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0. Introduction

Quantum cohomology theory can be described in general terms as intersection
theory in spaces of holomorphic curves in a given Kähler or almost Kähler mani-
fold X. By quantumK-theory we may similarly understand the study of complex
vector bundles over the spaces of holomorphic curves inX. In these notes, we
will introduce aK-theoretic version of the Witten–Dijkgraaf–Verlinde–Verlinde
(WDVV) equation which expresses the associativity constraint of the “quantum
multiplication” operation onK∗(X).

Intersection indices of cohomology theory,∫
[space of curves]

ω1∧ · · · ∧ ωk

obtained by evaluation on the fundamental cycle of cup products of cohomology
classes are to be replaced inK-theory by Euler characteristics

χ(space of curves;V1⊗ · · · ⊗ Vk)
of tensor products of vector bundles. The hypotheses needed in the definitions of
the intersection indices and Euler characteristics—that the spaces of curves are
compact and nonsingular, or that the bundles are holomorphic—are rarely satis-
fied. We handle this foundational problem by restricting ourselves throughout the
notes to the setting where the problem disappears. Namely, we will deal with the
so-called moduli spacesXn,d of degree-d genus-0 stable maps toX with nmarked
pointsassuming thatX is a homogeneous Kähler space.Under this hypothesis, the
moduli spacesXn,d (we will review their definition and properties when needed)
are known to be compact complex orbifolds (see [1; 10]). We use their fundamen-
tal cycle [Xn,d ], well-defined overQ, in the definition of intersection indices, and
we use sheaf cohomology in the definition of the Euler characteristic of a holo-
morphicorbi-bundleV :

χ(Xn,d;V ) :=
∑

(−1)k dimH k(Xn,d;O(V )).
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1. Correlators

The WDVV equation is usually formulated in terms of the following generating
function forcorrelators:

F(t,Q) =
∑
d

∞∑
n=0

Qd

n!
(t, . . . , t)n,d .

Hered ∈H2(X,Z) runs over the Mori cone ofdegrees,that is, homology classes
represented by fundamental cycles of rational holomorphic curves inX, and the
correlators(φ1, . . . , φn)n,d are defined using theevaluation mapsat the marked
points:

ev1× · · · × evn : Xn,d → X × · · · ×X.
In cohomology theory, we pull back to the moduli spaceXn,d then cohomology
classesφ1, . . . , φn ∈H ∗(X,Q) of X and define the correlator among them by

(φ1, . . . , φn)n,d :=
∫

[Xn,d ]
ev∗1(φ1) ∧ · · · ∧ ev∗n(φn).

In K-theory, we pull backn elementsφ1, . . . , φn ∈ K∗(X) (representable under
our restriction onX by holomorphic vector bundles or their formal differences)
and put

(φ1, . . . , φn)n,d := χ(Xn,d;ev∗1(φ1)⊗ · · · ⊗ ev∗n(φn)).

We will treat the seriesF as a formal function oft ∈H depending on formal pa-
rametersQ = (Q1, . . . ,QBetti2(X)), whereH = H ∗(X,Q) orH = K∗(X).

Let {φα} be a graded basis inH ∗(X,Q), and let

gαβ := 〈φα, φβ〉 =
∫

[X]
φα ∧ φβ

denote the intersection matrix. Let(gαβ) = (gαβ)−1 be the inverse matrix (so that∑
(φα ⊗ 1)gαβ(1⊗ φβ) is Poincaré-dual to the diagonal inX × X). In quantum

cohomology theory, one defines thequantum cup product• on the tangent space
TtH by

〈φα • φβ, φγ〉 := Fαβγ(t)
(where the subscripts on the RHS mean partial derivatives in the basis{φα}). In
this notation, the associativity of the quantum cup product is equivalent to the fol-
lowing WDVV identity:∑

ε,ε ′ Fαβεg
εε ′Fε ′γδ is totally symmetric inα, β, γ, δ.

2. Stable Maps, Gluing, and Contraction

In order to explain the proof of the WDVV identity, we must discuss some prop-
erties of the moduli spacesXn,d (see [1; 4; 10] for more details).

We consider prestable marked curves(C, z), that is, compact connected com-
plex curvesC with at most double singular points and withn marked points
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z= (z1, . . . , zn) that are nonsingular and distinct. Two holomorphic maps,f :
(C, z)→ X andf ′ : (C ′, z′)→ X, are calledequivalentif they are identified by
an isomorphism(C, z) → (C ′, z′) of the curves. This definition introduces the
concept ofautomorphismof a mapf : (C, z) → X, and one callsf stableif it
has no nontrivial infinitesimal automorphisms. The moduli spacesXn,d consist of
equivalence classes of stable maps with fixed numbern of marked points, degree
d, and arithmetic genus 0 (it is defined asg = dimH 1(C,OC)).

