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1. Introduction

Our main result is Theorem 3.2. It characterizes the complete intersections of codi-
mension 2 inPn (n ≥ 3), over an algebraically closed field of characteristic 0,
among the Cohen–MacaulayX as those that are subcanonical and self-linked. This
characterization was formulated by Ellia (private comm.), who proved it in a joint
work with Beorchia [BE, Thm. 5, p. 556] assumingX is smooth. In Remark 6.1
[BE, p. 557], Beorchia and Ellia said they don’t know whether the smoothness
“can be avoided.” It can! Furthermore,X can be reducible and nonreduced.

More precisely, anX is said to bea-subcanonicalif its dualizing sheafωX is
of the formωX = OX(a). An X is said to beself-linkedby two hypersurfaces
F1 andF2 if X is equal to its own residual scheme in the complete intersection
of F1 andF2. For example, supposeX is the complete intersection ofF1 and
F3. ThenX is self-linked byF1 andF2, whereF2 := 2F3 or whereF2 is, more
generally, any hypersurface such thatF1 ∩ F2 = F1 ∩ 2F3. Furthermore,X is
a-subcanonical wherea is the following integer: denote the degree ofFi bymi;
thena := m1+m3 − n− 1. Now, Theorem 3.2 says that this is, in fact, the only
example!

This second formulation of Theorem 3.2 is more refined than the first. After all,
the first says nothing much about the hypersurfacesFi involved. In particular, the
first does not suggest anything like the equationm2 = 2m3. Indeed, [BE, Cor. 4,
p. 557] offers an alternative proof of the first formulation in the case whereX is a
curve andm3 ≥ m2 ≥ m1. The proof is correct, but the case is vacuous!

Our proof of Theorem 3.2 follows, to a fair extent, the lines of Beorchia and
Ellia’s proof of their Theorem 5. In both proofs, a key step is to split the normal
bundle ofX in Pn. At this stage, ifn ≥ 4 andX is smooth, then we’re done simply
because the normal bundle splits; indeed, Basili and Peskine [BP, p. 87] proved
that thenX is a complete intersection. However, in order to prove Theorem 3.2 in
full generality, we must split the normal bundle with care. For example, consider
the twisted cubic space curveX; its normal bundle is split becauseX is rational,
and it is known thatX is self-linked by a quadric cone and a cubic surface, but of
courseX is neither a complete intersection nor even subcanonical.
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To split the normal bundle, we’ll use (the Gherardelli linkage) Theorem 2.5. It
asserts that, when two hypersurfacesF1 andF2 of Pn intersect partially in anX,
thenX is subcanonical if and only if its residual schemeY is, scheme-theoretically,
of the formY = F1 ∩ F2 ∩ F3, whereF3 is a suitable hypersurface. (Such aY
is called aquasi-complete intersection.) In particular, ifX is subcanonical and is
self-linked byF1 andF2, thenX = F1 ∩ F2 ∩ F3. In this case, we’ll form the
conormal bundles ofX in F3 and inPn, and we’ll split the natural map from the
latter bundle onto the former.

We will then conclude that some multiple ofX is numerically equivalent to a
hypersurface section ofF3, at least after we’ve replacedF3 by an integral com-
ponent; we’ll simply apply Braun’s main theorem [Br, p. 403]. (Braun followed
the lines of Ellingsrud, Gruson, Peskine, and Strømme’s remarkable proof of the
theorem in the case of a curve on a smooth connected surface. This case had been
treated earlier, in a very different fashion, by Griffiths, Harris, and Hulek. See
Braun’s paper [Br, p. 411] for all the references.) Finally, to conclude thatX is
a complete intersection, Beorchia and Ellia used Gruson and Peskine’s work on
space curves. Instead, we’ll make a direct geometric argument and so obtain our
more refined statement of Theorem 3.2.

