Michigan Math. J. 48 (2000)

The Topology of Smooth Divisors and
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We have three main results. First, we show that a smooth complex projective vari-
ety that contains three disjoint codimension-1 subvarieties in the same homology
class must be the union of a whole 1-parameter family of disjoint codimension-1
subsets. More precisely, the variety maps onto a smooth curve with the three given
divisors as fibers, possibly multiple fibers (Theorem 2.1). The beauty of this state-
ment is that it fails completely if we have only two disjoint divisors in a homology
class, as we will explain. The result seems to be new already for curves on a sur-
face. The key to the proof is the Albanese map.

We need Theorem 2.1 for our investigation of a question proposed by Fulton as
part of the study of degeneracy loci. Suppose we have a line bundle on a smooth
projective variety that has a holomorphic section whose divisor of zeros is smooth.
Can we compute the Betti numbers of this divisor in terms of the given variety and
the first Chern class of the line bundle? Equivalently, can we compute the Betti
numbers of any smooth divisor in a smooth projective variétin terms of its
cohomology class if?(X, Z)?

The pointis that the Betti numbers (and Hodge numbers) of a smooth divisor are
determined by its cohomology class if the divisor is ample or if the first Betti num-
ber of X is zero (see Section 4). We want to know if the Betti numbers of a smooth
divisor are determined by its cohomology class without these restrictions. The
answer is “no”. In fact, there is a variety that contains two homologous smooth
divisors, one of which is connected while the other is not connected. Fortunately,
we can show that this is a rare phenomenon: if a variety contains a connected
smooth divisor that is homologous to a nonconnected smooth divisor, then it has
a surjective morphism to a curve with some multiple fibers, and the two divisors
are both unions of fibers. This is our second main result, Theorem 5.1.

We also give an example of two connected smooth divisors that are homolo-
gous but have different Betti numbers. Conjecture 6.1, suggested by this example,
asserts that two connected smooth divisors in a smooth complex projective vari-
ety X that are homologous should have cyclic etale coverings that are deformation
equivalent to each other. The third main result of this paper, Theorem 6.3, is that
this conjecture holds, in a slightly weaker form (allowing deformations into pos-
itive characteristic), under the strange assumption that the Picard varigtysof
isogenous to a product of elliptic curves. The statement in general would follow
from a well-known open problem in the arithmetic theory of abelian varieties,
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Conjecture 6.2: For any abelian varietyover a number field", there are infin-
itely many primes of the ring of integers such that the finite groug(og/p)
has order prime to the characteristic of the fieldp.

| am grateful to Bill Fulton for asking the right question. Brendan Hassett found
an elegant example related to these questions, a version of which is included in
Section 2.

1. Notation

If X is a smooth algebraic variety, them&isor is an element of the free abelian
group on the set of codimension-1 subvarietieX of Varieties are irreducible by
definition.) In other words, a divisor is a finite sum a; D;, where thes; are in-
tegers and th®, codimension-1 subvarieties &f. An effectivedivisor is such a
sum with every integet; nonnegative. Amoothdivisor is a sum _ D; with each
subvarietyD; smooth andD; disjoint from D; for i # j. Thesupportof a divi-
sor " a;D; is the union of the subvarietidd; with a; # 0. An effective divisor
is connectedf it is not zero and its support is connected.

Let X be a smooth complex projective variety of dimensigrand letH be a
fixed ample divisor orX. Throughout this paper, we use the intersection pairing
on divisors defined by

(D,Ey=D-E-H"?€Z.

We often use the easy fact thafifandE are effective divisors with noirreducible
component in common thefD, E) > 0, with equality if and only if D and E

are disjoint. We also use the Hodge index theorem for divisors: The symmetric
bilinear form (D, E) on the group of divisors modulo homological equivalence,
tensored with the real numbers, is nondegenerate with signdtuse— 1). This
follows from the Hodge—Riemann bilinear relations [4, p. 123].

Alternatively, using the Lefschetz hyperplane theorem, the foregoing Hodge
index theorem for divisors follows from the Hodge index theorem for divisors on a
surface, applied to a surfaceXhwhich is the intersection of — 2 divisors that are
linearly equivalent to multiples off. This proof has the advantage that it works
for varieties over fields of any characteristic, using etale cohomology.