In plain terms, the space of degree-d holomorphic spheres inX with n marked
points is compactified by prestable curves which are trees ofCP 1s and satisfy the
stability condition: each irreducible componentCP 1 mapped to a point inXmust
carry at least three marked or singular points. Under the hypothesis thatX is a
homogeneous Kähler space, the moduli spaceXn,d has the structure of a compact
complex orbifold of dimension dimCX +

∫
d
c1(TX)+ n− 3.

WhenX is a point, the moduli spaces coincide with the Deligne–Mumford com-
pactificationsM̄0,n of moduli spaces of configurations of marked points onCP 1.

For instance,M0,4 is the setCP 1 − {0,1,∞} of allowed values of the cross-
ratio of four marked points onCP 1. The compactificationM̄0,4 = CP 1 fills in
the forbidden values of the cross-ratio by equivalence classes of reducible curves
CP 1 ∪ CP 1 with one double point and two marked points on each irreducible
component.

Forn ≥ 3, there is a naturalcontractionmapXn,d → M̄0,n defined by compos-
ing the mapf : (C, z)→ X with X→ pt (so that the components ofC carrying
< 3 special points become unstable) and contracting the unstable components.
Similarly, one can define theforgettingmaps fti : Xn+1,d → Xn,d by disregarding
theith marked point and contracting the component if it has become unstable.

In particular, we will make use of the contraction map

ct : Xn+4,d → M̄0,4

defined by forgetting the mapf : (C, z) → X and all the marked points except
the first four. An allowed valueλ = ct[f ] of the cross-ratio means the follow-
ing: the curveC has a componentC0 = CP 1 carrying four special points with the
cross-ratioλ, and the first four marked points are situated on the branches of the
tree connected toC0 at those four special points. A forbidden value ct[f ] = 0, 1,
or∞ means thatC contains achainC0, . . . , Ck of k > 0 CP 1s such that two of
the four branches of the tree carrying the marked points are connected to the chain
via C0 and the other two viaCk. Such stable maps form a stratum of codimen-
sionk in the moduli spaceXn,d . We will refer to them as strata (or stable maps)
of depthk.

A stable map of depth 1 is glued from two stable maps obtained by disconnect-
ingC0 fromC1. This gives rise to thegluing map

Xn0+3,d0 ×1 Xn1+3,d1→ Xn0+n1+4,d0+d1

as follows. Consider the map fromXn0+3,d0×Xn1+3,d1 toX×X defined by evalu-
ation at the third marked points. Note that, for a homogeneous KählerX, the map
is conveniently transverse to the diagonal1 ⊂ X × X. The source of the gluing
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map is the preimage of1. It consists of pairs of stable maps which have the same
image of the third marked point and which therefore can be glued at this point into
a single stable map of degreed0 + d1 with n0 + 2+ n1+ 2 marked points.

Similarly, gluing stable maps of depthk from k + 1 stable maps subject tok
diagonal constraints at the double points of the chainC0, . . . , Ck defines appropri-
ate gluing maps parameterizing the strata of depthk.

3. Proof of the WDVV Identity

All points in M̄0,4 represent the same (co)homology class. Thus, the analytic
fundamental cycles of the fibers ct−1(λ) are homologous inXn+4,d . The coho-
mological WDVV identity follows from the fact that (forλ = 0, 1, or∞) the
fiber ct−1(λ) consists of strata of depth> 0; moreover, the corresponding gluing
maps (for all splittingsd = d0 + d1 of the degree and all splittings of then =
n0 + n1 marked points) are isomorphisms at generic points and so identify the
analytic fundamental cycle of the fiber with the sum of the fundamental cycles of
Xn0+3,d1×1 Xn1+3,d2. This allows one to equate three quadratic expressions of the
correlators that differ by the order of the indicesα, β, γ, δ associated with the first
four marked points.

We leave the reader to work out some standard combinatorial details that are
needed in order to translate this argument into the WDVV identity for the gen-
erating functionF. Note that the contraction with the intersection tensor(gεε

′
)

in the WDVV equation takes care of the diagonal constraint1 ⊂ X × X for the
evaluation maps.