If n ≥ 6 andX is smooth, then, sinceX is a quasi-complete intersection, it is,
in fact, a complete intersection by Faltings’ Korollar of Satz 3 [Fa, p. 398]. This
line of proof is significant because it is valid in any characteristic, whereas Basili
and Peskine work in characteristic 0—and we must too, although only to apply
Braun’s theorem. Beorchia and Ellia [BE, p. 556] suggested that there might be a
problem in characteristic 2 by pointing out the following result, due in part to Rao
[R2, p. 272] and in part to Migliore [Mi, p. 185]: a double line inP3 of arithmetic
genus−2 or less is self-linked if and only if the characteristic is 2. We’ll pur-
sue this suggestion in Example 3.4. On the other hand, it would be nice to know
whether Theorem 3.2 is valid except for certainX of small dimension in charac-
teristic 2.

The Gherardelli linkage theorem holds in greater generality than that stated
above. In Theorem 2.5, we’ll replacePn by any Gorenstein projective scheme
P having pure dimension 2 or more and satisfying this vanishing condition:
H q(OP (m)) = 0 for three specific values of the pair(q, m). For example,P can
be a complete intersection inPn. Thus we’ll recover Theorem2(i) of Fiorentini
and Lascu [FL2, p. 170], where, in addition,X andY are assumed to have no com-
mon components; in fact, our proof was inspired by theirs. Beorchia and Ellia
[BE, p. 556] proved the existence of the hypersurfaceF3 directly in the case at
hand by using the mapping cone. Earlier, Rao [R1, pp. 209–10] proved (burying
it among other things) a version of the Gherardelli linkage theorem in which the
condition thatX be subcanonical is replaced by the condition thatX be the zero
scheme of a section of a rank-2 vector bundle onPn; these two conditions are
equivalent by a famous theorem of Serre’s (see [Fe, Prop. 3, p. 346]). On the other
hand, our Theorem 3.2 does not hold even ifPn is replaced by a smooth hypersur-
faceP, as we’ll see in Example 3.3.
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To prove (the Gherardelli linkage) Theorem 2.5, we’ll use the Noether linkage
sequence (2.3.1), which presents the dualizing sheaf of a partial intersection in any
Gorenstein ambient schemeP having pure dimension 2 or more. The case where
P is a complete intersection inPn was treated in [FL2, Lemma 1] and [PS, 1.6]
and was used in [R2, p. 253]. The general case is, as we’ll see, no more difficult
to prove.

In short, in Section 2 we will review some basic linkage theory, including the
Peskine–Szpiro linkage theorem (cf. [Ei, 21.23, p. 541; PS, 1.3, p. 274]), the Noe-
ther linkage sequence, and the Gherardelli linkage theorem. This theory is all
more or less well known but has not always been developed exactly as here, and
it is all essential for our work in Section 3. In Section 3, we’ll prove our main
theorem, our characterization of complete intersections of codimension 2 inPn.

Finally, we’ll discuss two examples: the first shows that the ambient projective
space cannot be replaced even by a smooth hypersurface; the second shows that
our characterization fails in characteristic 2.

2. Gherardelli Linkage

Proposition 2.1 (Peskine–Szpiro Linkage Theorem).Let Z be a Gorenstein
scheme,X ⊂ Z a proper closed subscheme, andY the residual scheme ofX. If X
is Cohen–Macaulay of pure codimension0, then so isY ; furthermore,X is then
also the residual scheme ofY.

Proof. Let IX/Z andIY/Z denote the ideals. Then we have

IY/Z := AnnOZ IX/Z ∼←− HomOZ (OX,OZ), (2.1.1)

where the equation holds by definition and the isomorphism is given by evaluation
at 1.

