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1. Introduction

Ourmainresultis Theorem 3.2. It characterizes the complete intersections of codi-
mension 2 inP" (n > 3), over an algebraically closed field of characteristic 0,
among the Cohen—Macaul&yas those that are subcanonical and self-linked. This
characterization was formulated by Ellia (private comm.), who proved it in a joint
work with Beorchia [BE, Thm. 5, p. 556] assumigis smooth. In Remark 6.1
[BE, p. 557], Beorchia and Ellia said they don’t know whether the smoothness
“can be avoided.” It can! Furthermor#, can be reducible and nonreduced.

More precisely, arX is said to bez-subcanonicalf its dualizing sheatuvy is
of the formwy = Ox(a). An X is said to beself-linkedby two hypersurfaces
F1 and F, if X is equal to its own residual scheme in the complete intersection
of F; and F,. For example, supposk is the complete intersection df; and
F3. ThenX is self-linked byF; and F,, whereF, := 2F3 or whereF is, more
generally, any hypersurface such thiatn F, = F; N 2F3. Furthermore X is
a-subcanonical where is the following integer: denote the degreefefby m;;
thena := m1+ m3 — n — 1. Now, Theorem 3.2 says that this is, in fact, the only
example!

This second formulation of Theorem 3.2 is more refined than the first. After all,
the first says nothing much about the hypersurfag¢esvolved. In particular, the
first does not suggest anything like the equatign= 2m3. Indeed, [BE, Cor. 4,

p. 557] offers an alternative proof of the first formulation in the case wkesea
curve andnz > m» > my. The proof is correct, but the case is vacuous!

Our proof of Theorem 3.2 follows, to a fair extent, the lines of Beorchia and
Ellia’s proof of their Theorem 5. In both proofs, a key step is to split the normal
bundle ofX in P". At this stage, if= > 4 andX is smooth, then we’re done simply
because the normal bundle splits; indeed, Basili and Peskine [BP, p. 87] proved
that thenX is a complete intersection. However, in order to prove Theorem 3.2 in
full generality, we must split the normal bundle with care. For example, consider
the twisted cubic space curdg its normal bundle is split becausgis rational,
and it is known tha¥ is self-linked by a quadric cone and a cubic surface, but of
courseX is neither a complete intersection nor even subcanonical.
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To split the normal bundle, we’ll use (the Gherardelli linkage) Theorem 2.5. It
asserts that, when two hypersurfadesand F, of P" intersect partially in arX,
thenX is subcanonical if and only if its residual schekhis, scheme-theoretically,
of the formY = F; N F, N F3, whereF3 is a suitable hypersurface. (Suctra
is called aguasi-complete intersectionln particular, if X is subcanonical and is
self-linked by F; and Fy, thenX = Fy N F> N F3. In this case, we'll form the
conormal bundles ok in F3 and inP", and we’ll split the natural map from the
latter bundle onto the former.

We will then conclude that some multiple &f is numerically equivalent to a
hypersurface section dfs, at least after we've replaceks by an integral com-
ponent; we'll simply apply Braun’s main theorem [Br, p. 403]. (Braun followed
the lines of Ellingsrud, Gruson, Peskine, and Strgamme’s remarkable proof of the
theorem in the case of a curve on a smooth connected surface. This case had been
treated earlier, in a very different fashion, by Griffiths, Harris, and Hulek. See
Braun’s paper [Br, p. 411] for all the references.) Finally, to conclude xhat
a complete intersection, Beorchia and Ellia used Gruson and Peskine’s work on
space curves. Instead, we'll make a direct geometric argument and so obtain our
more refined statement of Theorem 3.2.

If n > 6 andX is smooth, then, sinc¥ is a quasi-complete intersection, it is,
in fact, a complete intersection by Faltings’ Korollar of Satz 3 [Fa, p. 398]. This
line of proof is significant because it is valid in any characteristic, whereas Basili
and Peskine work in characteristic 0—and we must too, although only to apply
Braun’s theorem. Beorchia and Ellia [BE, p. 556] suggested that there might be a
problem in characteristic 2 by pointing out the following result, due in part to Rao
[R2, p. 272] and in part to Migliore [Mi, p. 185]: a double lineR of arithmetic
genus—2 or less is self-linked if and only if the characteristic is 2. We'll pur-
sue this suggestion in Example 3.4. On the other hand, it would be nice to know
whether Theorem 3.2 is valid except for cert&irof small dimension in charac-
teristic 2.