In K-theory, similarly, the push-forward toX ×X of the structure sheafO1 of
the diagonal is expressed as∑

(φε ⊗1)gεε
′
(1⊗ φε ′)

via (gεε
′
) inverse to the “intersection matrix”

gαβ := 〈φα, φβ〉 = χ(X;φα ⊗ φβ).
The argument justifying the WDVV equation fails, however, since the above glu-
ing map to ct−1(λ) is one-to-one only at the points of depth 1 and does not iden-
tify the corresponding structure sheaves. Indeed, a stable map of depthk can be
glued from two stable maps ink different ways and thus belongs to thek-fold
self-intersection in the image of the gluing map.

Let us examine the variety ct−1(λ) at a point of depthk > 1. One of the prop-
erties of Kontsevich’s compactificationsXm,d is that, after passing to the local
nonsingular covers (defined by the orbifold structure of the moduli spaces),the
compactifying strata form a divisor with normal crossings[1; 10]. Moreover, ana-
lyzing (inductively ink) the local structure of the contraction map ct :Xn+4,d →
M̄0,4 near a depth-k point, one easily finds the local modelλ(x1, . . . , xk, . . . ) =
x1 · · · xk for the map ct in a suitable local coordinate system. In this model, the
componentsx1 = 0, . . . , xk = 0 of the divisor with normal crossings represent
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the strata of depth 1, their intersectionsxi1 = xi2 = 0 represent the strata of depth
2, and so forth. Denote byO the algebra of functions on our local chart, so that
O/(xi1, . . . , xil ), i1 < · · · < il, are the algebras of functions on the depth-l strata.
We have the following exact sequence ofO-modules:

0→ O/(x1 · · · xk)→
⊕O/(xi)→⊕O/(xi1, xi2)

→⊕O/(xi1, xi2, xi3)→ · · · .
Notice that the

⊕
-terms in the sequence are the algebras of functions on the nor-

malized strata of depth 1, depth 2,. . . . Translating this local formula to a global
K-theoretic statement about gluing maps, we conclude that, in the Grothendieck
group of orbi-sheaves onXn+4,d , the element represented by the structure sheaf
of ct−1(λ) (for λ = 0, 1, or∞) is identified with the structure sheaf of the corre-
sponding alternating disjoint sum over positive depth strata:∑

Xn0+3,d0 ×1 Xn1+3,d1 −
∑

Xn0+3,d0 ×1 Xn1+2,d1 ×1 Xn2+3,d2 + · · · .

4. Formulation and Consequences

Now we can apply the precedingK-theoretic statement about moduli spaces to
our generating functions. We introduce

G(t,Q) := 1

2

∑
α,β

gαβ tα tβ + F(t,Q)

and let(Gαβ) be the matrix inverse to(Gαβ) = (∂α∂βG).
Theorem. ∑

ε,ε ′
GαβεG

εε ′Gεγδ is totally symmetric inα, β, γ, δ.

Proof. We have rewritten

Fαβεg
εε ′Fε ′γδ − FαβεgεµFµµ′gµ′ε ′Fε ′γδ + · · ·

using the well-known matrix identity 1− F + F 2 − · · · = (1+ F )−1.

Now introduce thequantum tensor productonTtH (with H = K∗(X)) by

(φα • φβ, φγ ) := Gαβγ(t),
where the metric(·, ·) onTH is defined by(φµ, φν) := Gµν(t).
Corollary 1. The operations(·, ·) and• define on the tangent bundle the struc-
ture of a formal commutative associative Frobenius algebra with the unit1.

Remark. At Q = 0, the algebra turns into the usual multiplicative structure on
K∗(X).
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Proof. As in the cohomology theory, this is a formal corollary of the theorem—
except that the statement about the unit 1 means thatGα1β = Gαβ and follows
from the simplest instance of thestring equationin K-theory: (1, t, . . . , t)n+1,d =
(t, . . . , t)n,d . The last equality is obvious. Indeed, the push-forward of the con-
stant sheaf 1 along the map ft :Xn+1,d → Xn,d (forgetting the first marked point)
is the constant sheaf 1 onXn,d since the fibers are curvesC of arithmetic genus
g = dimH 1(C,OC) = 0 whileH 0(C,OC) = C by Liouville’s theorem.

We introduce onT ∗H the 1-parameter family of connection operators

∇q := (1− q)d −
∑
α

(φα•)dtα ∧ .

Corollary 2. The connections∇q are flat for anyq 6= 1.

