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We have three main results. First, we show that a smooth complex projective vari-
ety that contains three disjoint codimension-1 subvarieties in the same homology
class must be the union of a whole 1-parameter family of disjoint codimension-1
subsets. More precisely, the variety maps onto a smooth curve with the three given
divisors as fibers, possibly multiple fibers (Theorem 2.1). The beauty of this state-
ment is that it fails completely if we have only two disjoint divisors in a homology
class, as we will explain. The result seems to be new already for curves on a sur-
face. The key to the proof is the Albanese map.

We need Theorem 2.1 for our investigation of a question proposed by Fulton as
part of the study of degeneracy loci. Suppose we have a line bundle on a smooth
projective variety that has a holomorphic section whose divisor of zeros is smooth.
Can we compute the Betti numbers of this divisor in terms of the given variety and
the first Chern class of the line bundle? Equivalently, can we compute the Betti
numbers of any smooth divisor in a smooth projective varietyX in terms of its
cohomology class inH 2(X,Z)?

The point is that the Betti numbers (and Hodge numbers) of a smooth divisor are
determined by its cohomology class if the divisor is ample or if the first Betti num-
ber ofX is zero (see Section 4). We want to know if the Betti numbers of a smooth
divisor are determined by its cohomology class without these restrictions. The
answer is “no”. In fact, there is a variety that contains two homologous smooth
divisors, one of which is connected while the other is not connected. Fortunately,
we can show that this is a rare phenomenon: if a variety contains a connected
smooth divisor that is homologous to a nonconnected smooth divisor, then it has
a surjective morphism to a curve with some multiple fibers, and the two divisors
are both unions of fibers. This is our second main result, Theorem 5.1.

We also give an example of two connected smooth divisors that are homolo-
gous but have different Betti numbers. Conjecture 6.1, suggested by this example,
asserts that two connected smooth divisors in a smooth complex projective vari-
etyX that are homologous should have cyclic etale coverings that are deformation
equivalent to each other. The third main result of this paper, Theorem 6.3, is that
this conjecture holds, in a slightly weaker form (allowing deformations into pos-
itive characteristic), under the strange assumption that the Picard variety ofX is
isogenous to a product of elliptic curves. The statement in general would follow
from a well-known open problem in the arithmetic theory of abelian varieties,
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Conjecture 6.2: For any abelian varietyA over a number fieldF, there are infin-
itely many primesp of the ring of integersoF such that the finite groupA(oF/p)
has order prime to the characteristic of the fieldoF/p.

I am grateful to Bill Fulton for asking the right question. Brendan Hassett found
an elegant example related to these questions, a version of which is included in
Section 2.

1. Notation

If X is a smooth algebraic variety, then adivisor is an element of the free abelian
group on the set of codimension-1 subvarieties ofX. (Varieties are irreducible by
definition.) In other words, a divisor is a finite sum

∑
aiDi, where theai are in-

tegers and theDi codimension-1 subvarieties ofX. An effectivedivisor is such a
sum with every integerai nonnegative. Asmoothdivisor is a sum

∑
Di with each

subvarietyDi smooth andDi disjoint fromDj for i 6= j. Thesupportof a divi-
sor

∑
aiDi is the union of the subvarietiesDi with ai 6= 0. An effective divisor

is connectedif it is not zero and its support is connected.
LetX be a smooth complex projective variety of dimensionn, and letH be a

fixed ample divisor onX. Throughout this paper, we use the intersection pairing
on divisors defined by

(D,E) = D · E ·Hn−2 ∈Z.

We often use the easy fact that ifD andE are effective divisors with no irreducible
component in common then(D,E) ≥ 0, with equality if and only ifD andE
are disjoint. We also use the Hodge index theorem for divisors: The symmetric
bilinear form(D,E) on the group of divisors modulo homological equivalence,
tensored with the real numbers, is nondegenerate with signature(1, N − 1). This
follows from the Hodge–Riemann bilinear relations [4, p. 123].

Alternatively, using the Lefschetz hyperplane theorem, the foregoing Hodge
index theorem for divisors follows from the Hodge index theorem for divisors on a
surface, applied to a surface inX which is the intersection ofn−2 divisors that are
linearly equivalent to multiples ofH. This proof has the advantage that it works
for varieties over fields of any characteristic, using etale cohomology.

2. Characterization of Varieties That Fiber over a Curve

We prove a little more than was stated in the introduction.