2. Characterization of Varieties That Fiber over a Curve
We prove a little more than was stated in the introduction.

THEOREM 2.1. Let X be a smooth complex projective variety. 2t ..., D,,

r > 3, be connected effective divisaiisot zerg that are pairwise disjoint and
whose rational cohomology classes lie in a ling48(X, Q). Then there is a map
f: X — C with connected fibers to a smooth cuWesuch thatDy, ..., D, are
all positive rational multiples of fibers of. In fact, there is only one map with
these properties.
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In this statement, and in the rest of the paperfifX — C is a map from a
smooth variety onto a smooth curve, then a “fiber’fdg defined to be the divisor
£ ~X(p) for a pointp in C, that is, the sum of the irreducible components of the
set f ~1(p) with multiplicities. To compute the multiplicity of a given irreducible
componentD in the divisor f ~(p), let z be a local coordinate function on the
curve that vanishes atand compute the order of vanishing of the composed func-
tion z(f) along the divisorD. In particular, if the divisorf ~X(p) equalsaD for
some smooth irreducible divisd and some integer > 2, we call D asmooth
multiple fiberof f.

Interestingly, the theorem becomes false if we have only two disjoint homolo-
gous divisorsD; and D,, as shown by the following example.

ExampLE. Let D be any curve of genus at least 1, andlldbe a line bundle of
degree 0 orD that is not torsion in Pi®. Let X be the ruled surfac®(O & L)
over D. ThenX contains two copies ab, call themD; and D, at zero and in-
finity: they are disjoint smooth curves and are homologous to each other. But then
the conclusion of Theorem 2.1 fail€; and D, are not fibers or multiple fibers
of any map ofX to a curve. Indeed, if : X — C is a map withf ~*(point) =
aD; for some positive integer, then the normal bundle db; must bea-torsion
in Pic D;. But in this exampleD; has normal bundl&, which we assumed is not
torsion. Thus Theorem 2.1 would be false foe= 2. This example was used for
essentially the same purpose by Kollar [8].

Brendan Hassett found that the failure of Theorem 2.1 if we have only two dis-
joint homologous divisors is not at all restricted to ruled varieties. The following
example is a variant of his.

ExampLE. LetY be any smooth projective variety of dimension at least 2, with
HY(Y, Q) # 0; thus Pig(Y) is a nontrivial abelian variety. If a line bundle is
ample, then it remains ample upon adding an element @f( Pjc soY contains
two smooth ample divisor®; and D, that are homologous but differ in Pit
by a nontorsion element of RiEY). We can also arrange that; intersectsD,
transversely.

Let X be the blow-up o along the smooth codimension-2 subschdém@ D.
Then D; and D, become disjoint inX, and they are still homologous. The nor-
mal bundle ofD; in X is the restriction ofD; — D, € Picy(Y) to D;. By the
Lefschetz hyperplane theorem, sincenas dimension at least 2, the restriction
mapH(Y, Q) — H(D4, Q) is injective and so the restriction map Bi&) —
Pico(D1) has finite kernel. Sinc®, — D5 is nontorsion in Pig(Y), the normal
bundle of D; in X is nontorsion in Pig(D1). So Theorem 2.1 again fails here if
we have only two divisor®1, D.

Proof of Theorem 2.1Write D for a resolution of singularities of the reduced
divisor underlyingD;, so thatD; is a disjoint union of smooth varieties.
The proof is in two cases, depending on whether the map

HYX,Q) - HYD1, Q) (*)
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is injective. The amazing thing is that if this map is injective then we can con-
struct a map fronX to P, and if it is not injective then we can construct a map
from X to a curve of genus at least 1. This dichotomy was used in a special case
by Neeman [11, pp. 109-110].

First, suppose the mgp) is injective. Then the map of abelian varieties

Pico(X) — Pico(Dy)

has finite kernel. (Here Pi¢D;) means the product of the Picard varieties of the
connected components 0f,.) Since the divisord, and D3 on X are in multi-
ples of the same rational cohomology class, there are positive integarslas
such thati,D» — azD3 = 0 in H?(X, Z); equivalently, the divisoti, D> — az D3
defines an element of R§EX). SinceD; is disjoint from D, and D3, the divisor
classap D, — a3 D3 restricts to zero in Pi®; and hence in Pi®;. Since the map
above has finite kernel, there are larger positive intebgrs; such that

boDy —b3D3=0¢ PICQ(X)

That is, the effective divisors,D, andb3zD3 are linearly equivalent. Since
these divisors are disjoint, there is a map

g: X —» Pt

with g7%(0) = b,D» andg~%(co) = baDs. This essentially solves the problem.
The full conclusion of Theorem 2.1in this case (i.e.,forinjective) follows from
the next lemma, whose proof we postpone until Section 3.

