊂ {Xj }N1 is calledadmissible(for x1, x2)

if there existsy = {y1, . . . , yk} ∈ Yx1,x2 such thatyi ∈ Xi. It is enough to prove
that, for any admissible subsequence of pancakes{Xi}, there exists̃y ∈ Yx1,x2 such
that ỹi ∈ Xi andl(ỹ) = min{l(y) | y ∈ Yx1,x2, yi ∈ Xi}. Consider a closed ball
Bx1,2dp(x1,x2) = B centered at the pointx1 and of radius 2dp(x1, x2). Let X̃i =
Xi ∩Xi+1∩B (herei = 2, . . . , k−1; {Xi} is the fixed admissible subsequence of
pancakes). We define the functionl̃: X̃ × · · · × X̃k−1→ R by l̃(y1, . . . , yk−1) =
l(y), wherey = {x1, y2, . . . , yk−1, x2}. The functionl̃ is continuous and defined
on a compact set̃X2 × · · · × X̃k−1. Thus, there exists̃y ∈ Yx1,x2 such thatỹi ∈ X̃i
andl(ỹ) = min{l(y) | y ∈ Yx1,x2, yi ∈ X̃i} (i = 2, . . . , k −1).

The sequencey ∈ Yx1,x2 such thatdp(x1, x2) = l(y)we calla minimizing sequence
corresponding tox1, x2.

Corollary 3.1. The pancake metric is a semialgebraic function defined on
X ×X.
This follows from the quantifier elimination theorem of Tarski and Seidenberg and
the fact that the graph ofl is semialgebraic.

Proof of Theorem 3.1.Let us prove now thatdp is a metric. The first two axioms
of a metric follow immediately from the definition ofdp and Lemma 3.1.

To prove the triangle inequality, consider three pointsx1, x2, x3 ∈X. Let y1 =
{y1

1, y
1
2, . . . , y

1
k1} ∈ Yx1,x2 be a minimizing sequence corresponding tox1, x2, y

2 =
{y2

1 , y
2
2, . . . , y

2
k2} ∈ Yx3,x2 a minimizing sequence corresponding tox3, x2, and

y3 = {y3
1 , y

3
2, . . . , y

3
k3} ∈ Yx1,x3 a minimizing sequence corresponding tox1, x3.

Thus the sequencez = {y3
1 , y

3
2, . . . , y

3
k3, y

2
1 , y

2
2, . . . , y

2
k2} = {z1, z2, . . . , zk3+k2}

satisfies the conditions of the definition of a pancake metricdp(x1, x2), except
possibly condition (3). To improve it we use the following simplification proce-
dure. If two nonconsecutive points in the sequencey3 belong to the same pancake
Xj, then we skip all points lying in between. Repeating this simplification pro-
cedure a finite number of times, we obtain a sequencez ∈ Yx1,x3. By the triangle
inequality, for the induced distance we have

dp(x1, x3) ≤ l(z) ≤ l(y3) = l(y1)+ l(y2) = dp(x1, x2)+ dp(x2, x3).

Theorem 3.1 is proved.

Theorem 3.2. The pancake metric is bi-Lipschitz equivalent to the length metric.

Proof. Let y ∈ Yx1,x2 be a minimizing sequence corresponding tox1, x2 ∈X. Let
{Xi}k−1

1 be an admissible sequence of pancakes corresponding toy. Since each
Xi is a pancake, there exists a piecewise smooth pathηi : [0,1] → Xi such that
ηi(0) = yi, ηi(1) = yi+1, andl(ηi) ≤ K(Xi)d ind(yi, yi+1), wherel(ηi) denotes
the length ofηi. Let η = η1η2 · · · ηk−1 (the usual product of paths); thenl(η) =∑k−1

i=1 l(ηi). LetK = maxi K(Xi). We thus have

dl(x1, x2) ≤ l(η) ≤ K
k−1∑
i=1

d ind(yi, yi+1) = Kdp(x1, x2).
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Let γ : [0,1] → X be any piecewise smooth path connectingx1 andx2, and
define the following sequence of pointsyi ∈ Yx1,x2. Puty1= x1. The pointy1 be-
longs to some pancakeXi1. Definet2 = sup{t | γ (t)∈Xi1}. If x2 /∈Xi1 thent2 6=
1. Let y2 = γ (t2), and suppose thaty2 ∈ Xi1∩ Xi2. Definet3 = sup{t | γ (t) ∈
Xi2} andy3 = γ (t3). The number of pancakes is finite, so this process will stop
for someyk = x2. Clearly,y = {y1, y2, . . . , yk} ∈ Yx1,x2 andl(γ ) ≥ l(y). Since
γ is an arbitrarily chosen curve, we are led to the inequality

dl(x1, x2) ≥ dp(x1, x2).

Theorem 3.2 is proved.