Theorem 2.1. LetX be a smooth complex projective variety. LetD1, . . . , Dr,

r ≥ 3, be connected effective divisors(not zero) that are pairwise disjoint and
whose rational cohomology classes lie in a line inH 2(X,Q). Then there is a map
f : X → C with connected fibers to a smooth curveC such thatD1, . . . , Dr are
all positive rational multiples of fibers off. In fact, there is only one mapf with
these properties.
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In this statement, and in the rest of the paper, iff : X → C is a map from a
smooth variety onto a smooth curve, then a “fiber” off is defined to be the divisor
f −1(p) for a pointp in C, that is, the sum of the irreducible components of the
setf −1(p) with multiplicities. To compute the multiplicity of a given irreducible
componentD in the divisorf −1(p), let z be a local coordinate function on the
curve that vanishes atp and compute the order of vanishing of the composed func-
tion z(f ) along the divisorD. In particular, if the divisorf −1(p) equalsaD for
some smooth irreducible divisorD and some integera ≥ 2, we callD a smooth
multiple fiberof f.

Interestingly, the theorem becomes false if we have only two disjoint homolo-
gous divisorsD1 andD2, as shown by the following example.

Example. LetD be any curve of genus at least 1, and letL be a line bundle of
degree 0 onD that is not torsion in PicD. LetX be the ruled surfaceP(O ⊕ L)
overD. ThenX contains two copies ofD, call themD1 andD2, at zero and in-
finity: they are disjoint smooth curves and are homologous to each other. But then
the conclusion of Theorem 2.1 fails:D1 andD2 are not fibers or multiple fibers
of any map ofX to a curve. Indeed, iff : X → C is a map withf −1(point) =
aD1 for some positive integera, then the normal bundle ofD1 must bea-torsion
in PicD1. But in this example,D1 has normal bundleL,which we assumed is not
torsion. Thus Theorem 2.1 would be false forr = 2. This example was used for
essentially the same purpose by Kollár [8].

Brendan Hassett found that the failure of Theorem 2.1 if we have only two dis-
joint homologous divisors is not at all restricted to ruled varieties. The following
example is a variant of his.

Example. Let Y be any smooth projective variety of dimension at least 2, with
H 1(Y,Q) 6= 0; thus Pic0(Y ) is a nontrivial abelian variety. If a line bundle is
ample, then it remains ample upon adding an element of Pic0(Y ), soY contains
two smooth ample divisorsD1 andD2 that are homologous but differ in PicY
by a nontorsion element of Pic0(Y ). We can also arrange thatD1 intersectsD2

transversely.
LetX be the blow-up ofY along the smooth codimension-2 subschemeD1∩D2.

ThenD1 andD2 become disjoint inX, and they are still homologous. The nor-
mal bundle ofD1 in X is the restriction ofD1 − D2 ∈ Pic0(Y ) to D1. By the
Lefschetz hyperplane theorem, sinceY has dimension at least 2, the restriction
mapH 1(Y,Q) → H 1(D1,Q) is injective and so the restriction map Pic0(Y ) →
Pic0(D1) has finite kernel. SinceD1− D2 is nontorsion in Pic0(Y ), the normal
bundle ofD1 in X is nontorsion in Pic0(D1). So Theorem 2.1 again fails here if
we have only two divisorsD1,D2.

Proof of Theorem 2.1.Write D̃1 for a resolution of singularities of the reduced
divisor underlyingD1, so thatD̃1 is a disjoint union of smooth varieties.

The proof is in two cases, depending on whether the map

H 1(X,Q)→ H 1(D̃1,Q) (∗)
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is injective. The amazing thing is that if this map is injective then we can con-
struct a map fromX to P1, and if it is not injective then we can construct a map
fromX to a curve of genus at least 1. This dichotomy was used in a special case
by Neeman [11, pp. 109–110].

First, suppose the map(∗) is injective. Then the map of abelian varieties

Pic0(X)→ Pic0(D̃1)

has finite kernel. (Here Pic0(D̃1) means the product of the Picard varieties of the
connected components ofD̃1.) Since the divisorsD2 andD3 onX are in multi-
ples of the same rational cohomology class, there are positive integersa2 anda3

such thata2D2− a3D3 = 0 inH 2(X,Z); equivalently, the divisora2D2− a3D3

defines an element of Pic0(X). SinceD1 is disjoint fromD2 andD3, the divisor
classa2D2− a3D3 restricts to zero in PicD1 and hence in Pic̃D1. Since the map
above has finite kernel, there are larger positive integersb2, b3 such that

b2D2 − b3D3 = 0∈Pic0(X).

