Gherardelli Linkage and Complete Intersections

Davide Franco, Steven L. Kleiman, \& Alexandru T. Lascu

To Bill, with best wishes for many more years of fruitful endeavors

1. Introduction

Our main result is Theorem 3.2. It characterizes the complete intersections of codimension 2 in $\mathbf{P}^{n}(n \geq 3)$, over an algebraically closed field of characteristic 0 , among the Cohen-Macaulay X as those that are subcanonical and self-linked. This characterization was formulated by Ellia (private comm.), who proved it in a joint work with Beorchia [BE, Thm. 5, p. 556] assuming X is smooth. In Remark 6.1 [BE, p. 557], Beorchia and Ellia said they don't know whether the smoothness "can be avoided." It can! Furthermore, X can be reducible and nonreduced.

More precisely, an X is said to be a-subcanonical if its dualizing sheaf ω_{X} is of the form $\omega_{X}=\mathcal{O}_{X}(a)$. An X is said to be self-linked by two hypersurfaces F_{1} and F_{2} if X is equal to its own residual scheme in the complete intersection of F_{1} and F_{2}. For example, suppose X is the complete intersection of F_{1} and F_{3}. Then X is self-linked by F_{1} and F_{2}, where $F_{2}:=2 F_{3}$ or where F_{2} is, more generally, any hypersurface such that $F_{1} \cap F_{2}=F_{1} \cap 2 F_{3}$. Furthermore, X is a-subcanonical where a is the following integer: denote the degree of F_{i} by m_{i}; then $a:=m_{1}+m_{3}-n-1$. Now, Theorem 3.2 says that this is, in fact, the only example!

This second formulation of Theorem 3.2 is more refined than the first. After all, the first says nothing much about the hypersurfaces F_{i} involved. In particular, the first does not suggest anything like the equation $m_{2}=2 m_{3}$. Indeed, [BE, Cor. 4, p. 557] offers an alternative proof of the first formulation in the case where X is a curve and $m_{3} \geq m_{2} \geq m_{1}$. The proof is correct, but the case is vacuous!

Our proof of Theorem 3.2 follows, to a fair extent, the lines of Beorchia and Ellia's proof of their Theorem 5. In both proofs, a key step is to split the normal bundle of X in \mathbf{P}^{n}. At this stage, if $n \geq 4$ and X is smooth, then we're done simply because the normal bundle splits; indeed, Basili and Peskine [BP, p. 87] proved that then X is a complete intersection. However, in order to prove Theorem 3.2 in full generality, we must split the normal bundle with care. For example, consider the twisted cubic space curve X; its normal bundle is split because X is rational, and it is known that X is self-linked by a quadric cone and a cubic surface, but of course X is neither a complete intersection nor even subcanonical.

To split the normal bundle, we'll use (the Gherardelli linkage) Theorem 2.5. It asserts that, when two hypersurfaces F_{1} and F_{2} of \mathbf{P}^{n} intersect partially in an X, then X is subcanonical if and only if its residual scheme Y is, scheme-theoretically, of the form $Y=F_{1} \cap F_{2} \cap F_{3}$, where F_{3} is a suitable hypersurface. (Such a Y is called a quasi-complete intersection.) In particular, if X is subcanonical and is self-linked by F_{1} and F_{2}, then $X=F_{1} \cap F_{2} \cap F_{3}$. In this case, we'll form the conormal bundles of X in F_{3} and in \mathbf{P}^{n}, and we'll split the natural map from the latter bundle onto the former.

We will then conclude that some multiple of X is numerically equivalent to a hypersurface section of F_{3}, at least after we've replaced F_{3} by an integral component; we'll simply apply Braun's main theorem [Br, p. 403]. (Braun followed the lines of Ellingsrud, Gruson, Peskine, and Strømme's remarkable proof of the theorem in the case of a curve on a smooth connected surface. This case had been treated earlier, in a very different fashion, by Griffiths, Harris, and Hulek. See Braun's paper [Br, p. 411] for all the references.) Finally, to conclude that X is a complete intersection, Beorchia and Ellia used Gruson and Peskine's work on space curves. Instead, we'll make a direct geometric argument and so obtain our more refined statement of Theorem 3.2.