The Gherardelli linkage theorem holds in greater generality than that stated
above. In Theorem 2.5, we'll replad®® by any Gorenstein projective scheme
P having pure dimension 2 or more and satisfying this vanishing condition:
H1(Op(m)) = 0 for three specific values of the pair, m). For exampleP can
be a complete intersection B*. Thus we’ll recover Theorerf(i) of Fiorentini
and Lascu [FL2, p. 170], where, in additioXiandY are assumed to have no com-
mon components; in fact, our proof was inspired by theirs. Beorchia and Ellia
[BE, p. 556] proved the existence of the hypersurfagalirectly in the case at
hand by using the mapping cone. Earlier, Rao [R1, pp. 209-10] proved (burying
it among other things) a version of the Gherardelli linkage theorem in which the
condition thatX be subcanonical is replaced by the condition tkidie the zero
scheme of a section of a rank-2 vector bundleRdn these two conditions are
equivalent by a famous theorem of Serre’s (see [Fe, Prop. 3, p. 346]). On the other
hand, our Theorem 3.2 does not hold eve®ifis replaced by a smooth hypersur-
face P, as we'll see in Example 3.3.
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To prove (the Gherardelli linkage) Theorem 2.5, we'll use the Noether linkage
sequence (2.3.1), which presents the dualizing sheaf of a partial intersection in any
Gorenstein ambient schenfehaving pure dimension 2 or more. The case where
P is a complete intersection " was treated in [FL2, Lemma 1] and [PS, 1.6]
and was used in [R2, p. 253]. The general case is, as we’'ll see, no more difficult
to prove.

In short, in Section 2 we will review some basic linkage theory, including the
Peskine—Szpiro linkage theorem (cf. [Ei, 21.23, p. 541; PS, 1.3, p. 274]), the Noe-
ther linkage sequence, and the Gherardelli linkage theorem. This theory is all
more or less well known but has not always been developed exactly as here, and
it is all essential for our work in Section 3. In Section 3, we'll prove our main
theorem, our characterization of complete intersections of codimensioR 2. in
Finally, we’ll discuss two examples: the first shows that the ambient projective
space cannot be replaced even by a smooth hypersurface; the second shows that
our characterization fails in characteristic 2.

2. Gherardelli Linkage

ProrosiTION 2.1 (Peskine—Szpiro Linkage Theorem)l.et Z be a Gorenstein
schemeX C Z aproper closed subscheme, andhe residual scheme of. If X
is Cohen—Macaulay of pure codimensi@nthen so isY; furthermore,X is then
also the residual scheme af

Proof. Let Ty, andZy,; denote the ideals. Then we have
IY/Z = Annoz IX/Z < Horn(gZ (Ox, Oz), (211)

where the equation holds by definition and the isomorphism is given by evaluation
atl.

It is a basic fact (see [Ei, 21.21, p. 538]) that, on the category of maximal (di-
mensional) Cohen—Macaul&y,-modulesM, the functor

D(M) := Homp, (M, Oz)
is dualizing. Now,D interchanges the two basic exact sequences
0—Zx;z >0z > 0x -0 and 0— Iy; — Oz - Oy — 0;

indeed,D carries the first sequence to the second thanks.idj2and so, a® is
dualizing,D carries the second sequence back to the first. THusz D(Ix,z)
andZy,z; = D(Oy). The latter equation implies thatis the residual scheme &f
The former equation implies th&ly is maximal Cohen—Macaulay becausg ,
is s0, since at any € X we have

depthZy,z , > min(depthOy ., 1+ depthOy ,)
(see [Ei, 18.6b, p. 451]). The proof is now complete. O
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SeTuP 2.2. LetP be a complete scheme defined over an algebraically closed
field of arbitrary characteristic. Assume thais Gorenstein of pure dimension at
least 2, and equi@ with an invertible sheafp (1) that is not necessarily ample.
Fori =1, 2, let f; € H%Op(m;)) be a section and lef; : f; = 0 be its scheme
of zeros. Set

Z . =FNFp,
and assume that has pure codimension 2.