That is, the effective divisorsb2D2 andb3D3 are linearly equivalent. Since
these divisors are disjoint, there is a map

g : X→ P1

with g−1(0) = b2D2 andg−1(∞) = b3D3. This essentially solves the problem.
The full conclusion of Theorem 2.1 in this case (i.e., for(∗) injective) follows from
the next lemma, whose proof we postpone until Section 3.

Lemma 2.2. LetX be a smooth complex projective variety of dimensionn, and
letH be an ample divisor onX. LetD1 be a connected effective divisor(not zero)
onX, and suppose that(D1,D1) = D2

1 · Hn−2 is zero. Suppose there is a map
fromX onto some possibly singular curve that mapsD1 to a point. Then there is
a mapf : X → C onto a smooth curveC such thatf has connected fibers and
D1 is a positive rational multiple of a fiber off. Moreover,f is unique with these
properties.

Also, any connected effective divisor that is homologous to a rational multiple
ofD1 is a positive rational multiple of a fiber off.

Now we prove Theorem 2.1 in the other case, forH 1(X,Q) → H 1(D̃1,Q) not
injective. We use this in the following form: the dual map of abelian varieties

Alb(D̃1)→ Alb(X)

is not surjective. (Of course, Alb(D̃1)means the product of the Albanese varieties
of the connected components ofD̃1.) There is a natural map from zero cycles of
degree 0 onX to Alb(X). Consider the mapg fromX to the quotient abelian va-
riety Alb(X)/Alb(D̃1) given byx 7→ x − p for a chosen pointp in D1. For any
pointx ∈D1 (insideX), x−p ∈Alb(X) is a sum of differencesx1−x2,wherex1
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andx2 are two points in the image of the same component ofD̃1, sinceD1 is con-
nected. So forx ∈D1, the elementx − p ∈Alb(X) lies in the image of Alb(D̃1).

Thus the map
g : X→ Alb(X)/Alb(D̃1)

sendsD1 to the point 0.
Also, the image ofg generates the abelian variety Alb(X)/Alb(D̃1), and this

abelian variety is nonzero by our assumption. Henceg(X) has dimension at least
1. In fact, it has dimension exactly 1, by the following argument. LetL be the
pullback of a hyperplane section ong(X) toX. (Sinceg(X) is a subvariety of an
abelian variety, it is projective.) Ifg(X) has dimension at least 2, then (in the no-
tation of Section 1) we have that(L,L) = L2 · Hn−2 ∈ Z is positive, sinceL2 is
represented by a nonzero effective codimension-2 cycle onX. Also, (L,D1) = 0
sinceD1 maps to a point ing(X). So the Hodge index theorem (Section 1) im-
plies that(D1,D1) < 0. But in fact we know thatD1 is homologous to a disjoint
divisorD2, so that(D1,D1) = 0, a contradiction. It follows that the varietyg(X)
has dimension 1. Now we can apply Lemma 2.2 (to be proved in Section 3), and
Theorem 2.1 is proved.

3. Proof of Lemma 2.2

We start with the given mapg : X → g(X) from a smooth projective varietyX
onto a singular curve. Form the Stein factorizationX → C → g(X) as follows:
f : X→ C has connected fibers,C is normal, andC → g(X) is finite [6, p. 280].
SinceC is normal, it is a smooth curve. The connected divisorD1 in X maps to a
point inC because it maps to a point ing(X).

Consider the intersection pairing on divisors discussed in Section 1,

(D,E) = D · E ·Hn−2 ∈Z,

for a fixed ample divisorH onX. For effective divisorsD andE with no irre-
ducible components in common, we have(D,E) ≥ 0 with equality if and only if
D andE are disjoint. Thus(D1, f

−1(p)) = 0 for a general pointp in C. We can
now start to check the last statement of the lemma: for any connected effective di-
visorD that is homologous to a rational multiple ofD1, we have(D, f −1(p)) =
0. HenceD is disjoint fromf −1(p) for general pointsp in C; equivalently,f(D)
is a finite subset ofC. SinceD is connected,f maps the divisorD to a point.