Proof. This follows fromφα • φβ = φβ • φα, d2 = 0, and∂α(φβ•) = ∂β(φα•):
∂α(φβ•)νµ = GµαβεGεν −GµβεGεε ′Gε ′αε ′′G

ε ′′ν

is symmetric with respect toα andβ because of the WDVV identity.

Proposition. The operator∇−1 is twice the Levi–Civita connection of the met-
ric (Gαβ) onT ∗H.

Proof. For a metric of the formGαβ = ∂α∂βG, the famous explicit formulas for
the Christoffel symbols yield

20γαβ = [Gαεβ +Gβεα −Gαβε]Gεγ = GαβεGεγ = (φβ•)γα .
Corollary 3. The metric(·, ·) onTH is flat.

We complete this section with a description of flat sections of the connection oper-
ator∇q in terms ofK-theoretic “gravitational descendents”. Let us introduce the
generating functions

Sαβ(t,Q) := gαβ +
∑
n,d

Qd

n!

(
φα, t, . . . , t,

φβ

1− qL
)
n+2,d

,

where the correlators are defined by

(ψ1, . . . , ψnL
k)m,d := χ(Xm,d;ev∗1(ψ1)⊗ · · · ⊗ ev∗m(ψm)⊗ L⊗k).

Here L is the line orbi-bundle over the moduli spaceXm,d of stable maps
(C, z)→ X formed by the cotangent lines toC at thelast marked point (as spec-
ified by the position of the geometrical series 1+ qL+ q2L2 + · · · = (1− qL)−1

in the correlator).

Theorem. The matrixS := (Sµν) is a fundamental solution to the linear PDE
system

(1− q)∂αS = (φα•)S.
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Proof. Taking φµ, φα, φβ, andφν/(1− qL) for the content of the four distin-
guished marked points in the proof of the WDVV identity, we obtain its general-
ization in the form

GµαεG
εε ′∂βSε ′ν = GµβεGεε ′∂αSε ′ν,

or (φα•)∂βS = (φβ•)∂αS. Now it remains to putφβ = 1 and use(1− q)∂1S = S,
which is another instance of the string equation:

(1, t, . . . , t, φLk)n+2,d = (t, . . . , t, φ(1+ L+ · · · + Lk))n+1,d .

The last relation is obtained by computing the push-forward ofL⊗k along ft1:
Xn+2,d → Xn+1,d . Some details can be found in [6; 11; 14; 15]. Briefly, one iden-
tifies the fibers of ft1 with the curves underlying the stable mapsf : (C, z)→ X

with n+1 marked points. It is important to realize that the pull-backL′ := ft∗1(L)
of the line bundle namedL onXn+1,d differs from the line bundle namedL on
Xn+2,d . In fact, there is a holomorphic section of Hom(L′, L) with the divisorD
defined by the last marked pointzn+1 ∈ C, and the bundleL restricted toD is
trivial (while L′

∣∣
D

is therefore conormal toD). SinceL′ is trivial along the fibers
C, we find thatH 1(C,Lk) = 0 andH 0(C,Lk) = (L′)k ⊗ H 0(C,OC(kD)) '
(L′)k(1+ (L′)−1+ · · · + (L′)−k).

5. Some Open Questions

(a)Definitions. It is natural to expect that the foregoing results extend from the
case of homogeneous Kähler spacesX to general compact Kähler and, even more
generally, almost Kähler target manifolds.

In the Kähler case, the moduli of stable degree-d genus-g maps withnmarked
points form compact complex orbi-spacesXg,n,d equipped with theintrinsic nor-
mal cone[13]. The cone gives rise [3] to an element in theK-group ofXg,n,d that
should be used in the definition ofK-theoretic correlators in the same manner as
the virtual fundamental cycle [Xg,n,d ] is used in quantum cohomology theory.

The moduli spaceXg,n,d can also be described as the zero locus of a section of
a bundleE→ B over a nonsingular space. Owing to the famous “deformation to
the normal cone” [3], the virtual fundamental cycle represents the Euler class of
the bundle. This description survives in the almost Kähler case and yields a topo-
logical definition and symplectic invariance of the cohomological correlators. In
K-theory, there exists a topological construction of the push-forward fromB to
the point based on the Whitney embedding theorem and the Thom isomorphism.
However, we don’t know how to adjust the construction to our actual setting, where
B is nonsingular only in theorbi-fold sense.