Let X C Z be a proper closed subscheme, and assumeXhat Cohen—
Macaulay of pure codimension 2 iA. Let Y C Z be the residual scheme of
X. By the Peskine—Szpiro linkage theorem (Proposition Z13)so is Cohen—
Macaulay of pure codimension 2 if andX is also the residual scheme Xf

ProrosiTioN 2.3 (Noether Linkage Sequence)n Setup 2.2, the dualizing
sheaves and the ideals i are related by the following short exact sequence

0— Iz/p ® Wp(my+ my) — Iy/p ® Wp(my+mo) — Wy — 0. (231)

Proof. First, note the following two equations:
Wy =u)p(m1+m2)|z and Wy =Iy/z®u)z. (232)

The first equation is standard and results from basic duality theory (see e.g. [AK,
Chap. 1]):

Wy = Ext3(Oz, Wp) = Homy (det(Zz,p/ 5 p). Wp| ).
The second equation in (2.3.2) results from a series of three other equations:
Wy = Hom(Ox, Wz) = Hom(Ox, Oz) @ Wz = Zy/z ® Wz.
These hold by elementary duality theory, by the invertiblitywf, and by (2.1.1).
Finally, the Noether linkage sequence (2.3.1) results from the basic sequence
0—Zzp — Zyp — Zy;z — 0

by tensoring it withwp (m1 + m») and then using the two equations in (2.3.2))

REMaRk 2.4, According to Enriques [EC, Vol. 3, p. 534], Noether obtained
the preceding proposition in the special case wheiis the projective 3-space.
Noether stated it virtually as follows:

If the curveX is the partial intersection of two surfaceg and F; of
degreesn; andm,, meeting further in a curve, then the surfaces of
degreem; + m, — 4 passing througly cut onX the complete canonical
series.

To derive this statement, take (2.3.1), replage by Op(—4), and extract co-
homology, obtaining the following exact sequence:

H%Zyjp(my+ma — 4) — H%Wx) — HXZzp(m1+my — 4)).

The third term vanishes becaugés a complete intersection, and Noether’s state-
ment follows.
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THEOREM 2.5 (Gherardelli Linkage). Preserve the assumptions of Setup 2.2. Let
ms > 0. If there exists ary; € H%Op(ms3)) such thaty = F, N F» N F3, where
F3: f3= 0, then

Wy = WP(m]_"‘ my — m3)|X.

The converse holds if, in addition,

HYOp(mz—m1)) =0,  HYOp(mz—my)) =0
and
H?(Op(mg — my— my)) = 0.

Proof. Assume anfs exists. ThenY = Z N F3. Hence, multiplication byfs
gives a surjectiom: Oz(—m3) — ZLyz. Its kernel AnnZy,;(—m3) is equal to
ZIx,z(—m3) becauseX is also the residual scheme Bf owing to (2.1). Squ in-
duces anisomorphisly (—m3) = Zy,z. Hence, by (2.3.2)Yx has the asserted
form.

Conversely, assume thaty = Wp(m1 + my — m3)|X. Twisting the Noether
linkage sequence (2.3.1) then yields the following exact sequence:

0— Iz/p(inQ,) —> Iy/P(mg) — OX — 0. (241)
Extracting cohomology yields the next exact sequence:
HOZyp(m3)) — H%Ox) — H(Zzp(my3)).

Assume the additional vanishing conditions. Tlféi‘(Iz/p(m3)) = 0 thanks
to the twisted Koszul resolution,

0 — Op(mz—m1—my) — Op(mz—m1) ® Op(mz—my) — Lz,p(m3) — 0.

Hence, we may lift £ H%Ox) to an f3 € H%(Zy/p(m3)). SetFs: f3=0.
In (2.4.1), we may replac@x by Zy,,(ms). Hencely,, (m3) is generated by the
image of f3in HO(Iy/Z(m3)). ThereforeY = Z N F3 and the proof is complete.
O

3. Complete Intersections

DEeFINITION 3.1.  LetP be a Gorenstein scheme akic closed Cohen—Macaulay
subscheme. We'll say that is subcanonicaln P if P is equipped with an invert-
ible sheafOx (1) and if, for some integer, we have

Wy = CUP(OK)’X.

Assume thatP has pure dimension at least 3 and tiahas pure codimension
2. We'll say thatX is self-linkedin P by two effective Cartier divisorg’ and
F, if they meet properly in a subscherdecontainingX and if X is equal to the
residual schem# of X in Z.

THEOREM 3.2. Let P be a projective space of dimensian> 3 over an alge-
braically closed field of characteristi@. Let X C P be a closed subscheme that
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is Cohen—Macaulay of pure codimensi@nAssume thaX is subcanonical and
self-linked. TherX is a complete intersection.