We now strengthen this statement to say that any connected effective divisorD

that is homologous to a rational multiple ofD1 must be a positive rational multi-
ple of a fiberf −1(p). (This is the last statement of Lemma 2.2.) The statement
will apply in particular toD1 itself and is a consequence of the following lemma.
For curves on a surface (a case to which one can easily reduce via hyperplane sec-
tions), Beauville gives an elementary proof of this lemma in [2, pp. 122–123]. It
goes back to Enriques’s classification of surfaces with Kodaira dimension 0. For
completeness we give a proof here, using the Hodge index theorem.
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Lemma 3.1. LetX be a smooth projective variety that has a mapf : X → C

with connected fibers onto a smooth curve. Then any nonzero effective divisorD

onX such that(D,D) = 0 which maps to a pointp in C must be a positive ra-
tional multiple of the divisorf −1(p).

Proof. We will prove a bit more—namely, that any divisorD (not necessarily ef-
fective) with (D,D) = 0 that is supported inf −1(p) is a rational multiple of
f −1(p). The idea is that, iff −1(p) =∑ i aiEi, then the intersection form(D,E)
on

R · E1⊕ R · E2⊕ · · ·
is negative definite except for a single zero eigenvalue. Indeed,f −1(p) is ho-
mologous onX to any other fiber off, so it has 0 intersection number with each
Ei. By the Hodge index theorem (Section 1), the intersection form(D,E) on the
subspace of(R-divisors onX/homological equivalence) that is orthogonal to a
nonzero elementA (here= f −1(p)) with (A,A) = 0 is negative definite except
for a single zero eigenvalue, corresponding toA itself. Hence any divisorD with
(D,D) = 0 andf(D) = p must be rationally homologous onX to a rational
multiple off −1(p).

In order to show thatD is actually a rational multiple off −1(p) as a divisor, it
suffices to check that the irreducible componentsE1, E2, . . . of f −1(p) are linearly
independent inH 2(X,Q). If they are not, then some positive linear combination
of some of theEi is homologous to a positive linear combination of a disjoint sub-
set of theEi. But then this homology class would have nonnegative intersection
number with eachEi, as one sees immediately. Also, it has positive intersection
number with eachEi that intersects the first set ofEi without being contained
in it; such anEi exists, because the union of theEi (= f −1(p)) is connected.
Therefore this homology class has positive intersection number withf −1(p) =∑
aiEi, since all theai are positive. This is a contradiction, sincef −1(p) has 0

intersection number with everyEi. This proves that the irreducible components
Ei of f −1(p) are linearly independent inH 2(X,Q).

We can now finish the proof of Lemma 2.2. By Lemma 3.1 and the earlier part of
this proof, we know that there is a mapf : X → C with the properties we want:
f is a map with connected fibers onto a smooth curve, and the given divisorD1 is
a positive rational multiple of a fiber.

It remains to check that there is only one mapf with these properties. By Hi-
ronaka (later used by Mori), we know that maps with connected fibers from a
given projective varietyX onto normal projective varieties are uniquely charac-
terized by which curves inX map to a point [9, p. 235]. For a mapf with the
properties we want (a map fromX onto a smooth curveC with connected fibers
such that the given divisorD1 is a rational multiple of a fiber), the positive ratio-
nal multiples of fibers off are characterized as those connected effective divisors
onX that are homologous to positive rational multiples ofD1. Thusf is deter-
mined byX andD1.
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4. Some General Comments on the
Topology of Smooth Divisors

This section is not used in the rest of the paper. We will explain how the Betti
numbers (and Hodge numbers) of a smoothampledivisor in a smooth projective
variety are determined by its cohomology class, as mentioned in the introduction.
(In fact, its rational cohomology class is enough.) Also, we will observe that the
Betti numbers (and Hodge numbers) of any smooth divisor in a variety with first
Betti number equal to 0 are determined by its integral cohomology class, although
we will not try to compute these invariants explicitly.

Remark 1. LetX be a smooth projective variety of dimensionn. To compute
the Betti and Hodge numbers of an ample divisorD ⊂ X in terms of its class in
H 2(X,Q),we first use the Lefschetz hyperplane theorem to deduce thathij(D) =
hij(X) for i + j < n − 1. The Hodge numbershij(D) for i + j > n − 1 follow
from Poincaré duality. It remains to compute the Hodge numbers ofD for i+ j =
n−1.

The point is the natural exact sequence of vector bundles that describes the tan-
gent bundle ofD for any smooth divisorD ⊂ X:

0→ TD→ TX
∣∣
D
→ O(D)

∣∣
D
→ 0.