LemMma 2.2. Let X be a smooth complex projective variety of dimensipand
let H be an ample divisor oiX. Let D; be a connected effective divis@rot zerg
on X, and suppose thatDy, D1) = D? - H"~2 is zero. Suppose there is a map
from X onto some possibly singular curve that mdpsto a point. Then there is
amapf: X — C onto a smooth curv€ such thatf has connected fibers and
D1 is a positive rational multiple of a fiber gf. Moreover, f is unique with these
properties.

Also, any connected effective divisor that is homologous to a rational multiple
of D, is a positive rational multiple of a fiber of.

Now we prove Theorem 2.1 in the other case, £ X, Q) — H(D1, Q) not
injective. We use this in the following form: the dual map of abelian varieties

Alb (Dy) — Alb(X)

is not surjective. (Of course, AllD;) means the product of the Albanese varieties
of the connected components bf.) There is a natural map from zero cycles of
degree 0 orX to Alb(X). Consider the map from X to the quotient abelian va-
riety AIb(X)/AIb(Dl) given byx — x — p for a chosen poinp in D;. For any
pointx € D1 (insideX), x — p e Alb (X) is a sum of differences, — x», wherex;
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and.x, are two points in the image of the same componempfsinceD; is con-
nected. So fox € Ds, the elemenk — p € Alb (X) lies in the image of AlD).
Thus the map

g: X — Alb(X)/Alb(Dy)

sendsD; to the point O.

Also, the image of generates the abelian variety Alb)/Alb (D,), and this
abelian variety is nonzero by our assumption. Hep©é) has dimension at least
1. In fact, it has dimension exactly 1, by the following argument. Ldde the
pullback of a hyperplane section @iX) to X. (Sinceg(X) is a subvariety of an
abelian variety, it is projective.) (X ) has dimension at least 2, then (in the no-
tation of Section 1) we have thék, L) = L? - H"~2 € Z is positive, since.? is
represented by a nonzero effective codimension-2 cycl€.olso, (L, D1) =0
since D1 maps to a point irg(X). So the Hodge index theorem (Section 1) im-
plies that(D1, D;) < 0. But in fact we know thaD; is homologous to a disjoint
divisor D5, so that(D;, D;) = 0, a contradiction. It follows that the variepy(X)
has dimension 1. Now we can apply Lemma 2.2 (to be proved in Section 3), and
Theorem 2.1 s proved. O

3. Proof of Lemma 2.2

We start with the given map: X — g(X) from a smooth projective variet{
onto a singular curve. Form the Stein factorization> C — g(X) as follows:
f: X — C has connected fiber§,is normal, andC — g(X) is finite [6, p. 280].
SinceC is normal, it is a smooth curve. The connected diviBgiin X maps to a
point in C because it maps to a point #(X).

Consider the intersection pairing on divisors discussed in Section 1,

(D,Ey=D-E-H"?€Z,

for a fixed ample divisoiH on X. For effective divisorsD and E with no irre-
ducible components in common, we have, E) > 0 with equality if and only if
D andE are disjoint. ThugD;, f~*(p)) = 0 for a general poinp in C. We can
now start to check the last statement of the lemma: for any connected effective di-
visor D that is homologous to a rational multiple bf, we have(D, f~(p)) =
0. HenceD is disjoint from f ~X( p) for general pointp in C; equivalently,f (D)
is a finite subset of'. SinceD is connectedf maps the divisoD to a point.