In fact, sayX is self-linked by hypersurfacdg and F, of degreesn; andm.
Then, afterF; and F, are switched if need be;, is even and there is a hypersur-
face F3 of degreen, /2 such thatX = F1 N FzandZ = F; N 2F3, whereZ =
FiN Fp.

Proof. SinceP is smooth andX is subcanonicalX is Gorenstein. Hence, since
X has pure codimension 2 is locally a complete intersection iR by one of
Serre’s results [ER1.10, p537]. Hence, orX, the conormal sheaZfX/P/I,%/P is
locally free of rank 2.

By another celebrated theorem of Serrél(Op(j)) = 0 fori =1, 2 and for
anyj, sincen > 3. Hence, by Gherardelli linkage (Theorem 2.5) there is a hyper-
surfaceF; such thatX = Z N Fs.

Letx € X. Fori =1, 2,3 lety; € Op , generate the ideal df;. ThenZy p . is
generated byi, ¢, andgs but not byg; andg,, sinceX = Z N Fz butX £ Z.
SinceZyp . is generated by two elements, it must be generated eithef byd
@3 Or by ¢, andgs. HenceX is a Cartier divisor orfFs.

Fori =1, 2, setZ;, := F; N F3. Letx € X. Then, by the preceding paragraph,
Zxp,» is equal either t&z,p . Or toZz,,p .. Put geometricallyX is equal, in a
neighborhood of in P, either toZ; or to Z,.

Fori =1, 2,3 sayF; : f; = 0. Fori =1, 2, form the greatest common divisor
g: of f; and f3, and seG; : g; = 0.

First, suppose that bothi; andG, are nonempty and latbe a common point.
SinceG; is a component of botli; and F3, their intersectiorZ; is not equal to
X inaneighborhood af. Similarly, Z, is not equal taX in a neighborhood of.
This conclusion stands in contradiction to our previous conclusiorntlimequal,
in a neighborhood aof in P, either toZ; or to Z,. Therefore,G; andG, cannot
both be nonempty; sa§, is empty.

ThenZ, has pure codimension 2 iR, andZ, 2 X. If Z, = X, thenX =
F> N F3. So suppose not, and we’ll prove th&it= F; N F3. Form the residual
schemeX, of X in Z,. By general principlesX, is a Cartier divisor onF be-
causeX andZ, are so; moreovetZ,; = X + X».

Supposes; is nonempty, and set := G1N F»2. ThenC is a hypersurface sec-
tion of F,. HenceC has a poink in common withX»,, which also lies orf’,. Then
x € X, becaus& C Z andZ has the same support &s SinceGj is a compo-
nent of bothF; and F3, their intersectiorZ; is not equal taX in a neighborhood
of x. Sincex lies on bothX, and X, alsoZ, is not equal taX in a neighborhood
of x. As before, there is a contradiction. Therefa@®,is empty.

It follows that Z; has pure codimension 2 i and thatz, 2 X. If Z; = X,
thenX = F; N F3 as claimed. So suppose not, and form the residual schgme
of X in Z;. By general principlesX; too is a Cartier divisor orfs. After a bit of
work, we'll achieve a contradiction.

First, we’'ll construct a natural splitting of the natural surjection,

IX/P/I)Z(/P - IX/F3/I§/F3‘ (3.21)
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To do so, form the |magé of Zz,p in Ix/p/IX/P, we will show thatl maps iso-
morphically ontoIX/,v3/IX/F3 SinceL maps surjectively and sm®(/F3/IX/F3
is invertible (becausd is a Cartier divisor orF3), we need only show that is
invertible.

Letx € X. Say, as before, thdy,p « = Zz,/p,.. SetW = F1 N 2F3. Then
W DZ; indeedIﬁg/P C Zzp becaus€y,; = AnnZy,, sinceX is self-linked.
Since alsd¥ D Z,, there is a natural commutative diagram

0 — Tzyw Ow 0z, 0
A
0 —> Ty 0 Ox 0.

Clearly,Zz,,w = Op(—F3)|Zl. Moreover,Iy,; = Wx ® Wp(m1+my)~Lowing

to (2.3.2) withY := X. Thus the source af is invertible onZ;, and the target

is invertible onX. Now, Zx/p . = Zz,/p,. Hence,w is an isomorphism at; in

other words X andZ are the same scheme in a neighborhoad. &lso, « is sur-
jective atx, and its source and target are invertible sheaves on the same scheme in
a neighborhood aof; hencey is an isomorphism at. Thereforep is an isomor-
phism atr and saZwp » = Zz/p .