It follows that the Chern classes ofD are the restriction toD of cohomology
classes onX, c(D) = c(X)(1+ [D])−1, where [D] ∈H 2(X,Q). As a result, all
the Chern numbers of a smooth divisorD in a given varietyX are determined by
the rational cohomology class ofD. By the Hirzebruch–Riemann–Roch theorem,
then, the rational cohomology class of a smooth divisorD explicitly determines
its Euler characteristic and, more generally, certain linear combinations of Hodge
numbers:

χ(D,�i) =
∑
j

(−1)jhij(D)

[7]. For example, we get the formula for the Euler characteristic of a smooth
hypersurfaceD of degreed in projective spacePn:

χ(D) = d−1[(1− d )n+1+ (n+1)d −1].

Combining Hirzebruch’s results with the previous paragraph’s observation, we see
that ifD is an ample smooth divisor then the Betti numbers and Hodge numbers
of D are determined by its rational cohomology class.

Many of these observations apply to more general degeneracy loci associated to
a map of vector bundles. In particular, Harris and Tu gave formulas for the Chern
numbers of any degeneracy locus that happens to be a smooth subvariety [5]. Also,
for a map of vector bundlesσ : E→ F such that the vector bundle Hom(E, F ) is
ample, Fulton and Lazarsfeld proved nonemptiness and connectedness of the de-
generacy loci under suitable dimension assumptions, in the spirit of the Lefschetz
hyperplane theorem [3].
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Remark 2. We now show that the Betti and Hodge numbers of any smooth
divisor in a smooth projective varietyX with b1(X) = 0 are determined by its
cohomology class. The point is that two linearly equivalent smooth divisors in a
smooth projective variety always have the same Betti and Hodge numbers. This
will imply that two homologous smooth divisors in a variety with first Betti num-
ber equal to 0 have the same Betti and Hodge numbers, since the assumption on
the first Betti number implies that linear and homological equivalence of divisors
are the same.

To see that two linearly equivalent smooth divisors have the same Betti and
Hodge numbers, observe that the set of effective divisors in any linear equivalence
class, if nonempty, is isomorphic to projective spacePN for someN. Moreover,
the set of smooth effective divisors is a Zariski open subset. Hence the set of
smooth effective divisors in a given linear equivalence class is always connected if
it is nonempty. As a result, any two linearly equivalent smooth divisors belong to
one connected family of smooth projective varieties. In particular, the two divisors
have the same Betti and Hodge numbers.

5. Connectedness of Smooth Divisors

We turn to the second topic of this paper. First, we will give examples to show that
a smooth connected divisor on a smooth projective variety can be homologous to
a smooth nonconnected divisor. Then we will show that the examples we give,
which are on varieties that fiber over a curve with enough multiple fibers, are the
only possible ones.

Figure 1

The simplest example of a smooth connected divisor which is homologous to
a smooth nonconnected divisor is shown in Figure 1. LetD be a curve of genus
at least 1, and letL be a nontrivial line bundle of degree 0 onD such thatL⊗2

is trivial. Let X be the ruled surfaceP(O ⊕ L) overD. Let D1 andD2 be the
sections of this ruled surface at zero and infinity. Then the divisor 2D1 is linearly
equivalent to the disjoint divisor 2D2, so there is a morphismf : X → P1 with
f −1(0) = 2D1 andf −1(∞) = 2D2. The inverse image of any other point inP1 is
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isomorphic to the double coverE ofD that corresponds to the 2-torsion line bun-
dleL. In this situation, the smooth connected curveE ⊂ X is homologous to the
nonconnected smooth divisorD1+D2.

This example can be generalized as follows. LetX be any smooth projective
variety with a morphismf : X→ C onto a smooth curveC, and suppose that all
the fibers are connected. The general fibers off are smooth connected divisors.
There may be other fibers that are smooth “multiple fibers,” meaning that (as a di-
visor)f −1(p) = aD for somea ≥ 2 and smooth divisorD in X. In this case,D
is rationally homologous to(1/a) · (general fiber).

As a result, whenever there are enough smooth multiple fibers, we get examples
of a smooth connected divisor (say, a general fiber) that is at least rationally ho-
mologous to a nonconnected smooth divisor (say, a sum of multiple fibers). The
surface just constructed has this form: it has a mapf : X → P1 with two double
fibers, so a general fiber is rationally homologous to the sum of the two double
fibers. (In that example, the general fiber happens to be integrally homologous to
the sum of the two double fibers.)

Surprisingly, these examples are the only thing that can go wrong, in the fol-
lowing sense.