We now strengthen this statement to say that any connected effective divisor
that is homologous to a rational multiple b must be a positive rational multi-
ple of a fiber f ~X(p). (This is the last statement of Lemma 2.2.) The statement
will apply in particular toD, itself and is a consequence of the following lemma.
For curves on a surface (a case to which one can easily reduce via hyperplane sec-
tions), Beauville gives an elementary proof of this lemma in [2, pp. 122-123]. It
goes back to Enriques’s classification of surfaces with Kodaira dimension 0. For
completeness we give a proof here, using the Hodge index theorem.
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Lemma 3.1. Let X be a smooth projective variety that has a mapX — C
with connected fibers onto a smooth curve. Then any nonzero effective divisor
on X such that(D, D) = 0 which maps to a poinp in C must be a positive ra-
tional multiple of the divisorf ~X(p).

Proof. We will prove a bit more—namely, that any divisbr(not necessarily ef-
fective) with (D, D) = 0 that is supported irf ~X(p) is a rational multiple of
f~Xp). Theideaisthat, iff X(p) = X", a;E;, then the intersection forD, E)
on

R-Ei®R-E,®---

is negative definite except for a single zero eigenvalue. Indged,p) is ho-
mologous onX to any other fiber off, so it has 0 intersection number with each
E;. By the Hodge index theorem (Section 1), the intersection f@dnE) on the
subspace ofR-divisors onX/homological equivalence) that is orthogonal to a
nonzero element (here= f~Y(p)) with (A, A) = 0 is negative definite except
for a single zero eigenvalue, correspondingitiiself. Hence any divisob with

(D, D) = 0 and f(D) = p must be rationally homologous axi to a rational
multiple of £ ~(p).

In order to show thab is actually a rational multiple of ~X(p) as a divisor, it
suffices to check that the irreducible componditsEs, ... of £ ~X(p) are linearly
independent i/ 2(X, Q). If they are not, then some positive linear combination
of some of the; is homologous to a positive linear combination of a disjoint sub-
set of theE;. But then this homology class would have nonnegative intersection
number with eacltt;, as one sees immediately. Also, it has positive intersection
number with eaclFE; that intersects the first set @; without being contained
in it; such ankE; exists, because the union of thie (= f~(p)) is connected.
Therefore this homology class has positive intersection number fvithp) =
> a;E;, since all thez; are positive. This is a contradiction, singe’(p) has 0
intersection number with ever;. This proves that the irreducible components
E; of f~1(p) are linearly independent iH?(X, Q). O

We can now finish the proof of Lemma 2.2. By Lemma 3.1 and the earlier part of
this proof, we know that there is a mgias X — C with the properties we want:

f is a map with connected fibers onto a smooth curve, and the given diviser

a positive rational multiple of a fiber.

It remains to check that there is only one mamvith these properties. By Hi-
ronaka (later used by Mori), we know that maps with connected fibers from a
given projective varietyX onto normal projective varieties are uniquely charac-
terized by which curves iX map to a point [9, p. 235]. For a magpwith the
properties we want (a map froxi onto a smooth curv€ with connected fibers
such that the given divisab; is a rational multiple of a fiber), the positive ratio-
nal multiples of fibers off are characterized as those connected effective divisors
on X that are homologous to positive rational multiples/af. Thus f is deter-
mined byX andD;. O
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4. Some General Comments on the
Topology of Smooth Divisors

This section is not used in the rest of the paper. We will explain how the Betti
numbers (and Hodge numbers) of a smaathpledivisor in a smooth projective
variety are determined by its cohomology class, as mentioned in the introduction.
(In fact, its rational cohomology class is enough.) Also, we will observe that the
Betti numbers (and Hodge numbers) of any smooth divisor in a variety with first
Betti number equal to O are determined by its integral cohomology class, although
we will not try to compute these invariants explicitly.

REMark 1. Let X be a smooth projective variety of dimensienTo compute
the Betti and Hodge numbers of an ample divigbrz X in terms of its class in
H?(X, Q), we first use the Lefschetz hyperplane theorem to deducéthal =
hi(X) fori + j < n — 1. The Hodge numbers’(D) fori + j > n — 1 follow
from Poincaré duality. It remains to compute the Hodge numbekbsfof i + j =
n—1
The point is the natural exact sequence of vector bundles that describes the tan-
gent bundle o for any smooth divisoD C X:

0—TD— TX|, > O(D)|, — 0.