If $n \geq 6$ and X is smooth, then, since X is a quasi-complete intersection, it is, in fact, a complete intersection by Faltings' Korollar of Satz 3 [Fa, p. 398]. This line of proof is significant because it is valid in any characteristic, whereas Basili and Peskine work in characteristic 0-and we must too, although only to apply Braun's theorem. Beorchia and Ellia [BE, p. 556] suggested that there might be a problem in characteristic 2 by pointing out the following result, due in part to Rao [R2, p. 272] and in part to Migliore [Mi, p. 185]: a double line in \mathbf{P}^{3} of arithmetic genus -2 or less is self-linked if and only if the characteristic is 2 . We'll pursue this suggestion in Example 3.4. On the other hand, it would be nice to know whether Theorem 3.2 is valid except for certain X of small dimension in characteristic 2.

The Gherardelli linkage theorem holds in greater generality than that stated above. In Theorem 2.5, we'll replace \mathbf{P}^{n} by any Gorenstein projective scheme P having pure dimension 2 or more and satisfying this vanishing condition: $H^{q}\left(\mathcal{O}_{P}(m)\right)=0$ for three specific values of the pair (q, m). For example, P can be a complete intersection in \mathbf{P}^{n}. Thus we'll recover Theorem 2(i) of Fiorentini and Lascu [FL2, p. 170], where, in addition, X and Y are assumed to have no common components; in fact, our proof was inspired by theirs. Beorchia and Ellia [BE, p. 556] proved the existence of the hypersurface F_{3} directly in the case at hand by using the mapping cone. Earlier, Rao [R1, pp. 209-10] proved (burying it among other things) a version of the Gherardelli linkage theorem in which the condition that X be subcanonical is replaced by the condition that X be the zero scheme of a section of a rank-2 vector bundle on \mathbf{P}^{n}; these two conditions are equivalent by a famous theorem of Serre's (see [Fe, Prop. 3, p. 346]). On the other hand, our Theorem 3.2 does not hold even if \mathbf{P}^{n} is replaced by a smooth hypersurface P, as we'll see in Example 3.3.

To prove (the Gherardelli linkage) Theorem 2.5, we'll use the Noether linkage sequence (2.3.1), which presents the dualizing sheaf of a partial intersection in any Gorenstein ambient scheme P having pure dimension 2 or more. The case where P is a complete intersection in \mathbf{P}^{n} was treated in [FL2, Lemma 1] and [PS, 1.6] and was used in [R2, p. 253]. The general case is, as we'll see, no more difficult to prove.

In short, in Section 2 we will review some basic linkage theory, including the Peskine-Szpiro linkage theorem (cf. [Ei, 21.23, p. 541; PS, 1.3, p. 274]), the Noether linkage sequence, and the Gherardelli linkage theorem. This theory is all more or less well known but has not always been developed exactly as here, and it is all essential for our work in Section 3. In Section 3, we'll prove our main theorem, our characterization of complete intersections of codimension 2 in \mathbf{P}^{n}. Finally, we'll discuss two examples: the first shows that the ambient projective space cannot be replaced even by a smooth hypersurface; the second shows that our characterization fails in characteristic 2 .

2. Gherardelli Linkage

Proposition 2.1 (Peskine-Szpiro Linkage Theorem). Let Z be a Gorenstein scheme, $X \subset Z$ a proper closed subscheme, and Y the residual scheme of X. If X is Cohen-Macaulay of pure codimension 0, then so is Y; furthermore, X is then also the residual scheme of Y.

Proof. Let $\mathcal{I}_{X / Z}$ and $\mathcal{I}_{Y / Z}$ denote the ideals. Then we have

$$
\begin{equation*}
\mathcal{I}_{Y / Z}:=\operatorname{Ann}_{\mathcal{O}_{Z}} \mathcal{I}_{X / Z} \leftarrow \operatorname{Hom}_{\mathcal{O}_{Z}}\left(\mathcal{O}_{X}, \mathcal{O}_{Z}\right) \tag{2.1.1}
\end{equation*}
$$

where the equation holds by definition and the isomorphism is given by evaluation at 1 .