Theorem 5.1. LetX be a smooth projective variety. LetA = ∑ i Ai andB =∑
i Bi be rationally homologous smooth divisors onX. (ThusA1, A2, . . . are dis-

joint smooth connected divisors, and so areB1, B2, . . . .) Remove any components
that occur in bothA andB. Then at least one of the following statements holds.
(1) A = B = 0.
(2) A andB are connected.
(3) There is a mapf : X→ C onto a smooth curveC such that all the fibers are

connected and each of the divisorsAi andBi is a fiber off, possibly a multi-
ple fiber. In fact, there is a unique mapf with these properties.

Proof. We have to show that ifA orB has at least two components, then statement
(3) holds.

As in Section 1, we fix an ample divisorH onX and define an intersection pair-
ing on divisors by

(D,E) = D · E ·Hn−2 ∈Z.

All the divisorsAi andBi must have nonnegative self-intersection number since
for (say)A1:

(A1, A1) = (A1, A1+ A2 + · · · )
= (A1, B1+ B2 + · · · )
≥ 0.

The last inequality holds becauseA andB have no components in common. Since
different components ofA are disjoint, it follows that the components ofA span
a subspace ofH 2(X,Q) on which the intersection pairing(D,E) is nonnegative
semidefinite. The Hodge index theorem (Section 1) then implies that the compo-
nents ofA span only a 1-dimensional subspace ofH 2(X,Q). The same holds for
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B. As a result, all the components ofA andB have rational cohomology classes
in the same 1-dimensional subspace ofH 2(X,Q).

SinceA orB has at least two components, sayA, we have(A1, A2) = 0. Since
all the components ofA andB are homologous up to multiples, it follows that they
all have self-intersection number 0 and all are disjoint. Thus we have at least three
disjoint smooth connected divisors onX (the components ofA andB, together)
whose rational cohomology classes lie in a line.

By Theorem 2.1, statement (3) holds.

6. Smooth Connected Divisors and the
Arithmetic of Abelian Varieties

We begin this section with an example of two disjoint homologous smooth divisors
which are both connected but which have different Betti numbers. Conjecture 6.1,
suggested by this example, says that any two homologous connected smooth divi-
sors in a smooth complex projective varietyX should have cyclic etale coverings
that are deformation equivalent to each other. Theorem 6.3 proves a weaker form
of this conjecture, allowing deformations into positive characteristic, under the as-
sumption that the Picard variety ofX is isogenous to a product of elliptic curves.
This assumption could be omitted if we knew Conjecture 6.2, a well-known con-
jecture on the arithmetic of abelian varieties.

Example. We exhibit a smooth complex projective variety containing two dis-
joint homologous smooth divisors that are both connected but have different Betti
numbers.

Let C1 andC2 be smooth curves, both of genus at least 1. LetBi → Ci be a
nontrivial double covering ofCi for i = 1,2. Then the group(Z/2)2 acts freely
on B1× B2 with quotientC1× C2. Let (Z/2)2 also act onP1 with generators
x 7→ −x andx 7→ 1/x. The stabilizer of the point 0 inP1 is the subgroupH1 =
Z/2× 0, and the stabilizer of 1 inP1 is the subgroupH2 = 0× Z/2. Let X be
the quotient variety

X = (B1× B2 × P1)/(Z/2)2.

Since(Z/2)2 acts freely onB1× B2, X is smooth. It is straightforward to check
thatH 2(X,Z) is torsion-free.

The image ofB1×B2×0 inX is a smooth divisorD1 isomorphic to(B1×B2)/

H1= C1×B2,while the image ofB1×B2×1 inX is a smooth divisorD2 isomor-
phic to(B1× B2)/H2 = B1× C2. These two divisors are disjoint. They are also
rationally homologous, because 2D1 and 2D2 are both linearly equivalent to the
image ofB1×B2×p for a general pointp in P1. SinceH 2(X,Z) is torsion-free,
D1 andD2 are integrally homologous, but they can have different Betti numbers.
For example, we can assume thatC1 has genus 1 andC2 has genusg ≥ 2. Then
the two divisorsB1× C2 andB2 × C1 have different Betti numbers, as shown in
the following table. They must have the same Euler characteristic, by Remark 1
in Section 4.
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i 0 1 2 3 4

bi(B1× C2) 1 2g + 2 4g + 2 2g + 2 1
bi(C1× B2) 1 4g 8g − 2 4g 1

In this example,D1 andD2 have isomorphic double coverings. More generally,
for any varietyX with a map to a curve such thatD1 andD2 are smooth multiple
fibers (as happens in this example), a cyclic etale covering ofD1 will be deforma-
tion equivalent to a general fiber and hence to a cyclic etale covering ofD2. This
leads to the following conjecture.