4. Tents and Tent Procedure

Let X be a compact connected semialgebraic set, and let{Xi}Ni=1 be a pancake
decomposition ofX. Consider the functionρi :X → R defined byρi(x) =
dp(x,Xi), wheredp is the pancake distance. Let0i ⊂ Rn+1 denote the graph
of ρi, and put

µi(x) = (x, ρi(x)).
Proposition 4.1. The mappingµi :X→ 0i has the following properties.

(1) µi is a bi-Lipschitz map with respect to the length metrics onX and on0i.
(2) µi(Xj ) is a pancake inµi(X); in other words,{µi(Xj )}Nj=1 is a pancake de-

composition ofµi(X).
(3) µi(Xi) is relatively normally embedded inµi(X).

Proof. (1) Recall that, in any metric space, the distance to a fixed set is a Lipschitz
function. Soρi is Lipschitz with respect to the pancake metric and, by Theo-
rem 3.2, also with respect to the length metric. Thus,µi is Lipschitz with respect
to the length metric. Note thatµ−1

i =
(
π
∣∣
0i

)
, whereπ is a projection on the first

n coordinates. Hence,µ−1
i is Lipschitz with respect to the length metric.

(2) There exists a constantB, depending only onn, such that

max{d ind(x1, x2), |ρi(x1)− ρi(x2)|} ≤ Bd ind(µi(x1), µi(x2))

for anyx1, x2 ∈Xj . SinceXj is a pancake, we obtain

dl(x1, x2) ≤ Ld ind(µi(x1), µi(x2))

for someL > 0. By (1), the mappingµi is bi-Lipschitz; hence,

dl(µi(x1), µi(x2)) ≤ Kd ind(µi(x1), µi(x2))

for someK > 0 and anyx1, x2 ∈Xj .
(3) We shall prove that there exists a constantK > 0 such that

dl(µi(x), µi(y)) ≤ Kd ind(µi(x), µi(y))

for anyx ∈Xi andy ∈X. Indeed, by (1), it is enough to find aK1 > 0 such that

dl(x, y) ≤ K1d ind(µi(x), µi(y)).
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Suppose thatρi(y) ≤ d ind(x, y), and consider̃x ∈ Xi such thatρi(y) =
dp(x̃, y). By the definition of a pancake metric, we have

dp(x, y) ≤ d ind(x, x̃)+ dp(y, x̃).
Sincedp(y, x̃) = ρi(y) ≤ d ind(x, y) we obtain, by the triangle inequality,

d ind(x, x̃) ≤ 2d ind(x, y)

and thus
dp(x, y) ≤ 3d ind(x, y).

Hence, by Theorem 3.2,

dl(x, y) ≤ 3Cd ind(µi(x), µi(y)),

whereC > 0 is a constant satisfyingdl ≤ Cdp.
Suppose now thatρi(y) > d ind(x, y). As before, forx̃ ∈Xi such thatρi(y) =

dp(x̃, y) we have

dp(x, y) ≤ dp(y, x̃)+ d ind(x, y)+ d ind(x̃, y) ≤ 3dp(x̃, y).

On the other hand,

ρi(y) ≤ max{d ind(x, y), ρi(y)} ≤ Bd ind(µi(x), µi(y))

for someB > 0 depending only onn. Hence,

dp(x, y) < 3Bd ind(µi(x), µi(y)).

By the equivalence of length and pancake metrics we obtain, as before,

dl(x, y) < Kd ind(µi(x), µi(y))

for someK1= 3Cmax{1, B}.
The setµi(X) we call ani-tent overX, and the mapµi we call i-tent procedure.

The following proposition is easy; the proof is the same as that of (2) in Propo-
sition 4.1.

Proposition 4.2. LetY ⊂ X be relatively normally embedded inX. Thenµi(Y )
is relatively normally embedded inµi(X).

Proof of the Main Theorem 2.1.Let us define the set̃X ⊂ Rn+k as follows.

(1) Fix some pancake decomposition{Xi}ki=1 of X.
(2) Apply 1-tent procedure toX, and putX̃0 = X andX̃1= µ1(X).

(2′) DefineX̃1
j = µ1(Xj ); then{X̃1

j }kj=1 is a pancake decomposition if̃X1

(by Proposition 4.1).
(i +1) DefineX̃i = µi(X̃i−1).

((i +1)′) DefineX̃ij = µi(X̃i−1
j ).

PutX̃ = X̃k.
In the final step we obtain a decompositionX̃ = ⋃k

i=1 X̃
k
j . By Proposition 4.2,

all X̃kj are relatively normally embedded. Hence, by Remark 2.2,X̃ is normally
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embedded inRn+k. It follows from Proposition 4.1 that̃X is semialgebraically
bi-Lipschitz equivalent toX with respect to the length metric.

To prove thatX̃ can be chosen close toX (in the sense of Hausdorff distance),
it is enough to replaceρi (in the tent construction) byδ · ρi, with δ small. For ex-
ample,δ = ε/(k · diamdp X), wherek is the number of pancakes and diamdp X is
the diameter ofX with respect to the pancake metric.

Acknowledgment. We would like to thank Krzysztof Kurdyka for very useful
discussions and comments.
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