It is a basic fact (see [Ei, 21.21, p. 538]) that, on the category of maximal (dimensional) Cohen-Macaulay \mathcal{O}_{Z}-modules \mathcal{M}, the functor

$$
\mathcal{D}(\mathcal{M}):=\operatorname{Hom}_{\mathcal{O}_{Z}}\left(\mathcal{M}, \mathcal{O}_{Z}\right)
$$

is dualizing. Now, \mathcal{D} interchanges the two basic exact sequences

$$
0 \rightarrow \mathcal{I}_{X / Z} \rightarrow \mathcal{O}_{Z} \rightarrow \mathcal{O}_{X} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{I}_{Y / Z} \rightarrow \mathcal{O}_{Z} \rightarrow \mathcal{O}_{Y} \rightarrow 0
$$

indeed, \mathcal{D} carries the first sequence to the second thanks to (2.1.1), and so, as \mathcal{D} is dualizing, \mathcal{D} carries the second sequence back to the first. Thus, $\mathcal{O}_{Y}=\mathcal{D}\left(\mathcal{I}_{X / Z}\right)$ and $\mathcal{I}_{X / Z}=\mathcal{D}\left(\mathcal{O}_{Y}\right)$. The latter equation implies that X is the residual scheme of Y. The former equation implies that \mathcal{O}_{Y} is maximal Cohen-Macaulay because $\mathcal{I}_{X / Z}$ is so, since at any $x \in X$ we have

$$
\text { depth } \mathcal{I}_{X / Z, x} \geq \min \left(\operatorname{depth} \mathcal{O}_{Z, x}, 1+\operatorname{depth} \mathcal{O}_{X, x}\right)
$$

(see [Ei, 18.6b, p. 451]). The proof is now complete.

Setup 2.2. Let P be a complete scheme defined over an algebraically closed field of arbitrary characteristic. Assume that P is Gorenstein of pure dimension at least 2 , and equip P with an invertible sheaf $\mathcal{O}_{P}(1)$ that is not necessarily ample. For $i=1,2$, let $f_{i} \in H^{0}\left(\mathcal{O}_{P}\left(m_{i}\right)\right)$ be a section and let $F_{i}: f_{i}=0$ be its scheme of zeros. Set

$$
Z:=F_{1} \cap F_{2},
$$

and assume that Z has pure codimension 2.
Let $X \subset Z$ be a proper closed subscheme, and assume that X is CohenMacaulay of pure codimension 2 in P. Let $Y \subset Z$ be the residual scheme of X. By the Peskine-Szpiro linkage theorem (Proposition 2.1), Y also is CohenMacaulay of pure codimension 2 in P, and X is also the residual scheme of Y.

Proposition 2.3 (Noether Linkage Sequence). In Setup 2.2, the dualizing sheaves and the ideals in P are related by the following short exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{Z / P} \otimes \omega_{P}\left(m_{1}+m_{2}\right) \rightarrow \mathcal{I}_{Y / P} \otimes \omega_{P}\left(m_{1}+m_{2}\right) \rightarrow \omega_{X} \rightarrow 0 \tag{2.3.1}
\end{equation*}
$$

Proof. First, note the following two equations:

$$
\begin{equation*}
\omega_{Z}=\left.\omega_{P}\left(m_{1}+m_{2}\right)\right|_{Z} \quad \text { and } \quad \omega_{X}=\mathcal{I}_{Y / Z} \otimes \omega_{Z} \tag{2.3.2}
\end{equation*}
$$

The first equation is standard and results from basic duality theory (see e.g. [AK, Chap. 1]):

$$
\omega_{Z}=\operatorname{Ext}_{P}^{2}\left(\mathcal{O}_{Z}, \omega_{P}\right)=\operatorname{Hom}_{Z}\left(\operatorname{det}\left(\mathcal{I}_{Z / P} / \mathcal{I}_{Z / P}^{2}\right),\left.\omega_{P}\right|_{Z}\right)
$$