Thus, inIX/p/I)Z(/P, the images ofZy,» andZz,p are equal ak. The image
of Zwyp is equal t0(9p(—F1)|X at x; indeed, the latter sheaf maps naturally into
the former, and this map is surjective (sincec F3) and injective afv, since its
natural image is a direct summandba‘/p/l,z(/P atx (becaus€xp . = Zz,p x).
The image ofZz,p is £, by definition; thus,L is invertible atx. Sincex € X is
arbitrary, £ is invertible. HenceL = IX/F3/IX/F3, and (3.2.1) splits.

Let F be any irreducible component 6%, and equipF with its reduced struc-
ture. SinceF is a hypersurfacel’ meetsX. SetV := X N F. ThenV is a Cartier
divisor on F and henceV is locally a complete intersection iR. Consider the
natural commutative diagram of sheavesion

L| 1% - (IX/F3/I§/F3)| 1%

! l

Tyip/Tfp —  Lvir/Thp -

The top horizontal map is an isomorphism because it is the restriction of an iso-
morphism. The right vertical map is an isomorphism because it is surjective and
its source and target are invertible. Therefore, the lower horizontal map splits.

Because
(a) the lower map splits,
(b) V is a Cartier divisor orF’ and is locally a complete intersection i)
(c) Fisreduced, irreducible, and closed, and
(d) P is a projective space of dimensiar> 3 over an algebraically closed field

of characteristic 0,

Braun’s main theorem [Br, p. 26] implies that some multiplé/ois numerically
equivalent to a hypersurface sectionrof
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SinceF is a hypersurface, it follows that meets bothX; and X,, which are
supposedly nonempty. For=1, 2, setV; := X; N F. ThenV; is a Cartier divi-
soronF, andV + V; = F; N F. Hence some multiple of;, too, is hnumerically
equivalent to a hypersurface sectionfaf Therefore,V; andV, have a common
pointx. Thenx lies on bothZ; andZ, and thus on their intersection, whichXs
However, there is no neighborhood.oin which eitherZ; or Z, is equal toX,
because lies on bothX; andX,. Thus, we've achieved the desired contradiction
and soX = F1N Fa.

ThenW = Z everywhere (by the previous reasoning); in other woiis+
F1N 2F3. Finally, setms := degFs. Then dedZ = 2mim3z. Now, Z := FiN Fy,
so degZ = mimy. Hence 2nz = m,. The proof is complete. O

ExampLE 3.3. Most of the proof of Theorem 3.2 works without change in the
relative case, wher® is a smooth projectively Cohen—Macaulay variety of pure
dimension at least 3. However, to apply Braun’s theorem, we must know that the
surjection (3.2.1) splits wheR is replaced by the ambient projective space; the
proof shows that (3.2.1) itself splits, but this splitting is insufficient. The theorem
does not hold even wheR is replaced by a smooth hypersurface, as the following
paragraph shows.

Let P be a smooth quadric hypersurfacePifi Let F; be the section of by a
hyperplaneH; that is tangent t@ at a pointc. ThenF; is a cone inH; with ver-
tex atx and with base a smooth (plane) cogicFix y € C. Theny determines a
generatoX of the coneF;. Let H, be a hyperplane iR* that cutsH; in the plane
spanned by and by the tangent line 6 aty. ThenX is a line and thus is sub-
canonical inP. Moreover,X is self-linked inP by F; and F, with F, := H,N P.
However, X is not the complete intersection of two hypersurface sectior of
since any such complete intersection has even degieé in

ExampLE 3.4. Theorem 3.2 is not valid in positive characteristic without some
further restriction onX. Indeed, we will see that, in characteristic 2, there exists
an example of an irreducible, but nonreduced, Cohen—Macaulay spaceXurve
that is subcanonical and self-linked yet is not a complete intersection.

Ferrand [Fe, p. 345] explained how to put a subcanonical double structure on a
line (indeed, on any complete curve that is locally a complete intersecti®@i)im
any characteristic; moreover, the double curve can have arbitrarily negative arith-
metic genus. Migliore [Mi, p. 185] proved that, in characteristic 2, a double line
X is self-linked if its arithmetic genus is2 or less. Such aX is not a complete
intersection, because every complete intersecidmas nonnegative arithmetic
genus by (2.3.2).
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