It follows that the Chern classes @i are the restriction t@ of cohomology
classes oX, c¢(D) = c¢(X)(1+ [D])7%, where [D] € H?(X, Q). As a result, all
the Chern numbers of a smooth dividorin a given varietyX are determined by
the rational cohomology class of. By the Hirzebruch—Riemann—Roch theorem,
then, the rational cohomology class of a smooth diviBaexplicitly determines
its Euler characteristic and, more generally, certain linear combinations of Hodge
numbers: A o

X(D, QY =Y " (~1)/hi(D)

J

[7]. For example, we get the formula for the Euler characteristic of a smooth
hypersurfaceD of degreed in projective spac®”:

x(D) =d{A—-d)"™ + (n +Dd —1].

Combining Hirzebruch’s results with the previous paragraph’s observation, we see
that if D is an ample smooth divisor then the Betti numbers and Hodge numbers
of D are determined by its rational cohomology class.

Many of these observations apply to more general degeneracy loci associated to
a map of vector bundles. In particular, Harris and Tu gave formulas for the Chern
numbers of any degeneracy locus that happens to be a smooth subvariety [5]. Also,
for a map of vector bundles: E — F such that the vector bundle Hgm, F) is
ample, Fulton and Lazarsfeld proved nonemptiness and connectedness of the de-
generacy loci under suitable dimension assumptions, in the spirit of the Lefschetz
hyperplane theorem [3].
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REMARK 2. We now show that the Betti and Hodge numbers of any smooth
divisor in a smooth projective variet{¥ with b;(X) = 0 are determined by its
cohomology class. The point is that two linearly equivalent smooth divisors in a
smooth projective variety always have the same Betti and Hodge numbers. This
will imply that two homologous smooth divisors in a variety with first Betti num-
ber equal to 0 have the same Betti and Hodge numbers, since the assumption on
the first Betti number implies that linear and homological equivalence of divisors
are the same.

To see that two linearly equivalent smooth divisors have the same Betti and
Hodge numbers, observe that the set of effective divisors in any linear equivalence
class, if nonempty, is isomorphic to projective sp&&for someN. Moreover,
the set of smooth effective divisors is a Zariski open subset. Hence the set of
smooth effective divisors in a given linear equivalence class is always connected if
it is nonempty. As a result, any two linearly equivalent smooth divisors belong to
one connected family of smooth projective varieties. In particular, the two divisors
have the same Betti and Hodge numbers.

5. Connectedness of Smooth Divisors

We turn to the second topic of this paper. First, we will give examples to show that

a smooth connected divisor on a smooth projective variety can be homologous to
a smooth nonconnected divisor. Then we will show that the examples we give,

which are on varieties that fiber over a curve with enough multiple fibers, are the

only possible ones.

X —

2D, E 2D, D

Pl

Figure 1

The simplest example of a smooth connected divisor which is homologous to
a smooth nonconnected divisor is shown in Figure 1. Ddie a curve of genus
at least 1, and leL. be a nontrivial line bundle of degree 0 @ such thatl®?
is trivial. Let X be the ruled surfac®(O @ L) over D. Let D; and D, be the
sections of this ruled surface at zero and infinity. Then the divigarig linearly
equivalent to the disjoint divisori2,, so there is a morphisrfi: X — P! with
f7Y%0) = 2D; and f Y(c0) = 2D,. The inverse image of any other point is
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isomorphic to the double cové of D that corresponds to the 2-torsion line bun-
dle L. In this situation, the smooth connected cufrec X is homologous to the
nonconnected smooth divisdry; + D».

This example can be generalized as follows. Ketbe any smooth projective
variety with a morphisny : X — C onto a smooth curv€, and suppose that all
the fibers are connected. The general fiberg affe smooth connected divisors.
There may be other fibers that are smooth “multiple fibers,” meaning that (as a di-
visor) f ~X(p) = aD for somea > 2 and smooth divisoP in X. In this caseD
is rationally homologous tél/a) - (general fibey.

As aresult, whenever there are enough smooth multiple fibers, we get examples
of a smooth connected divisor (say, a general fiber) that is at least rationally ho-
mologous to a nonconnected smooth divisor (say, a sum of multiple fibers). The
surface just constructed has this form: it has a nfiapt — P* with two double
fibers, so a general fiber is rationally homologous to the sum of the two double
fibers. (In that example, the general fiber happens to be integrally homologous to
the sum of the two double fibers.)