It is a basic fact (see [Ei, 21.21, p. 538]) that, on the category of maximal (di-
mensional) Cohen–MacaulayOZ-modulesM, the functor

D(M) := HomOZ (M,OZ)
is dualizing. Now,D interchanges the two basic exact sequences

0−→ IX/Z −→ OZ −→ OX −→ 0 and 0−→ IY/Z −→ OZ −→ OY −→ 0;
indeed,D carries the first sequence to the second thanks to (2.1.1), and so, asD is
dualizing,D carries the second sequence back to the first. Thus,OY = D(IX/Z)
andIX/Z = D(OY). The latter equation implies thatX is the residual scheme ofY.
The former equation implies thatOY is maximal Cohen–Macaulay becauseIX/Z
is so, since at anyx ∈X we have

depthIX/Z,x ≥ min(depthOZ,x,1+ depthOX,x)
(see [Ei, 18.6b, p. 451]). The proof is now complete.
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Setup 2.2. LetP be a complete scheme defined over an algebraically closed
field of arbitrary characteristic. Assume thatP is Gorenstein of pure dimension at
least 2, and equipP with an invertible sheafOP (1) that is not necessarily ample.
For i = 1,2, let fi ∈H 0(OP (mi)) be a section and letFi : fi = 0 be its scheme
of zeros. Set

Z := F1∩ F2,

and assume thatZ has pure codimension 2.
Let X ⊂ Z be a proper closed subscheme, and assume thatX is Cohen–

Macaulay of pure codimension 2 inP. Let Y ⊂ Z be the residual scheme of
X. By the Peskine–Szpiro linkage theorem (Proposition 2.1),Y also is Cohen–
Macaulay of pure codimension 2 inP, andX is also the residual scheme ofY.

Proposition 2.3 (Noether Linkage Sequence).In Setup 2.2, the dualizing
sheaves and the ideals inP are related by the following short exact sequence:

0−→ IZ/P ⊗ωP (m1+m2) −→ IY/P ⊗ωP (m1+m2) −→ ωX −→ 0. (2.3.1)

Proof. First, note the following two equations:

ωZ = ωP (m1+m2)
∣∣
Z

and ωX = IY/Z ⊗ωZ. (2.3.2)

The first equation is standard and results from basic duality theory (see e.g. [AK,
Chap. 1]):

ωZ = Ext2P (OZ,ωP ) = HomZ

(
det(IZ/P/I 2

Z/P ),ωP
∣∣
Z

)
.

The second equation in (2.3.2) results from a series of three other equations:

ωX = Hom(OX,ωZ) = Hom(OX,OZ)⊗ωZ = IY/Z ⊗ωZ.
These hold by elementary duality theory, by the invertiblity ofωZ, and by (2.1.1).

Finally, the Noether linkage sequence (2.3.1) results from the basic sequence

0−→ IZ/P −→ IY/P −→ IY/Z −→ 0

by tensoring it withωP (m1+m2) and then using the two equations in (2.3.2).

Remark 2.4. According to Enriques [EC, Vol. 3, p. 534], Noether obtained
the preceding proposition in the special case whereP is the projective 3-space.
Noether stated it virtually as follows:

If the curveX is the partial intersection of two surfacesF1 andF2 of
degreesm1 andm2, meeting further in a curveY, then the surfaces of
degreem1+m2−4 passing throughY cut onX the complete canonical
series.

To derive this statement, take (2.3.1), replaceωP byOP (−4), and extract co-
homology, obtaining the following exact sequence:

H 0(IY/P (m1+m2 − 4)) −→ H 0(ωX) −→ H 1(IZ/P (m1+m2 − 4)).

The third term vanishes becauseZ is a complete intersection, and Noether’s state-
ment follows.
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Theorem 2.5 (Gherardelli Linkage). Preserve the assumptions of Setup 2.2. Let
m3 > 0. If there exists anf3 ∈H 0(OP (m3)) such thatY = F1∩ F2 ∩ F3, where
F3 : f3 = 0, then

ωX = ωP (m1+m2 −m3)
∣∣
X
.

The converse holds if, in addition,

H 1(OP (m3−m1)) = 0, H 1(OP (m3−m2)) = 0

and
H 2(OP (m3−m1−m2)) = 0.