One (somewhat awkward) option is to defineK-theoretic correlators topolog-
ically by the RHS of the Kawasaki–Riemann–Roch–Hirzebruch formula [8] for
orbi-bundles overB. This proposal deserves further study even in the Kähler case,
since it may lead to a “quantum Riemann–Roch formula”.

(b) Frobenius-like Structures.Our results in Section 4 show thatK-theoretic
Gromov–Witten invariants of genus 0 define on the spaceH = K∗(X) a geo-
metrical structure very similar (but not identical) to the Frobenius structure [2] of
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cohomology theory. One of the lessons is that the metric tensor onH (which can
in both cases be described asFα1β) is constant in cohomology theory and equal
to gαβ only by an “accident”, but it remains flat inK-theory even though it is no
longer constant.

The translationt 7→ t + τ1 in the direction of 1∈H leaves the structure invari-
ant in cohomology theory but causes multiplication byeτ in K-theory—because
of a new form of the string equation. Also, theZ-grading missing inK-theory
makes an important difference. It would be interesting to study the axiomatic
structure that emerges here and to compare it with the structure implicitly encoded
byK-theory on Deligne–Mumford spaces.

(c) Deligne–Mumford Spaces.When the target spaceX is the point, the mod-
uli spacesXg,n,0 are Deligne–Mumford compactifications of the moduli spaces of
genus-g Riemann surfaces withn marked points. The parallel between cohomol-
ogy andK-theory suggest several problems.

Holomorphic Euler characteristics of universal cotangent line bundles and their
tensor products satisfy the string and dilation equations. (The same is true not only
for X = pt (see [12]). By the way, the push-forward ft∗(L) along ft :Xg,n+1,d →
Xg,n,d , described by the dilation equation is equal toH+H∗ − 2+ n. HereH is
theg-dimensionalHodge bundlewith the fiberH 1(C,OC). This answer replaces
a similar factor 2g−2+n in the cohomological dilation equation, but it also shows
that tensor powers ofH must be included to complete the list of “observables”.)

TheK-theoretic generalization of the rest of Witten–Kontsevich’s intersection
theory [9; 15] is unclear.

The case of genus 0 and 1 has been studied in [11; 12; 14]. The formula

χ

(
M̄0,n; 1

(1− q1L1) · · · (1− qnLn)
)

= (1+ q1/(1− q1)+ · · · + qn/(1− qn))n−3

(1− q1) · · · (1− qn)
found by Lee [11] is analogous to the well-known intersection theory result∫

[M̄0,n]

1

(1− x1c1(L1)) · · · (1− xnc1(Ln))
= (x1+ · · · + xn)n−3

[10; 15]. This second formula is the basis for fixed point computations [5; 10] in
equivariant cohomology of the moduli spacesXn,d for toricX. As noted by Lee,
the first formula is not sufficient for similar fixed point computation inK-theory:
it requires Euler characteristics accountable forinvariants with respect to permu-
tations of the marked points.Finding anSn-equivariant version of Lee’s formula
is an important open problem.

(d)Computations.The quantumK-ring is unknown even forX = CP 1. It turns
out that the WDVV equation is not powerful enough in the absence of grading con-
straints and thedivisor equation(see e.g. [6]).

On the other hand, forX = CP n, it is not hard to compute the generating
functionsG(t,Q) and evenSαβ(t,Q, q) at t = 0 (see [12]). In cohomology the-
ory, this would determine thesmallquantum cohomology ring due to the divisor
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equation which, roughly speaking, identifies theQ-deformation att = 0 with the
t-deformation atQ = 1 along the subspaceH 2(X,Q) ⊂ H. No replacement for
the divisor equation seems to be possible inK-theory.

At the same time, the heuristic study [5] ofS1-equivariant geometry on the
loop spaceLX suggests that the generating functionsS = S1β(0,Q, q) should
satisfy certain linearq-difference equations (instead of similar linear differen-
tial equations of quantum cohomology theory). This expectation is supported by
the example ofX = CP n, since Lee [12] has found that the generating func-
tions are solutions to theq-difference equationDn+1S = QS (where(DS)(Q) :=
S(Q)− S(qQ)).

In the case of the flag manifoldX, the generating functionsS have been iden-
tified with the so-calledWhittaker functions—common eigenfunctions of com-
muting operators of theq-difference Toda system. This result and its conjectural
generalization [7] to the flag manifoldsX = G/B of complex simple Lie alge-
bras links quantumK-theory to representation theory and quantum groups. Orig-
inally this conjecture served as a motivation for developing the basics of quantum
K-theory.
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