The second equation in (2.3.2) results from a series of three other equations:

$$
\omega_{X}=\operatorname{Hom}\left(\mathcal{O}_{X}, \omega_{Z}\right)=\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{Z}\right) \otimes \omega_{Z}=\mathcal{I}_{Y / Z} \otimes \omega_{Z}
$$

These hold by elementary duality theory, by the invertiblity of ω_{Z}, and by (2.1.1).
Finally, the Noether linkage sequence (2.3.1) results from the basic sequence

$$
0 \rightarrow \mathcal{I}_{Z / P} \rightarrow \mathcal{I}_{Y / P} \rightarrow \mathcal{I}_{Y / Z} \rightarrow 0
$$

by tensoring it with $\omega_{P}\left(m_{1}+m_{2}\right)$ and then using the two equations in (2.3.2).
Remark 2.4. According to Enriques [EC, Vol. 3, p. 534], Noether obtained the preceding proposition in the special case where P is the projective 3-space. Noether stated it virtually as follows:

If the curve X is the partial intersection of two surfaces F_{1} and F_{2} of degrees m_{1} and m_{2}, meeting further in a curve Y, then the surfaces of degree $m_{1}+m_{2}-4$ passing through Y cut on X the complete canonical series.

To derive this statement, take (2.3.1), replace ω_{P} by $\mathcal{O}_{P}(-4)$, and extract cohomology, obtaining the following exact sequence:

$$
H^{0}\left(\mathcal{I}_{Y / P}\left(m_{1}+m_{2}-4\right)\right) \rightarrow H^{0}\left(\omega_{X}\right) \rightarrow H^{1}\left(\mathcal{I}_{Z / P}\left(m_{1}+m_{2}-4\right)\right)
$$

The third term vanishes because Z is a complete intersection, and Noether's statement follows.

Theorem 2.5 (Gherardelli Linkage). Preserve the assumptions of Setup 2.2. Let $m_{3}>0$. If there exists an $f_{3} \in H^{0}\left(\mathcal{O}_{P}\left(m_{3}\right)\right)$ such that $Y=F_{1} \cap F_{2} \cap F_{3}$, where $F_{3}: f_{3}=0$, then

$$
\omega_{X}=\left.\omega_{P}\left(m_{1}+m_{2}-m_{3}\right)\right|_{X}
$$

The converse holds if, in addition,

$$
H^{1}\left(\mathcal{O}_{P}\left(m_{3}-m_{1}\right)\right)=0, \quad H^{1}\left(\mathcal{O}_{P}\left(m_{3}-m_{2}\right)\right)=0
$$

and

$$
H^{2}\left(\mathcal{O}_{P}\left(m_{3}-m_{1}-m_{2}\right)\right)=0
$$

Proof. Assume an f_{3} exists. Then $Y=Z \cap F_{3}$. Hence, multiplication by f_{3} gives a surjection $\mu: \mathcal{O}_{Z}\left(-m_{3}\right) \rightarrow \mathcal{I}_{Y / Z}$. Its kernel Ann $\mathcal{I}_{Y / Z}\left(-m_{3}\right)$ is equal to $\mathcal{I}_{X / Z}\left(-m_{3}\right)$ because X is also the residual scheme of Y, owing to (2.1). So μ induces an isomorphism $\mathcal{O}_{X}\left(-m_{3}\right) \xrightarrow{\sim} \mathcal{I}_{Y / Z}$. Hence, by (2.3.2), ω_{X} has the asserted form.

Conversely, assume that $\omega_{X}=\left.\omega_{P}\left(m_{1}+m_{2}-m_{3}\right)\right|_{X}$. Twisting the Noether linkage sequence (2.3.1) then yields the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{Z / P}\left(m_{3}\right) \rightarrow \mathcal{I}_{Y / P}\left(m_{3}\right) \rightarrow \mathcal{O}_{X} \rightarrow 0 \tag{2.4.1}
\end{equation*}
$$

Extracting cohomology yields the next exact sequence:

$$
H^{0}\left(\mathcal{I}_{Y / P}\left(m_{3}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{I}_{Z / P}\left(m_{3}\right)\right)
$$