Conjecture 6.1. LetD1 andD2 be smooth connected divisors in a smooth com-
plex projective varietyX that are rationally homologous. Then there is a positive
integern and an etale(Z/n)-coveringD̃1 ofD1 that is deformation equivalent to
an etale(Z/n)-coveringD̃2 ofD2. Or we could ask only for̃D1 to be homotopy
equivalent toD̃2.

We can assume thatD1 andD2 are disjoint in this conjecture. If they are not,
let f : X ′ → X be the blow-up ofX along the (possibly nonreduced) subscheme
D1∩D2. An easy calculation shows thatX ′ contains disjoint smooth divisors iso-
morphic toD1 andD2 and thatX ′ is smooth in a neighborhood of these divisors.
We havef ∗Di = Di +E, whereE is the exceptional divisor off, soD1 andD2

are rationally homologous onX ′ if they were rationally homologous onX, and
they are integrally homologous onX ′ if they were integrally homologous onX.
Finally, we can resolve the singularities ofX ′ by Hironaka without changing it in
a neighborhood ofD1 andD2. Thus, for any divisorsD1 andD2 as in Conjec-
ture 6.1, the same varietiesD1 andD2 occur asdisjoint homologous divisors in
some other smooth projective variety. Hence, from now on we can and do assume
thatD1 andD2 are disjoint.

The proof of Theorem 2.1 shows that Conjecture 6.1 is true in its stronger form
if D1−D2 is torsion in the Picard group ofX or, more generally (using thatD1

andD2 are disjoint), if the normal bundle ofD1 inX is torsion in the Picard group
of D1. Indeed, under these assumptions, the proof of Theorem 2.1 gives a map
fromX to a curve in whichD1 andD2 are smooth multiple fibers, say with multi-
plicity n (clearly the same forD1 andD2, since they are rationally homologous).
Then there is an etale(Z/n)-covering ofD1 that deforms to a general fiber of the
map and hence to an etale(Z/n)-covering ofD2.

Yet the normal bundle ofD1 inX need not be torsion in the Picard group ofD1,

under the assumption of Conjecture 6.1 together with the assumption thatD1 and
D2 are disjoint; simple examples are given in Section 2. The only way of attacking
Conjecture 6.1 that comes to mind is to deform(X,D1,D2) in some way until the
normal bundle ofD1 becomes torsion in the Picard group ofD1. Over the com-
plex numbers, I do not see any way to do this.

We can instead consider a more general kind of deformation. Every smooth
complex projective varietyX can be (a) deformed to one that is defined over a
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number field and then (b) reduced modulo prime ideals to obtain a smooth pro-
jective varietyXk over a finite fieldk. We can assume thatD1 andD2 reduce to
disjoint homologous divisors inXk (usingl-adic etale cohomology over the alge-
braic closure ofk, for some prime numberl invertible in k). The advantage of
reducing to a finite fieldk, or to its algebraic closurēk, is that a line bundle onXk̄
that is zero inH 2(Xk̄,Q l) is torsion in the Picard group ofXk̄, because the group
of points of an abelian variety over a finite field is finite. We can therefore apply
the proof of Theorem 2 to derive a mapf fromXk̄ onto a smooth curveCk̄ such
thatf∗OX = OC (i.e.,f has connected fibers),f −1(p1) = nD1, andf −1(p2) =
nD2 for some pointsp1 andp2 inC and some positive integern dividing the order
of D1−D2 in the Picard group ofXk̄.

The problem is that the topological implications of such a map are not clear to
me when the numbern is a multiple of the characteristic ofk. The mapf is sepa-
rable sincef∗OX = OC, but Sard’s theorem still fails: the general fiber need not
be smooth. I do not see how to deduce any topological relation betweenD1 and
D2 in this case, although it may be possible.

I can only say something if the order ofD1−D2 in the Picard group ofXk̄ is
invertible ink. Then we get a mapf fromXk̄ onto a smooth curveCk̄ such that
f∗OX = OC, f −1(p1) = nD1, andf −1(p2) = nD2, for some pointsp1 andp2 in
C and some positive integern dividing the order ofD1−D2 in the Picard group
ofXk̄, hence invertible ink. It follows thatD1 overk̄ has an etale(Z/n)-covering
that is deformation equivalent to a general fiber off and hence to an etale(Z/n)-
covering ofD2 overk̄. Therefore, using the known relations between the topology
of varieties in characteristic 0 and their reductions to positive characteristic, the
divisorsD1 andD2 in characteristic 0 have(Z/n)-coveringsD̃1 andD̃2 with the
same pro-l homotopy type for all prime numbersl invertible ink [1, pp. 142–144].
In particular, these two coverings have isomorphicZ l-cohomology rings for all
suchl.