Proof. Assume anf3 exists. ThenY = Z ∩ F3. Hence, multiplication byf3

gives a surjectionµ : OZ(−m3) � IY/Z. Its kernel AnnIY/Z(−m3) is equal to
IX/Z(−m3) becauseX is also the residual scheme ofY, owing to (2.1). Soµ in-
duces an isomorphismOX(−m3)

∼−→ IY/Z. Hence, by (2.3.2),ωX has the asserted
form.

Conversely, assume thatωX = ωP (m1+ m2 − m3)
∣∣
X
. Twisting the Noether

linkage sequence (2.3.1) then yields the following exact sequence:

0−→ IZ/P (m3) −→ IY/P (m3) −→ OX −→ 0. (2.4.1)

Extracting cohomology yields the next exact sequence:

H 0(IY/P (m3)) −→ H 0(OX) −→ H 1(IZ/P (m3)).

Assume the additional vanishing conditions. ThenH 1(IZ/P (m3)) = 0 thanks
to the twisted Koszul resolution,

0−→ OP (m3−m1−m2) −→ OP (m3−m1)⊕OP (m3−m2) −→ IZ/P (m3) −→ 0.

Hence, we may lift 1∈H 0(OX) to anf3 ∈H 0(IY/P (m3)). SetF3 : f3 = 0.
In (2.4.1), we may replaceOX byIY/Z(m3). HenceIY/Z(m3) is generated by the

image off3 in H 0(IY/Z(m3)). Therefore,Y = Z ∩ F3 and the proof is complete.

3. Complete Intersections

Definition 3.1. LetP be a Gorenstein scheme andX a closed Cohen–Macaulay
subscheme. We’ll say thatX is subcanonicalin P if P is equipped with an invert-
ible sheafOX(1) and if, for some integerα, we have

ωX = ωP (α)
∣∣
X
.

Assume thatP has pure dimension at least 3 and thatX has pure codimension
2. We’ll say thatX is self-linkedin P by two effective Cartier divisorsF1 and
F2 if they meet properly in a subschemeZ containingX and ifX is equal to the
residual schemeY of X in Z.

Theorem 3.2. Let P be a projective space of dimensionn ≥ 3 over an alge-
braically closed field of characteristic0. LetX ⊂ P be a closed subscheme that
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is Cohen–Macaulay of pure codimension2. Assume thatX is subcanonical and
self-linked. ThenX is a complete intersection.

In fact, sayX is self-linked by hypersurfacesF1 andF2 of degreesm1 andm2.

Then, afterF1 andF2 are switched if need be,m2 is even and there is a hypersur-
faceF3 of degreem2/2 such thatX = F1∩ F3 andZ = F1∩ 2F3, whereZ :=
F1∩ F2.

Proof. SinceP is smooth andX is subcanonical,X is Gorenstein. Hence, since
X has pure codimension 2, it is locally a complete intersection inP by one of
Serre’s results [Ei,21.10, p.537]. Hence, onX, the conormal sheafIX/P/I 2

X/P is
locally free of rank 2.

By another celebrated theorem of Serre’s,H i(OP (j)) = 0 for i = 1,2 and for
anyj, sincen ≥ 3. Hence, by Gherardelli linkage (Theorem 2.5) there is a hyper-
surfaceF3 such thatX = Z ∩ F3.

Let x ∈X. For i = 1,2,3, let ϕi ∈OP,x generate the ideal ofFi. ThenIX/P,x is
generated byϕ1, ϕ2, andϕ3 but not byϕ1 andϕ2, sinceX = Z ∩ F3 butX 6= Z.
SinceIX/P,x is generated by two elements, it must be generated either byϕ1 and
ϕ3 or byϕ2 andϕ3. HenceX is a Cartier divisor onF3.

For i = 1,2, setZi := Fi ∩ F3. Let x ∈X. Then, by the preceding paragraph,
IX/P,x is equal either toIZ1/P,x or toIZ2/P,x . Put geometrically,X is equal, in a
neighborhood ofx in P, either toZ1 or toZ2.

For i = 1,2,3, sayFi : fi = 0. For i = 1,2, form the greatest common divisor
gi of fi andf3, and setGi : gi = 0.