Assume the additional vanishing conditions. Then $H^{1}\left(\mathcal{I}_{Z / P}\left(m_{3}\right)\right)=0$ thanks to the twisted Koszul resolution,

$$
0 \rightarrow \mathcal{O}_{P}\left(m_{3}-m_{1}-m_{2}\right) \rightarrow \mathcal{O}_{P}\left(m_{3}-m_{1}\right) \oplus \mathcal{O}_{P}\left(m_{3}-m_{2}\right) \rightarrow \mathcal{I}_{Z / P}\left(m_{3}\right) \rightarrow 0
$$

Hence, we may lift $1 \in H^{0}\left(\mathcal{O}_{X}\right)$ to an $f_{3} \in H^{0}\left(\mathcal{I}_{Y / P}\left(m_{3}\right)\right)$. Set $F_{3}: f_{3}=0$.
In (2.4.1), we may replace \mathcal{O}_{X} by $\mathcal{I}_{Y / Z}\left(m_{3}\right)$. Hence $\mathcal{I}_{Y / Z}\left(m_{3}\right)$ is generated by the image of f_{3} in $H^{0}\left(\mathcal{I}_{Y / Z}\left(m_{3}\right)\right)$. Therefore, $Y=Z \cap F_{3}$ and the proof is complete.

3. Complete Intersections

Definition 3.1. Let P be a Gorenstein scheme and X a closed Cohen-Macaulay subscheme. We'll say that X is subcanonical in P if P is equipped with an invertible sheaf $\mathcal{O}_{X}(1)$ and if, for some integer α, we have

$$
\omega_{X}=\left.\omega_{P}(\alpha)\right|_{X}
$$

Assume that P has pure dimension at least 3 and that X has pure codimension 2. We'll say that X is self-linked in P by two effective Cartier divisors F_{1} and F_{2} if they meet properly in a subscheme Z containing X and if X is equal to the residual scheme Y of X in Z.

Theorem 3.2. Let P be a projective space of dimension $n \geq 3$ over an algebraically closed field of characteristic 0 . Let $X \subset P$ be a closed subscheme that
is Cohen-Macaulay of pure codimension 2. Assume that X is subcanonical and self-linked. Then X is a complete intersection.

In fact, say X is self-linked by hypersurfaces F_{1} and F_{2} of degrees m_{1} and m_{2}. Then, after F_{1} and F_{2} are switched if need be, m_{2} is even and there is a hypersurface F_{3} of degree $m_{2} / 2$ such that $X=F_{1} \cap F_{3}$ and $Z=F_{1} \cap 2 F_{3}$, where $Z:=$ $F_{1} \cap F_{2}$.

Proof. Since P is smooth and X is subcanonical, X is Gorenstein. Hence, since X has pure codimension 2, it is locally a complete intersection in P by one of Serre's results [Ei, 21.10, p. 537]. Hence, on X, the conormal sheaf $\mathcal{I}_{X / P} / \mathcal{I}_{X / P}^{2}$ is locally free of rank 2.

By another celebrated theorem of Serre's, $H^{i}\left(\mathcal{O}_{P}(j)\right)=0$ for $i=1,2$ and for any j, since $n \geq 3$. Hence, by Gherardelli linkage (Theorem 2.5) there is a hypersurface F_{3} such that $X=Z \cap F_{3}$.

Let $x \in X$. For $i=1,2,3$, let $\varphi_{i} \in \mathcal{O}_{P, x}$ generate the ideal of F_{i}. Then $\mathcal{I}_{X / P, x}$ is generated by φ_{1}, φ_{2}, and φ_{3} but not by φ_{1} and φ_{2}, since $X=Z \cap F_{3}$ but $X \neq Z$. Since $\mathcal{I}_{X / P, x}$ is generated by two elements, it must be generated either by φ_{1} and φ_{3} or by φ_{2} and φ_{3}. Hence X is a Cartier divisor on F_{3}.