Thus we can prove a slightly weaker form of Conjecture 6.1 if we can find a
prime idealp of the number fieldF such that(X,D1,D2) reduces smoothly over
k = oF/p and if the order ofD1−D2 in the Picard group ofXk̄ is invertible ink. It
would suffice for this to know that, given an abelian varietyA over a number field
F (the Picard variety ofX overF ) and a point ofA overF (the class ofD1−D2,

or a suitable multiple ofD1−D2 if D1 andD2 are only rationally homologous),
there are infinitely many primesp of F such thatA has good reduction modulop
and the reduction ofx in A(oF/p) has order invertible inoF/p. This would follow
from the following well-known conjecture on the arithmetic of abelian varieties.

Conjecture 6.2. For any abelian varietyA over a number fieldF, there are in-
finitely many primesp of F such that the order of the groupA(oF/p) is prime to
the characteristic of the fieldoF/p.

In fact, it is expected that the set of primesp such thatA(oF/p) has order a multi-
ple of the characteristicp of oF/p, called “anomalous primes” in Mazur [10], has
density 0. But even the much weaker statement of Conjecture 6.2 seems inacces-
sible in general.
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It is known for elliptic curves. For example, the conjecture follows from a re-
sult of Serre’s on the distribution of eigenvalues of Frobenius for an elliptic curve
asp varies [12, Ex. 1, p. IV-13]. There is also a more elementary argument, as fol-
lows. First, to prove Conjecture 6.2 for a given abelian varietyA over a number
field F, it suffices to prove it after extending the fieldF. Consider the case of an
elliptic curveE overF ; after extending the fieldF, we can assume that the tor-
sion subgroup ofE(F ) is nonzero. Letl be a prime number such thatE(F ) has
l-torsion. By the Chebotarev density theorem, the set of primesp of F such that
the fieldoF/p has prime order has positive density. For such primesp, by Hasse
the groupE(oF/p) = E(Fp) has orderp + 1− ap, where|ap| ≤ 2

√
p. (This is

the famous bound generalized by Weil from elliptic curves to curves of arbitrary
genus.) So ifp ≥ 7 andE(Fp) has order a multiple ofp, then it has order equal
to p. But we arranged thatE(F ) hasl-torsion, soE(oF/p) has order a multiple
of l for all but finitely many primesp of F. Thus, for all but finitely many of the
primesp of F with oF/p of prime orderp, the groupE(oF/p) cannot have order
p and hence does not have order a multiple ofp. This proves Conjecture 6.2 for
elliptic curves.

The same argument proves Conjecture 6.2 for any abelian varietyA that is a
product of elliptic curves. It follows easily that Conjecture 6.2 holds wheneverA

is isogenous to a product of elliptic curves. As we have said, it suffices to prove
Conjecture 6.2 after a finite extension of the number fieldF, so it suffices thatA
is isogenous to a product of elliptic curves over the algebraic closure ofQ. Thus
we have proved the following theorem.

Theorem 6.3. LetD1 andD2 be smooth connected divisors in a smooth com-
plex projective varietyX that represent the same element ofH 2(X,Q). Suppose
that the Picard variety ofX is isogenous to a product of elliptic curves. Then there
are etale(Z/n)-coveringsD̃1 andD̃2 ofD1 andD2, for some positive integern,
that are deformation equivalent via passage to some characteristicp > 0. It fol-
lows thatD̃1 andD̃2 have the same pro-l homotopy type in the sense of[1] for all
prime numbersl 6= p and hence, for example, isomorphicZ l-cohomology rings.

The assumption that the Picard variety ofX is isogenous to a product of elliptic
curves is strange. It should certainly be unnecessary; this would follow from Con-
jecture 6.2 on abelian varieties, which is universally believed to be true but which
seems inaccessible. It would be very interesting to find a geometric approach to
at least some weaker version of Conjecture 6.1—for example, showing only that
the universal coverings ofD1 andD2 are homotopy equivalent, which avoids re-
ducing to characteristicp and thereby avoids the assumption on the Picard variety
of X.
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