First, suppose that bothG1 andG2 are nonempty and letx be a common point.
SinceG1 is a component of bothF1 andF3, their intersectionZ1 is not equal to
X in a neighborhood ofx. Similarly,Z2 is not equal toX in a neighborhood ofx.
This conclusion stands in contradiction to our previous conclusion thatX is equal,
in a neighborhood ofx in P, either toZ1 or toZ2. Therefore,G1 andG2 cannot
both be nonempty; sayG2 is empty.

ThenZ2 has pure codimension 2 inP, andZ2 ⊇ X. If Z2 = X, thenX =
F2 ∩ F3. So suppose not, and we’ll prove thatX = F1 ∩ F3. Form the residual
schemeX2 of X in Z2. By general principles,X2 is a Cartier divisor onF3 be-
causeX andZ2 are so; moreover,Z2 = X +X2.

SupposeG1 is nonempty, and setC := G1∩ F2. ThenC is a hypersurface sec-
tion ofF2. HenceC has a pointx in common withX2,which also lies onF2. Then
x ∈ X, becauseC ⊂ Z andZ has the same support asX. SinceG1 is a compo-
nent of bothF1 andF3, their intersectionZ1 is not equal toX in a neighborhood
of x. Sincex lies on bothX2 andX, alsoZ2 is not equal toX in a neighborhood
of x. As before, there is a contradiction. Therefore,G1 is empty.

It follows thatZ1 has pure codimension 2 inP and thatZ1 ⊇ X. If Z1 = X,
thenX = F1∩ F3 as claimed. So suppose not, and form the residual schemeX1

of X in Z1. By general principles,X1 too is a Cartier divisor onF3. After a bit of
work, we’ll achieve a contradiction.

First, we’ll construct a natural splitting of the natural surjection,

IX/P/I 2
X/P � IX/F3/I 2

X/F3
. (3.2.1)
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To do so, form the imageL of IZ/P in IX/P/I 2
X/P ; we will show thatLmaps iso-

morphically ontoIX/F3/I 2
X/F3

. SinceLmaps surjectively and sinceIX/F3/I 2
X/F3

is invertible (becauseX is a Cartier divisor onF3), we need only show thatL is
invertible.

Let x ∈ X. Say, as before, thatIX/P, x = IZ1/P,x . SetW := F1 ∩ 2F3. Then
W ⊇ Z; indeed,I 2

F3/P
⊂ IZ/P becauseIX/Z = Ann IX/Z, sinceX is self-linked.

Since alsoW ⊇ Z1, there is a natural commutative diagram

0 −−→ IZ1/W −−→ OW −−→ OZ1 −−→ 0

u

y v

y w

y
0 −−→ IX/Z −−→ OZ −−→ OX −−→ 0.

Clearly,IZ1/W = OP (−F3)
∣∣
Z1
. Moreover,IX/Z = ωX ⊗ωP (m1+m2)

−1 owing
to (2.3.2) withY := X. Thus the source ofu is invertible onZ1, and the target
is invertible onX. Now, IX/P,x = IZ1/P,x . Hence,w is an isomorphism atx; in
other words,X andZ are the same scheme in a neighborhood ofx. Also,u is sur-
jective atx, and its source and target are invertible sheaves on the same scheme in
a neighborhood ofx; hence,u is an isomorphism atx. Therefore,v is an isomor-
phism atx and soIW/P,x = IZ/P,x.

Thus, inIX/P/I 2
X/P , the images ofIW/P andIZ/P are equal atx. The image

of IW/P is equal toOP (−F1)
∣∣
X

at x; indeed, the latter sheaf maps naturally into
the former, and this map is surjective (sinceX ⊂ F3) and injective atx, since its
natural image is a direct summand ofIX/P/I 2

X/P atx (becauseIX/P,x = IZ1/P,x).

The image ofIZ/P is L, by definition; thus,L is invertible atx. Sincex ∈ X is
arbitrary,L is invertible. HenceL ∼−→ IX/F3/I 2

X/F3
, and (3.2.1) splits.