For $i=1,2$, set $Z_{i}:=F_{i} \cap F_{3}$. Let $x \in X$. Then, by the preceding paragraph, $\mathcal{I}_{X / P, x}$ is equal either to $\mathcal{I}_{Z_{1} / P, x}$ or to $\mathcal{I}_{Z_{2} / P, x}$. Put geometrically, X is equal, in a neighborhood of x in P, either to Z_{1} or to Z_{2}.

For $i=1,2,3$, say $F_{i}: f_{i}=0$. For $i=1,2$, form the greatest common divisor g_{i} of f_{i} and f_{3}, and set $G_{i}: g_{i}=0$.

First, suppose that both G_{1} and G_{2} are nonempty and let x be a common point. Since G_{1} is a component of both F_{1} and F_{3}, their intersection Z_{1} is not equal to X in a neighborhood of x. Similarly, Z_{2} is not equal to X in a neighborhood of x. This conclusion stands in contradiction to our previous conclusion that X is equal, in a neighborhood of x in P, either to Z_{1} or to Z_{2}. Therefore, G_{1} and G_{2} cannot both be nonempty; say G_{2} is empty.

Then Z_{2} has pure codimension 2 in P, and $Z_{2} \supseteq X$. If $Z_{2}=X$, then $X=$ $F_{2} \cap F_{3}$. So suppose not, and we'll prove that $X=F_{1} \cap F_{3}$. Form the residual scheme X_{2} of X in Z_{2}. By general principles, X_{2} is a Cartier divisor on F_{3} because X and Z_{2} are so; moreover, $Z_{2}=X+X_{2}$.

Suppose G_{1} is nonempty, and set $C:=G_{1} \cap F_{2}$. Then C is a hypersurface section of F_{2}. Hence C has a point x in common with X_{2}, which also lies on F_{2}. Then $x \in X$, because $C \subset Z$ and Z has the same support as X. Since G_{1} is a component of both F_{1} and F_{3}, their intersection Z_{1} is not equal to X in a neighborhood of x. Since x lies on both X_{2} and X, also Z_{2} is not equal to X in a neighborhood of x. As before, there is a contradiction. Therefore, G_{1} is empty.

It follows that Z_{1} has pure codimension 2 in P and that $Z_{1} \supseteq X$. If $Z_{1}=X$, then $X=F_{1} \cap F_{3}$ as claimed. So suppose not, and form the residual scheme X_{1} of X in Z_{1}. By general principles, X_{1} too is a Cartier divisor on F_{3}. After a bit of work, we'll achieve a contradiction.

First, we'll construct a natural splitting of the natural surjection,

$$
\begin{equation*}
\mathcal{I}_{X / P} / \mathcal{I}_{X / P}^{2} \rightarrow \mathcal{I}_{X / F_{3}} / \mathcal{I}_{X / F_{3}}^{2} . \tag{3.2.1}
\end{equation*}
$$

To do so, form the image \mathcal{L} of $\mathcal{I}_{Z / P}$ in $\mathcal{I}_{X / P} / \mathcal{I}_{X / P}^{2}$; we will show that \mathcal{L} maps isomorphically onto $\mathcal{I}_{X / F_{3}} / \mathcal{I}_{X / F_{3}}^{2}$. Since \mathcal{L} maps surjectively and since $\mathcal{I}_{X / F_{3}} / \mathcal{I}_{X / F_{3}}^{2}$ is invertible (because X is a Cartier divisor on F_{3}), we need only show that \mathcal{L} is invertible.

Let $x \in X$. Say, as before, that $\mathcal{I}_{X / P, x}=\mathcal{I}_{Z_{1} / P, x}$. Set $W:=F_{1} \cap 2 F_{3}$. Then $W \supseteq Z$; indeed, $\mathcal{I}_{F_{3} / P}^{2} \subset \mathcal{I}_{Z / P}$ because $\mathcal{I}_{X / Z}=$ Ann $\mathcal{I}_{X / Z}$, since X is self-linked. Since also $W \supseteq Z_{1}$, there is a natural commutative diagram