Surprisingly, these examples are the only thing that can go wrong, in the fol-
lowing sense.

THEOREM 5.1. Let X be a smooth projective variety. Lat= )", A; andB =

Y. Bi be rationally homologous smooth divisors Bn(ThusAz, A, ... are dis-

joint smooth connected divisors, and so & Bo, ....) Remove any components

that occur in bothA and B. Then at least one of the following statements holds.

1) A=B=0.

(2) A and B are connected.

(3) Thereisamap: X — C onto a smooth curv€ such that all the fibers are
connected and each of the divisatsand B; is a fiber of f, possibly a multi-
ple fiber. In fact, there is a uniqgue magpwith these properties.

Proof. We have to show that il or B has at least two components, then statement
(3) holds.
As in Section 1, we fix an ample diviséf on X and define an intersection pair-
ing on divisors by
(D,Ey=D-E-H"?€Z.
All the divisors A; and B; must have nonnegative self-intersection number since
for (say)Ai:
(A1, A1) = (A, A1+ Ax+--+)

= (A, Bi+B2+--+)

> 0.
The last inequality holds becaugeand B have no components in common. Since
different components of are disjoint, it follows that the components #fspan
a subspace aff 2(X, Q) on which the intersection pairing, E) is nonnegative

semidefinite. The Hodge index theorem (Section 1) then implies that the compo-
nents ofA span only a 1-dimensional subspacedf(X, Q). The same holds for



620 BURT TOTARO

B. As aresult, all the components @afand B have rational cohomology classes
in the same 1-dimensional subspaceé#f( X, Q).

SinceA or B has at least two components, saywe have(A;, A,) = 0. Since
all the components of andB are homologous up to multiples, it follows that they
all have self-intersection number 0 and all are disjoint. Thus we have at least three
disjoint smooth connected divisors ah(the components of and B, together)
whose rational cohomology classes lie in a line.

By Theorem 2.1, statement (3) holds. O

6. Smooth Connected Divisors and the
Arithmetic of Abelian Varieties

We begin this section with an example of two disjoint homologous smooth divisors
which are both connected but which have different Betti numbers. Conjecture 6.1,
suggested by this example, says that any two homologous connected smooth divi-
sors in a smooth complex projective variéfyshould have cyclic etale coverings

that are deformation equivalent to each other. Theorem 6.3 proves a weaker form
of this conjecture, allowing deformations into positive characteristic, under the as-
sumption that the Picard variety &f is isogenous to a product of elliptic curves.
This assumption could be omitted if we knew Conjecture 6.2, a well-known con-
jecture on the arithmetic of abelian varieties.

ExampLE. We exhibit a smooth complex projective variety containing two dis-
joint homologous smooth divisors that are both connected but have different Betti
numbers.

Let C; andC, be smooth curves, both of genus at least 1. Bet> C; be a
nontrivial double covering of; for i = 1, 2. Then the grougZ/2)? acts freely
on By x B with quotientC; x C,. Let (Z/2)? also act orP! with generators
x — —x andx — 1/x. The stabilizer of the point 0 iR* is the subgrougH; =
Z/2 x 0, and the stabilizer of 1 iR is the subgrougd, = 0 x Z/2. Let X be
the quotient variety

X = (B1 x Ba x PYY/(Z/2)%.

Since(Z/2)? acts freely onB; x By, X is smooth. It is straightforward to check
that H2(X, Z) is torsion-free.

The image ofB; x B, x 0in X is a smooth divisoD; isomorphic ta(B; x Bz)/
H; = C1x By, while theimage oB; x B, x 1in X is a smooth divisoD, isomor-
phic to (B x B2)/Hy = B1 x C,. These two divisors are disjoint. They are also
rationally homologous, becaus®2 and 2D, are both linearly equivalent to the
image ofBy x B, x p for a general poinp in PL. SinceH?(X, Z) is torsion-free,
D; and D, are integrally homologous, but they can have different Betti numbers.
For example, we can assume tidathas genus 1 and, has genug > 2. Then
the two divisorsB; x C, and B, x C; have different Betti numbers, as shown in
the following table. They must have the same Euler characteristic, by Remark 1
in Section 4.
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i 0 1 2 3 4

bi(BixCz 1 2¢42 4g+2 29+2 1

In this exampleD; and D, have isomorphic double coverings. More generally,
for any varietyX with a map to a curve such tha& and D, are smooth multiple
fibers (as happens in this example), a cyclic etale coverirg ofill be deforma-
tion equivalent to a general fiber and hence to a cyclic etale coverifg.of his
leads to the following conjecture.