LetF be any irreducible component ofF3, and equipF with its reduced struc-
ture. SinceF is a hypersurface,F meetsX. SetV := X ∩F. ThenV is a Cartier
divisor onF and henceV is locally a complete intersection inP. Consider the
natural commutative diagram of sheaves onV,

L
∣∣
V

−−→ (IX/F3/I 2
X/F3

)
∣∣
Vy y

IV/P/I 2
V/P −−→ IV/F/I 2

V/F .

The top horizontal map is an isomorphism because it is the restriction of an iso-
morphism. The right vertical map is an isomorphism because it is surjective and
its source and target are invertible. Therefore, the lower horizontal map splits.

Because
(a) the lower map splits,
(b) V is a Cartier divisor onF and is locally a complete intersection inP,
(c) F is reduced, irreducible, and closed, and
(d) P is a projective space of dimensionn ≥ 3 over an algebraically closed field

of characteristic 0,
Braun’s main theorem [Br, p. 26] implies that some multiple ofV is numerically
equivalent to a hypersurface section ofF.
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SinceF is a hypersurface, it follows thatF meets bothX1 andX2, which are
supposedly nonempty. Fori = 1,2, setVi := Xi ∩ F. ThenVi is a Cartier divi-
sor onF, andV + Vi = Fi ∩ F. Hence some multiple ofVi, too, is numerically
equivalent to a hypersurface section ofF. Therefore,V1 andV2 have a common
pointx. Thenx lies on bothZ1 andZ2 and thus on their intersection, which isX.
However, there is no neighborhood ofx in which eitherZ1 or Z2 is equal toX,
becausex lies on bothX1 andX2. Thus, we’ve achieved the desired contradiction
and soX = F1∩ F3.

ThenW = Z everywhere (by the previous reasoning); in other words,Z =
F1∩ 2F3. Finally, setm3 := degF3. Then degZ = 2m1m3. Now,Z := F1∩F2,

so degZ = m1m2. Hence 2m3 = m2. The proof is complete.

Example 3.3. Most of the proof of Theorem 3.2 works without change in the
relative case, whereP is a smooth projectively Cohen–Macaulay variety of pure
dimension at least 3. However, to apply Braun’s theorem, we must know that the
surjection (3.2.1) splits whenP is replaced by the ambient projective space; the
proof shows that (3.2.1) itself splits, but this splitting is insufficient. The theorem
does not hold even whenP is replaced by a smooth hypersurface, as the following
paragraph shows.

LetP be a smooth quadric hypersurface inP4. LetF1 be the section ofP by a
hyperplaneH1 that is tangent toP at a pointx. ThenF1 is a cone inH1 with ver-
tex atx and with base a smooth (plane) conicC. Fix y ∈C. Theny determines a
generatorX of the coneF1. LetH2 be a hyperplane inP4 that cutsH1 in the plane
spanned byx and by the tangent line toC at y. ThenX is a line and thus is sub-
canonical inP. Moreover,X is self-linked inP byF1 andF2 with F2 := H2∩P.
However,X is not the complete intersection of two hypersurface sections ofP,

since any such complete intersection has even degree inP4.

Example 3.4. Theorem 3.2 is not valid in positive characteristic without some
further restriction onX. Indeed, we will see that, in characteristic 2, there exists
an example of an irreducible, but nonreduced, Cohen–Macaulay space curveX

that is subcanonical and self-linked yet is not a complete intersection.
Ferrand [Fe, p. 345] explained how to put a subcanonical double structure on a

line (indeed, on any complete curve that is locally a complete intersection) inP3 in
any characteristic; moreover, the double curve can have arbitrarily negative arith-
metic genus. Migliore [Mi, p. 185] proved that, in characteristic 2, a double line
X is self-linked if its arithmetic genus is−2 or less. Such anX is not a complete
intersection, because every complete intersectionZ has nonnegative arithmetic
genus by (2.3.2).
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