Clearly, $\mathcal{I}_{Z_{1} / W}=\left.\mathcal{O}_{P}\left(-F_{3}\right)\right|_{Z_{1}}$. Moreover, $\mathcal{I}_{X / Z}=\omega_{X} \otimes \omega_{P}\left(m_{1}+m_{2}\right)^{-1}$ owing to (2.3.2) with $Y:=X$. Thus the source of u is invertible on Z_{1}, and the target is invertible on X. Now, $\mathcal{I}_{X / P, x}=\mathcal{I}_{Z_{1} / P, x}$. Hence, w is an isomorphism at x; in other words, X and Z are the same scheme in a neighborhood of x. Also, u is surjective at x, and its source and target are invertible sheaves on the same scheme in a neighborhood of x; hence, u is an isomorphism at x. Therefore, v is an isomorphism at x and so $\mathcal{I}_{W / P, x}=\mathcal{I}_{Z / P, x}$.

Thus, in $\mathcal{I}_{X / P} / \mathcal{I}_{X / P}^{2}$, the images of $\mathcal{I}_{W / P}$ and $\mathcal{I}_{Z / P}$ are equal at x. The image of $\mathcal{I}_{W / P}$ is equal to $\left.\mathcal{O}_{P}\left(-F_{1}\right)\right|_{X}$ at x; indeed, the latter sheaf maps naturally into the former, and this map is surjective (since $X \subset F_{3}$) and injective at x, since its natural image is a direct summand of $\mathcal{I}_{X / P} / \mathcal{I}_{X / P}^{2}$ at x (because $\mathcal{I}_{X / P, x}=\mathcal{I}_{Z_{1} / P, x}$). The image of $\mathcal{I}_{Z / P}$ is \mathcal{L}, by definition; thus, \mathcal{L} is invertible at x. Since $x \in X$ is arbitrary, \mathcal{L} is invertible. Hence $\mathcal{L} \xrightarrow{\sim} \mathcal{I}_{X / F_{3}} / \mathcal{I}_{X / F_{3}}^{2}$, and (3.2.1) splits.

Let F be any irreducible component of F_{3}, and equip F with its reduced structure. Since F is a hypersurface, F meets X. Set $V:=X \cap F$. Then V is a Cartier divisor on F and hence V is locally a complete intersection in P. Consider the natural commutative diagram of sheaves on V,

The top horizontal map is an isomorphism because it is the restriction of an isomorphism. The right vertical map is an isomorphism because it is surjective and its source and target are invertible. Therefore, the lower horizontal map splits.

Because

(a) the lower map splits,
(b) V is a Cartier divisor on F and is locally a complete intersection in P,
(c) F is reduced, irreducible, and closed, and
(d) P is a projective space of dimension $n \geq 3$ over an algebraically closed field of characteristic 0 ,
Braun's main theorem [$\mathrm{Br}, \mathrm{p} .26$] implies that some multiple of V is numerically equivalent to a hypersurface section of F.

Since F is a hypersurface, it follows that F meets both X_{1} and X_{2}, which are supposedly nonempty. For $i=1,2$, set $V_{i}:=X_{i} \cap F$. Then V_{i} is a Cartier divisor on F, and $V+V_{i}=F_{i} \cap F$. Hence some multiple of V_{i}, too, is numerically equivalent to a hypersurface section of F. Therefore, V_{1} and V_{2} have a common point x. Then x lies on both Z_{1} and Z_{2} and thus on their intersection, which is X. However, there is no neighborhood of x in which either Z_{1} or Z_{2} is equal to X, because x lies on both X_{1} and X_{2}. Thus, we've achieved the desired contradiction and so $X=F_{1} \cap F_{3}$.

Then $W=Z$ everywhere (by the previous reasoning); in other words, $Z=$ $F_{1} \cap 2 F_{3}$. Finally, set $m_{3}:=\operatorname{deg} F_{3}$. Then $\operatorname{deg} Z=2 m_{1} m_{3}$. Now, $Z:=F_{1} \cap F_{2}$, so $\operatorname{deg} Z=m_{1} m_{2}$. Hence $2 m_{3}=m_{2}$. The proof is complete.