CoNJECTURE 6.1. LetD; and D>, be smooth connected divisors in a smooth com-
plex projective variety that are rationally homologous. Then there is a positive
integern and an etalg Z /n)-coveringD; of D; that is deformation equivalent to
an etale(Z /n)-coveringD, of D,. Or we could ask only foD; to be homotopy
equivalent toD.

We can assume thd®; and D, are disjoint in this conjecture. If they are not,
let f: X’ — X be the blow-up ofX along the (possibly nonreduced) subscheme
DN D,. An easy calculation shows th&t contains disjoint smooth divisors iso-
morphic toD; and D, and thatX’ is smooth in a neighborhood of these divisors.
We havef*D; = D; + E, whereE is the exceptional divisor of, soD; and D,

are rationally homologous oH’ if they were rationally homologous oK, and
they are integrally homologous ot if they were integrally homologous oK.
Finally, we can resolve the singularities Xf by Hironaka without changing it in

a neighborhood oD; and D,. Thus, for any divisorsD; and D, as in Conjec-
ture 6.1, the same varietig®; and D, occur asdisjoint homologous divisors in
some other smooth projective variety. Hence, from now on we can and do assume
that D; and D, are disjoint.

The proof of Theorem 2.1 shows that Conjecture 6.1 s true in its stronger form
if D1 — D5 is torsion in the Picard group of or, more generally (using tha;
andD, are disjoint), if the normal bundle @, in X is torsion in the Picard group
of D;. Indeed, under these assumptions, the proof of Theorem 2.1 gives a map
from X to a curve in whichD; and D, are smooth multiple fibers, say with multi-
plicity n (clearly the same fob; and D, since they are rationally homologous).
Then there is an etal& /n)-covering of D, that deforms to a general fiber of the
map and hence to an etdl2 /n)-covering of D,.

Yet the normal bundle ab; in X need not be torsion in the Picard group/af,
under the assumption of Conjecture 6.1 together with the assumptioD {tzatd
D, are disjoint; simple examples are given in Section 2. The only way of attacking
Conjecture 6.1 that comes to mind is to defqikh D1, D») in some way until the
normal bundle ofD; becomes torsion in the Picard groupf. Over the com-
plex numbers, | do not see any way to do this.

We can instead consider a more general kind of deformation. Every smooth
complex projective varietX can be (a) deformed to one that is defined over a
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number field and then (b) reduced modulo prime ideals to obtain a smooth pro-
jective varietyX, over a finite fieldk. We can assume tha@; and D, reduce to
disjoint homologous divisors i (using/-adic etale conomology over the alge-
braic closure ok, for some prime numbdrinvertible ink). The advantage of
reducing to a finite field, or to its algebraic closurk, is that a line bundle oX;

that is zero inH 2(X¢, Q) is torsion in the Picard group df;, because the group

of points of an abelian variety over a finite field is finite. We can therefore apply
the proof of Theorem 2 to derive a mgpfrom X; onto a smooth curvé; such
that £,Ox = O¢ (i.e., f has connected fibersf,(p1) = nD1, and f 1(p,) =

nD, for some pointg; andp, in C and some positive integerdividing the order

of D; — D5 in the Picard group oK.

The problem is that the topological implications of such a map are not clear to
me when the numberis a multiple of the characteristic &f The mapf is sepa-
rable sincef, Ox = Oc, but Sard’s theorem still fails: the general fiber need not
be smooth. | do not see how to deduce any topological relation betiveand
D5, in this case, although it may be possible.

| can only say something if the order 8f; — D, in the Picard group okj is
invertible ink. Then we get a may from X; onto a smooth curv€} such that
£:O0x = O¢, fX(p1) = nD1, andf X(p,) = nD,, for some pointp, andp, in
C and some positive integerdividing the order ofD; — D5, in the Picard group
of X;, hence invertible itk. It follows that D; overk has an etal€Z /n)-covering
that is deformation equivalent to a general fibeyfaind hence to an etal@ /n)-
covering ofD, overk. Therefore, using the known relations between the topology
of varieties in characteristic O and their reductions to positive characteristic, the
divisors D, and D, in characteristic 0 havéZ /n)-coveringsD; and D- with the
same pra-homotopy type for all prime numbetsnvertible ink [1, pp. 142-144].