Example 3.3. Most of the proof of Theorem 3.2 works without change in the relative case, where P is a smooth projectively Cohen-Macaulay variety of pure dimension at least 3. However, to apply Braun's theorem, we must know that the surjection (3.2.1) splits when P is replaced by the ambient projective space; the proof shows that (3.2.1) itself splits, but this splitting is insufficient. The theorem does not hold even when P is replaced by a smooth hypersurface, as the following paragraph shows.

Let P be a smooth quadric hypersurface in \mathbf{P}^{4}. Let F_{1} be the section of P by a hyperplane H_{1} that is tangent to P at a point x. Then F_{1} is a cone in H_{1} with vertex at x and with base a smooth (plane) conic C. Fix $y \in C$. Then y determines a generator X of the cone F_{1}. Let H_{2} be a hyperplane in \mathbf{P}^{4} that cuts H_{1} in the plane spanned by x and by the tangent line to C at y. Then X is a line and thus is subcanonical in P. Moreover, X is self-linked in P by F_{1} and F_{2} with $F_{2}:=H_{2} \cap P$. However, X is not the complete intersection of two hypersurface sections of P, since any such complete intersection has even degree in \mathbf{P}^{4}.

Example 3.4. Theorem 3.2 is not valid in positive characteristic without some further restriction on X. Indeed, we will see that, in characteristic 2, there exists an example of an irreducible, but nonreduced, Cohen-Macaulay space curve X that is subcanonical and self-linked yet is not a complete intersection.

Ferrand [Fe, p. 345] explained how to put a subcanonical double structure on a line (indeed, on any complete curve that is locally a complete intersection) in \mathbf{P}^{3} in any characteristic; moreover, the double curve can have arbitrarily negative arithmetic genus. Migliore [Mi, p. 185] proved that, in characteristic 2, a double line X is self-linked if its arithmetic genus is -2 or less. Such an X is not a complete intersection, because every complete intersection Z has nonnegative arithmetic genus by (2.3.2).

References

[AK] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., 146, Springer-Verlag, Berlin, 1970.
[BP] B. Basili and C. Peskine, Décomposition du fibré normal des surfaces lisses de \mathbf{P}_{4} et structures doubles sur les solides de \mathbf{P}_{5}, Duke Math. J. 69 (1993), 87-95.
[BE] V. Beorchia and Ph. Ellia, Normal bundle and complete intersections, Rend. Sem. Mat. Univ. Politec. Torino 48 (1990), 553-562.
[Br] R. Braun, On the normal bundle of Cartier divisors on projective varieties, Arch. Math. (Basel) 59 (1992), 403-411.
[Ei] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1994.
[EC] F. Enriques and O. Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, Zanichelli, Bologna, 1915.
[Fa] G. Faltings, Ein Kriterium fur vollständige Durchshnitte, Invent. Math. 62 (1980), 393-401.
[Fe] D. Ferrand, Courbes gauches et fibrés de rang 2, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), 345-347.
[FL1] M. Fiorentini and A. T. Lascu, Una formula di geometria numerativa, Ann. Univ. Ferrara Sez. VII (N.S.) 27 (1981), 201-227.
[FL2] ——, Projective embeddings and linkage, Rend. Sem. Mat. Fis. Milano 67 (1987), 161-182.
[Gh] G. Gherardelli, Sulle curve sghembe algebriche intersezioni complete di tre superficie, Atti Accad. Italia. Rend. Cl. Sci. Fis. Mat. Nat. (7) 4 (1943), 460462.
[Mi] J. Migliore, On linking double lines, Trans. Amer. Math. Soc. 294 (1986), 177-185.
[PS] C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271-302.
[R1] P. Rao, Liaison among curves in \mathbf{P}^{3}, Invent. Math. 50 (1979), 205-217.
[R2] ——, On self-linked curves, Duke Math. J. 49 (1982), 251-273.
D. Franco

Dipartimento di Mathematica
Università di Ferrara
44100 Ferrara
Italy
frv@dns.unife.it
S. L. Kleiman

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
Kleiman@math.mit.edu
A. T. Lascu

Dipartimento di Mathematica
Università di Ferrara
44100 Ferrara
Italy
ls1@dns.unife.it