In particular, these two coverings have isomorphjecohomology rings for all
suchl.

Thus we can prove a slightly weaker form of Conjecture 6.1 if we can find a
prime idealp of the number field? such that X, D1, D,) reduces smoothly over
k = or/p andifthe order oD; — D5 in the Picard group ok} is invertible ink. It
would suffice for this to know that, given an abelian varigtgver a number field
F (the Picard variety ok over F') and a point ofd over F (the class ofD; — D5,
or a suitable multiple oD, — D, if D; and D, are only rationally homologous),
there are infinitely many primgsof F such thatA has good reduction modujo
and the reduction of in A(or/p) has order invertible iez/p. This would follow
from the following well-known conjecture on the arithmetic of abelian varieties.

CoNJECTURE 6.2. For any abelian varietyd over a number field, there are in-
finitely many primeg of F' such that the order of the group(og/p) is prime to
the characteristic of the fieldr/p.

In fact, it is expected that the set of primgsuch thatA(or/p) has order a multi-

ple of the characteristip of or/p, called “anomalous primes” in Mazur [10], has
density 0. But even the much weaker statement of Conjecture 6.2 seems inacces-
sible in general.
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It is known for elliptic curves. For example, the conjecture follows from a re-
sult of Serre’s on the distribution of eigenvalues of Frobenius for an elliptic curve
asp varies [12, Ex. 1, p. IV-13]. There is also a more elementary argument, as fol-
lows. First, to prove Conjecture 6.2 for a given abelian varietyver a number
field F, it suffices to prove it after extending the fiefd Consider the case of an
elliptic curve E over F; after extending the field", we can assume that the tor-
sion subgroup of(F) is nonzero. Lef be a prime number such thA{(F) has
[-torsion. By the Chebotarev density theorem, the set of prpgmasF such that
the fieldor/p has prime order has positive density. For such primdsy Hasse
the groupE(or/p) = E(F,) has orderp + 1 — a,, where|a,| < 2,/p. (This is
the famous bound generalized by Weil from elliptic curves to curves of arbitrary
genus.) Soifp > 7 andE(F,) has order a multiple op, then it has order equal
to p. But we arranged thak(F) hasi-torsion, SOE(or/p) has order a multiple
of [ for all but finitely many prime$ of F. Thus, for all but finitely many of the
primesp of F with or/p of prime orderp, the groupE(or/p) cannot have order
p and hence does not have order a multiplepofrhis proves Conjecture 6.2 for
elliptic curves.

The same argument proves Conjecture 6.2 for any abelian vatidhat is a
product of elliptic curves. It follows easily that Conjecture 6.2 holds whengver
is isogenous to a product of elliptic curves. As we have said, it suffices to prove
Conjecture 6.2 after a finite extension of the number fieldo it suffices thatd
is isogenous to a product of elliptic curves over the algebraic closuge dhus
we have proved the following theorem.

THEOREM 6.3. Let D; and D, be smooth connected divisors in a smooth com-
plex projective varietyX that represent the same elementtdf(X, Q). Suppose
that the Picard variety oX is isogenous to a product of elliptic curves. Then there
are etale(Z/n)—cmeringle and D, of D1 and D, for some positive integer,

that are deformation equivalent via passage to some charactefistic0. It fol-
lows thatD; and D, have the same prbhomotopy type in the sense[df for all
prime numbers == p and hence, for example, isomorpizig-cohomology rings.

The assumption that the Picard varietyXfis isogenous to a product of elliptic
curves is strange. It should certainly be unnecessary; this would follow from Con-
jecture 6.2 on abelian varieties, which is universally believed to be true but which
seems inaccessible. It would be very interesting to find a geometric approach to
at least some weaker version of Conjecture 6.1—for example, showing only that
the universal coverings dd; and D, are homotopy equivalent, which avoids re-
ducing to characteristip and thereby avoids the assumption on the Picard variety
of X.
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